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Abstract

This paper details a simple and general account, and model,
of the U-shaped curve phenomena apparent in many
developmental psychology experiments. The model replicates
both the general form of the U-shape performance in ongoing
development and accounts for additional observations in the
psychology literature such as the effect of noise in Switch
task experiments. This leads to predictions both in psychology
and neuroscience, and establishes an alternative hypothesis,
which is simpler, more detailed, more predictive, and more
general than those already established in the literature. This
approach is also suitable for embodied robotic modeling of
development.

Keywords: Cognitive modeling; neural networks; epigenetic
robotics; language acquisition; development; U-shaped curve,
Self-Organizing Maps; Active Hebbian learning.

Ongoing Development in Humans and Robots

This paper presents a novel neuro-computational approach
to modeling cognitive development, in particular for the
investigation of the phenomenon of U-shaped performance
curves in development. The model is based on refinements
of the associative learning mechanism recently proposed as
part of the Epigenetic Robotics Architecture (ERA) (Morse,
DeGreeff, Belpeame, & Cangelosi, 2010): a neural
cognitive architecture for general, scalable and embodied
learning and modeling of psychological function. This
architecture is particularly suited to model the role of
embodiment and agent-environment interaction in
development.

Modeling even a part of the process of development itself
is an inherently general proposition, as humans we all go
through significant physical and mental development from
conception into adulthood and old age. Some of this
development can be attributed to physical growth or other
factors principally under genetic control. This is the case,
for example, of the development of the musculoskeletal
system for walking, or the mental and physical effects of
puberty. Other developmental transitions are more
obviously influenced by our physical and social
environments, such as learning to read, or which languages
you speak. But no single developmental phenomenon results
wholly from nature or nurture alone (Karmiloff-Smith,
2000; Oyama, 2000a, 2000b). We are not static agents
untouched by our past and we are more than the unfolding

of our genetic program. The environment always plays a
role, as we shall see in the experiments herein. Recognizing
this, and in contrast to a growing body of modeling work in
which adaptation does not occur during the lifetime of an
agent (e.g. artificial evolution), is the field of Epigenetic or
Developmental Robotics (Metta & Berthouze, 2006, p.
129). While there are clear technological outcomes from
endowing robots with the capacity to learn and develop,
herein we focus our modeling efforts to aid and refine our
understanding of human development. As the general model
of U-shape learning proposed here is based on the
Epigenetic Robotics  Architecture (already wused in
development robotics experiments, Morse, Belpaeme,
Cangelosi, & Smith, 2010; Morse, DeGreeff, et al., 2010),
the extension of this study to new robotics experiments is
facilitated.

So what is (ongoing) development in humans? From
Experimental Psychology we know that much of
development is not simply the linear acquisition of new
skills / abilities / knowledge. Instead, the outward effects of
development often happen in non-linear stage-like
transitions, and rarely is it the case that some new behavior
or ability is simply added to an otherwise unchanged pile. A
commonly found phenomenon in developmental
psychology is known as the U-shaped curve; here
previously stable abilities become temporarily absent or
disrupted for a period of time (sometimes months) before
returning in a changed but stable form as new competencies
emerge. This U-shaped pattern of behavior reoccurs again
and again throughout the child development literature and is
not specific to the involvement of any particular modality or
physicality. This is, of course, not the only pattern of
development to be found but its frequent occurrence
combined with independence from any particular mode of
expression or sensory modality would seem to indicate a
common feature of the learning systems involved. As such,
competing accounts of this U-shaped pattern of behavior
can potentially have far-reaching impact on the cognitive
sciences.

U-shaped curve phenomena appear to be independent
from any particular task or modality as the following
prominent examples demonstrate: For example, Bosch and
Sebastian-Gallés argue that initially, bilingual infants track
statistical regularities across the two languages, leading to
their temporary inability to discriminate acoustically similar
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phonetic categories (Bosch & Sebastian-Gallés, 2003a,
2003b, 2005; Sebastian-Gallés & Bosch, 2009). Here the U-
shaped development curve occurs in auditory word
discrimination, while in another example it is apparent in
imitation (visual and motor modalities). Babies initially
imitate tongue protrusion (Meltzoff & Moore, 1977).
However over the following months this imitation declines
until at 6-months-old no tongue protrusion imitations are
observed (Abravanel & Sigafoos, 1984; Fontaine, 1984;
Heimann, Nelson, & Schaller, 1989). Then, by the end of
the first year the imitation of tongue protrusion is back
(Piaget & Cook, 1952). To include a modeling example,
Plunkett and Juola (1999) model a U-shape curve in the
production noun and verb errors, where initial production is
error free, but is followed by a period of intermittent over-
regularization of irregular nouns and verbs.

U-Shaped Patterns in the Development of
Children’s Phonetic Discrimination Responses

While there are many more examples we now focus more
closely on one particular set of experiments in this case
involving children’s responses to paired visual and auditory
input, and an apparent U-shaped profile of performance in
the Switch task occurring around 12 months of age. Since
the seminal study by Eimas et al. (1971) showing phonetic
discrimination and categorical perception for consonant
sounds in 1- and 4-month-old infants, it has been firmly
established that infants until 6 months of age are equipped
with excellent phonetic discrimination abilities, not only for
speech sounds that are found in their native language but
also for non-native speech sounds. By the end of the first
year, these abilities undergo a “perceptual reorganisation”,
leading to the maintenance, or increase in native contrast
discrimination, and a decrease, or maintenance in non-native
contrast discrimination (Kuhl et al., 2006; Werker & Tees,
1984).

During the nineties, psycholinguists started investigating
word formation and representation using various paradigms.
Typically, infants produce their first words by the end of the
first year, but are thought to have stored in memory a
substantial amount of word forms before that age (at 8
months probably several dozens, according to Swingley
2009). This doesn’t mean that they understand them, that is,
the child might not have linked them all to a meaning, but
she will have segmented them from continuous speech and
retained them in long term memory (see also Jusczyk &
Hohne, 1997).

The Switch Task

Stager and Werker (1997) first introduced the Switch
procedure as a method for investigating the process of word
learning in 8- and 14-month-old toddlers. The procedure is
as follows: The child is presented repeatedly with a novel
object A, which is labelled with a new word, for example a
“neem”. This is done until a habituation criterion is reached,
that is, when looking times have decreased to a certain
extent taken to indicate familiarity with the object A —
“neem” paring. Then the child is presented with a new

object B, paired with another label “lif”, again until the
habituation criterion is reached. Then two test trials are
introduced; the “same trial” test in which object A is
presented with its original label “neem”, and the “switch
trial” in which the same object A is now paired with the
other label “lif”. The rationale is that if the children have
encoded the pairing between each object and its label, and if
they can recognise and discriminate the auditory and visual
stimuli, then they should be surprised by (and look longer
towards) a switch trial in which an object is paired with a
“wrong” label, as compared to a same trial. Here 14-month-
olds did look longer toward switch trials. Following this, a
simpler version of the switch procedure was introduced with
only one object paired with one sound, and then the sound is
changed. This second version was tested with both 8- and
14-month old children and both age groups were found to
look longer toward objects in switch trials. Unexpectedly,
the authors did not find any significant surprise reaction in
14-month-olds when using two labels distant by only one
phonetic feature (“lif” Vs “rif”), suggesting that when they
are engaged in a word learning task, their phonetic
discrimination abilities “suffer”. This was surprising for
several reasons; firstly, as mentioned above, decades of
research had shown infants’ excellent phonetic capacities in
simple auditory tasks, secondly the 8-month-old children
could do it in the simplified version, and thirdly Stager and
Werker themselves demonstrated this same phonetic
discrimination in 14-month-old children in the absence of a
visual pairing.

Further experiments using the Switch procedure have
exposed several variables affecting performance. Rost and
McMurray (2009) have shown that the use of multiple
exemplars of the same stimulus (“puk” vs “buk” recorded
by 18 different speakers, each producing 3 tokens) increases
the surprise response in 14-month-olds, a result we model
herein. Werker et al. (2002) report a positive correlation
between performance in the switch task and vocabulary size
(comprehension and production) in 14-month-olds. This
correlation tends to vanish with age; at 17 months, there is
still a trend, at 20 months not at all.

To summarise, children at 6- and 8-months-old react to all
the switch trials (in the simplified version) with surprise
(increased looking), while 14-month-old children only react
with surprise if the labels are distant. By 20-months-old, and
earlier if vocabulary size is large, surprise is reinstated for
all switch trials.

Accounting for the Phenomenon

Werker et al (2002) suggest that a temporary problem with
cognitive resource allocations in tasks like the Switch task
could be responsible for the phenomena just discussed. That
is, what children have to do in order to succeed in that task
takes so much resource in working memory/mental space
that “something has to give”, which happens to be phonetic
processing. However, it is not clear why this would happen
in the 14-month-old children and not in the 8- and 20-
month-olds. Such resource allocation accounts would seem
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to be a relic of the computer-mind metaphor in which
limited ‘brain-resources’ are dynamically assigned to
different tasks. Biologically speaking brain processes
operate in parallel. Perhaps a more sympathetic
interpretation is that interference effects could be
responsible should the same brain areas be involved in
conflicting tasks. Indeed this is close to the account that we
will give but to give credence to such an account far more
details are necessary.

Another alternative hypothesis is that children represent
newly learnt words holistically e.g. (Charles-Luce & Luce,
1990), that is, as an underspecified phonetic representation.
In other words, instead of having stored a phonemic string
for “dog” like /d/-/0/-/g/, they have stored a global acoustic
representation. This holistic stage would signal a
discontinuity in the process of language development, given
that in early childhood infants display excellent phonetic
processing abilities. And although it is reasonable to
suppose that children may in fact develop both phonetic and
holistic recognition simultaneously, to account for the
Switch task data the former would have to be lost or
suppressed during the holistic stage, which would extend
from 12 months to 18 months. Furthermore it is not clear
why a holistic classification would necessarily be less
sensitive to phonetic changes than phonetic classifications.
Nevertheless if holistic recognition were less sensitive then
the requirement for increasingly fine-grained recognition
due to an increasing vocabulary would force another
reorganization —back to phonetics again-, though again one
may well ask why. Despite our reservations, even if this
account is correct then it has little to say about similar U-
shaped curves in development elsewhere.

What we propose as an alternative account is both simpler
than either of these hypotheses and sufficiently detailed to
provide an implemented computational model as task and
modality independent as U-shaped curve phenomena are
developmental psychology. The simple idea is that first the
infant gains recognition abilities in an isolated way relying
on local information only. Simultaneously associations are
formed between classifications in different areas and they
provide more information (via priming). So far, this is fairly
uncontroversial. However this additional information can be
used to further refine / reorganize pattern recognition
abilities. During this  reorganization, independent
recognition performance should remain high but multi- or
inter-modal tasks will suffer, as priming becomes
temporarily misaligned causing interference. Using the
previous example of visual object - sound association, we
hypothesise that the recognition of the visual object leads to
an expectation of the word “lif” via priming. However, if
what is heard contrasts with what is primed then this is not a
familiar pairing and the child elicits surprise. So to state our
hypothesis more formally: If priming is influential in the
organization of local recognition, then there will necessarily
be a lag during which priming is temporarily mis-aligned
and performance suffers producing a U-shaped curve in
performance. As an example consider the following:

1) A, and B frequently co-occur and so are associated

2) the priming from A to B changes B into B’ (the thing
that previously responded to B now responds to B”)

3) A and B’ are in a different relationship to A and B or
do not co-occur

4) BUT A still primes B’ and so we have interference or
mis-priming

5) Eventually the association becomes weak and A no
longer primes B’, the interference goes away

Eventually this reorganization will conclude and the
system will stabilise with new competencies and high
performance once again in both independent and cross-
modality / cross-sub-modality tasks. Furthermore the
simultaneous priming of multiple recognisers in one map
will draw them together while differential priming of close
features will push them apart both enhancing meaningful
experienced feature discrimination and potentially reducing
discrimination of non-experienced features.

Details of the model

We begin by suggesting that the sensory input areas of the
brain perform some kind of pattern recognition, adapting to
classify the input they receive. Cognitive development can
be seen as the learning of associations between emerging
discrimination capacities through interaction with the world
(Morse, Belpaeme, et al., 2010). In the previous example
this would consist on transformation of acoustic input in one
area, and visual input in another. Herein we will use Self-
Organizing-Maps (SOM) (Kohonen, 1998) to provide a
simple and biologically relevant classifier and simple
Hebbian learning to form associations between
classifications in different maps. We anticipate that our
results should be independent from the classifier used
(though timescales may vary). While standard SOM’s
provide pattern recognition, they do not allow for active
Hebbian links to participate in the map learning process,
thus instead we use the active learning equations proposed
by Althus (2010) as follows:

Equation 1: Initial direct activation of SOM units

DirA i =

Where Dird; is the resulting activity of each node in the
map following a forward pass of the SOM, v; is an input,
and wy is the weight between that input and the current
node. The winning node is the node with the smallest value
for DirA;

Equation 2: Initial indirect activation of SOM units
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IndAj = Exi X W,

i=0

Where IndA; is the resulting activity of each node in the map
due to indirect activation via Hebbian association, x; is the
pre-gaussian activity of unit 7, in the other map and wj is the
Hebbian weight between it and unit j in this map.

Equation 3: Gaussian direct or indirect activation of SOM
units

27
y=e 2
Where y;is the final activation of the i™ node in the map, /3 is
the distance from node i to the winning unit (either direct or
indirect), and n is the total number of nodes in the map.
Note: units not within the neighborhood size are set to zero
output activation, the neighborhood size and learning rate
are logarithmically decreased.

Equation 4: Joint activation of SOM units
JoinT = (1= A)DirY, + AIndY,

Where JoinT; is the final resulting activity of each node in
the map due to the combination of direct and indirect
activation, and A is the activation mixture co-efficient (0.1).

Equation 5: SOM weight changes
Aw, =aly-w, )IoinTi—C(DirYi - Joinﬂ)(vi—w[j)

Where w;; is the weight between input j and unit i, & is the
learning rate (0.1 — 0.0), and C is the inhibition rate (0.001 -
0.07).

Equation 6 Positive Hebbian learning (weight changes
between maps)

Aw = a,,,DirA,DirA

Where w;; is the weight between node j and node i, ¢ is the
hebbian learning rate (0.01), Dird; is the initial direct
activity of node i, in one map and Dir4; is the initial direct
activity of node j, in the other map.

Using these equations, where direct and indirect
activation coincide things proceed as normal, however
where they don’t coincide the indirect input is given
precedence and the direct input falling outside the influence
of the indirect input is pushed away. This reduces the
number of outliers responding to a given category and has
been argued as a move from topographic representation to

category representation (Althaus, 2010). While Althus
(2010) used dynamically varying parameters for &, A, and C,
we find our results are consistent and immune to variation in
parameter settings within the ranges attempted (stated in the
equations above) with the exception of A which must remain
low, i.e. the direct influence on the map’s activity should
remain larger than the indirect (primed) influence.

Method

In this model, two SOMs, each of 100 units and each
receiving three inputs were randomly initialised in the range
0-1. The two SOMs might be considered examples of
visual (e.g. color/shape) and auditory (phonetic) recognition
processes (as in the language learning model in Morse,
Belpaeme, et al., 2010), though the current modelling
experiment represents a general, task-independent model of
developmental learning. 10 input categories were defined by
uniformly distributing points (in the range 0-1) within the
3D input space so as to ensure no distribution bias. In
experiment 1 no noise was used, however in the experiment
2, each example of each category included random noise
around the category locus according to a noise window
parameter (0.1), and both maps received different exemplars
of the same category simultaneously. The network is given
input examples of each of the 10 categories in turn (in
random order) whilst learning. Learning is then temporarily
disabled and the network is tested with a fixed category
example to one map and a number of fixed inputs to the
other map, corresponding to: a No-Switch trial (input is
generated from the same category), a Switch trial using
input generated from a neighbouring category, and a Switch
trial using input equidistant between the two categories.
This testing phase is analogous to the switch trials in which
‘wrong’ words differed from the correct paired word by
differing amounts (“lif’-“neem” Vs “lif”-“rif”’). Following
this testing learning is re-enabled and the network is shown
the 10 category examples again. This whole cycle is then
repeated 1500 times and the results of testing at each cycle
recorded to produce data for one individual. In each
experiment this method was repeated for 20 randomly
initialised networks to produce data for 20 individuals.
Connection weights between the two maps where all
initialised at 0.

Results

In every test instance, the input produces a winning unit in
each SOM. This unit then primes (via learned Hebbian
connections) a unit in the other map, which in turn primes
one in the first map and so on. With few exceptions (and
usually within 2 or 3 cycles) the priming from each ‘winner’
falls into an attractor (e.g. units that mutually prime each
other). If the priming from each winner falls into the same
basin of attraction then there is no interference between the
maps. The expectations of activity in each map, as primed
from the other map, are met and a familiarity judgment is
made. If however the priming from each winner falls into
different basins of attraction then there is interference
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(competition between the primed and direct signals), this
means that expectations have not been met, thus a novel
pairing judgment is made. Figure 1 and Figure 2 show the
mean scores of each 50 consecutive trials for the three
conditions. In both population averaged (Figure 1) and
individual (Figure 2) graphs we can see that following early
learning No-Switch trials resulted in consistently low
(familiar) judgments, and the Switch condition with high
category difference resulted in consistently high (novel)
judgments.
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Figure 1: Showing the mean category judgment for each 50
consecutive trials across 20 individuals for 3 different
conditions; Switch trial with a large difference (1), Switch
trial with a small difference (0.5), and No-Switch trial
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Figure 2: Showing the mean category judgment for each 50

consecutive trials for a single individual and for 3 different

conditions; Switch trial with a large difference, Switch trial
with a small difference, and No-Switch trial

Inspection of the data plotted on Figure 1 suggests a U-
shaped curve for performance in the Switch conditions, with
a clear minimum at time step 9 preceded by a maximum at
time step 4. In order to evaluate the significance of this
behavior, an ANOVA was conducted on individual
averaged responses with condition (same items or different
items) and peaks (value at time step 4 = max , followed by
value at time step 9 = min) as within-participant factors. A
main effect of condition was found (F(1, 19) = 14.8, p =
.001), due to performance in the No-Switch condition being
above that of the Switch conditions (.85 vs. .55). There was

also a very predictable effect of peaks (F(1, 19) = 6.50, p =
.02), due to the fact that we selected a maximum (.81)
followed by a minimum (.59). Most importantly, there was a
significant interaction between conditions and peaks (F(1,
19) = 4.46, p = .048) due to the decrease in the Switch
condition being larger than in the No-Switch condition.
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Figure 3: Showing the mean category judgment for each 50
consecutive trials across 20 individuals for 4 different
conditions; For networks trained with noise; Switch trial
with a large difference, Switch trial with a small difference,
and No-Switch trial, and for networks trained without noise;
Switch trial with a small difference (0.6).

In experiment 2 the same procedure was followed but with
the addition of noise during training. Again similar results
were found however the mid category decision line was
pushed up indicating an increased level of surprise. The min
of the dip was significantly higher (F(1,19) = 4.99, p =
0.038), and the dip of the U-shape was extended (see Figure
3). This has a similar effect to increasing the distance
between the categories in the noise-free experiment (the
dashed line shown in Figure 3 for comparison), though the
dip remains higher.

Discussion and Conclusion

The results presented here represent a novel modelling
approach to developmental U-shaped curves, not only
replicating a significant and general U-shaped pattern but
also capturing additional details such as the increase in
levels of surprise using noisy training data, akin to the use
of different speakers in Rost and McMurray’s (2009)
experiments.

Ongoing work has already begun in which the model
receives speech and vision input from a real humanoid robot
(the iCub robot (Metta, Sandini, Vernon, Natale, & Nori,
2008)), with which we plan to more closely replicate the
experiments of Stager and Werker (1997) discussed in the
introduction. Nevertheless we have here provided evidence
for our simple, task and modality independent, but detailed,
account of the U-shape phenomena. This simple but
effective model and simulation data allow us to make
several predictions. Firstly as the drop in performance is due
to interference, caused by a lag between the re-organization
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of classifications and the updating of associative links, this
should work both ways. That is to say, for example, the
familiar Vs novel priming of phonetic classifications by
visual stimuli should be accompanied by a similar familiar
Vs novel priming of visual stimuli from auditory input.
Arguably priming between different regions need not be
uniform in strength and vision is more developed than
auditory capabilities at this time, however there should still
be a measurable effect, that is to say any U-shaped pattern
of performance should be accompanied by another U-
shaped pattern of performance in a related area. Further
more while noise in training increases levels of surprise, it
also appears to extend the duration of the U-shape (see
Figure 3) though further analysis would be required to
establish this.

We can also make neuroscience predictions from the
model as the topology of the SOM’s is related to the
organisation of topographic maps in sensory regions of the
brain and potentially throughout much of the cortex (see
Morse, Belpaeme, et al., 2010; Morse, DeGreeff, et al.,
2010). Naturally there is change in these topologies in early
learning but there should be further notable changes in the
organization of these topologies immediately proceeding
and during the dipped phase of a U-shaped curve in
development. We are not currently aware of such data from
neuroscience but the prediction is certainly verifiable.

Once embodied on the iCub humanoid robot we hope to
use this model to capture a greater range of U-shaped
phenomena and demonstrate an ability to counter noise by
varying the similarity of stimuli used. Future work will also
begin to explore possible reasons for the ordering of various
developmental transitions. Those interested should note that
the software developed to generate this data is freely
available (Peniak, Morse, Larcombe, Ramirez-Contla, &
Cangelosi, 2011).
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