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Abstract 

This paper details a simple and general account, and model, 
of the U-shaped curve phenomena apparent in many 
developmental psychology experiments. The model replicates 
both the general form of the U-shape performance in ongoing 
development and accounts for additional observations in the 
psychology literature such as the effect of noise in Switch 
task experiments. This leads to predictions both in psychology 
and neuroscience, and establishes an alternative hypothesis, 
which is simpler, more detailed, more predictive, and more 
general than those already established in the literature. This 
approach is also suitable for embodied robotic modeling of 
development. 

Keywords: Cognitive modeling; neural networks; epigenetic 
robotics; language acquisition; development; U-shaped curve, 
Self-Organizing Maps; Active Hebbian learning. 

Ongoing Development in Humans and Robots 
This paper presents a novel neuro-computational approach 
to modeling cognitive development, in particular for the 
investigation of the phenomenon of U-shaped performance 
curves in development. The model is based on refinements 
of the associative learning mechanism recently proposed as 
part of the Epigenetic Robotics Architecture (ERA) (Morse, 
DeGreeff, Belpeame, & Cangelosi, 2010): a neural 
cognitive architecture for general, scalable and embodied 
learning and modeling of psychological function. This 
architecture is particularly suited to model the role of 
embodiment and agent-environment interaction in 
development.   

Modeling even a part of the process of development itself 
is an inherently general proposition, as humans we all go 
through significant physical and mental development from 
conception into adulthood and old age. Some of this 
development can be attributed to physical growth or other 
factors principally under genetic control. This is the case, 
for example, of the development of the musculoskeletal 
system for walking, or the mental and physical effects of 
puberty. Other developmental transitions are more 
obviously influenced by our physical and social 
environments, such as learning to read, or which languages 
you speak. But no single developmental phenomenon results 
wholly from nature or nurture alone (Karmiloff-Smith, 
2000; Oyama, 2000a, 2000b). We are not static agents 
untouched by our past and we are more than the unfolding 

of our genetic program. The environment always plays a 
role, as we shall see in the experiments herein. Recognizing 
this, and in contrast to a growing body of modeling work in 
which adaptation does not occur during the lifetime of an 
agent (e.g. artificial evolution), is the field of Epigenetic or 
Developmental Robotics (Metta & Berthouze, 2006, p. 
129). While there are clear technological outcomes from 
endowing robots with the capacity to learn and develop, 
herein we focus our modeling efforts to aid and refine our 
understanding of human development. As the general model 
of U-shape learning proposed here is based on the 
Epigenetic Robotics Architecture (already used in 
development robotics experiments, Morse, Belpaeme, 
Cangelosi, & Smith, 2010; Morse, DeGreeff, et al., 2010), 
the extension of this study to new robotics experiments is 
facilitated. 

So what is (ongoing) development in humans? From 
Experimental Psychology we know that much of 
development is not simply the linear acquisition of new 
skills / abilities / knowledge. Instead, the outward effects of 
development often happen in non-linear stage-like 
transitions, and rarely is it the case that some new behavior 
or ability is simply added to an otherwise unchanged pile. A 
commonly found phenomenon in developmental 
psychology is known as the U-shaped curve; here 
previously stable abilities become temporarily absent or 
disrupted for a period of time (sometimes months) before 
returning in a changed but stable form as new competencies 
emerge. This U-shaped pattern of behavior reoccurs again 
and again throughout the child development literature and is 
not specific to the involvement of any particular modality or 
physicality. This is, of course, not the only pattern of 
development to be found but its frequent occurrence 
combined with independence from any particular mode of 
expression or sensory modality would seem to indicate a 
common feature of the learning systems involved. As such, 
competing accounts of this U-shaped pattern of behavior 
can potentially have far-reaching impact on the cognitive 
sciences.  

U-shaped curve phenomena appear to be independent 
from any particular task or modality as the following 
prominent examples demonstrate: For example, Bosch and 
Sebastián-Gallés argue that initially, bilingual infants track 
statistical regularities across the two languages, leading to 
their temporary inability to discriminate acoustically similar 
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phonetic categories (Bosch & Sebastián-Gallés, 2003a, 
2003b, 2005; Sebastián-Gallés & Bosch, 2009). Here the U-
shaped development curve occurs in auditory word 
discrimination, while in another example it is apparent in 
imitation (visual and motor modalities). Babies initially 
imitate tongue protrusion (Meltzoff & Moore, 1977). 
However over the following months this imitation declines 
until at 6-months-old no tongue protrusion imitations are 
observed (Abravanel & Sigafoos, 1984; Fontaine, 1984; 
Heimann, Nelson, & Schaller, 1989). Then, by the end of 
the first year the imitation of tongue protrusion is back 
(Piaget & Cook, 1952). To include a modeling example, 
Plunkett and Juola (1999) model a U-shape curve in the 
production noun and verb errors, where initial production is 
error free, but is followed by a period of intermittent over-
regularization of irregular nouns and verbs.  

U-Shaped Patterns in the Development of 
Children’s Phonetic Discrimination Responses 
While there are many more examples we now focus more 
closely on one particular set of experiments in this case 
involving children’s responses to paired visual and auditory 
input, and an apparent U-shaped profile of performance in 
the Switch task occurring around 12 months of age. Since 
the seminal study by Eimas et al. (1971) showing phonetic 
discrimination and categorical perception for consonant 
sounds in 1- and 4-month-old infants, it has been firmly 
established that infants until 6 months of age are equipped 
with excellent phonetic discrimination abilities, not only for 
speech sounds that are found in their native language but 
also for non-native speech sounds. By the end of the first 
year, these abilities undergo a “perceptual reorganisation”, 
leading to the maintenance, or increase in native contrast 
discrimination, and a decrease, or maintenance in non-native 
contrast discrimination (Kuhl et al., 2006; Werker & Tees, 
1984).  

During the nineties, psycholinguists started investigating 
word formation and representation using various paradigms. 
Typically, infants produce their first words by the end of the 
first year, but are thought to have stored in memory a 
substantial amount of word forms before that age (at 8 
months probably several dozens, according to Swingley 
2009). This doesn’t mean that they understand them, that is, 
the child might not have linked them all to a meaning, but 
she will have segmented them from continuous speech and 
retained them in long term memory (see also Jusczyk & 
Hohne, 1997).  
The Switch Task 
Stager and Werker (1997) first introduced the Switch 
procedure as a method for investigating the process of word 
learning in 8- and 14-month-old toddlers. The procedure is 
as follows: The child is presented repeatedly with a novel 
object A, which is labelled with a new word, for example a 
“neem”. This is done until a habituation criterion is reached, 
that is, when looking times have decreased to a certain 
extent taken to indicate familiarity with the object A – 
“neem” paring. Then the child is presented with a new 

object B, paired with another label “lif”, again until the 
habituation criterion is reached. Then two test trials are 
introduced; the “same trial” test in which object A is 
presented with its original label “neem”, and the “switch 
trial” in which the same object A is now paired with the 
other label “lif”. The rationale is that if the children have 
encoded the pairing between each object and its label, and if 
they can recognise and discriminate the auditory and visual 
stimuli, then they should be surprised by (and look longer 
towards) a switch trial in which an object is paired with a 
“wrong” label, as compared to a same trial. Here 14-month-
olds did look longer toward switch trials. Following this, a 
simpler version of the switch procedure was introduced with 
only one object paired with one sound, and then the sound is 
changed. This second version was tested with both 8- and 
14-month old children and both age groups were found to 
look longer toward objects in switch trials. Unexpectedly, 
the authors did not find any significant surprise reaction in 
14-month-olds when using two labels distant by only one 
phonetic feature (“lif” Vs “rif”), suggesting that when they 
are engaged in a word learning task, their phonetic 
discrimination abilities “suffer”. This was surprising for 
several reasons; firstly, as mentioned above, decades of 
research had shown infants’ excellent phonetic capacities in 
simple auditory tasks, secondly the 8-month-old children 
could do it in the simplified version, and thirdly Stager and 
Werker themselves demonstrated this same phonetic 
discrimination in 14-month-old children in the absence of a 
visual pairing. 

Further experiments using the Switch procedure have 
exposed several variables affecting performance. Rost and 
McMurray (2009) have shown that the use of multiple 
exemplars of the same stimulus (“puk” vs “buk” recorded 
by 18 different speakers, each producing 3 tokens) increases 
the surprise response in 14-month-olds, a result we model 
herein. Werker et al. (2002) report a positive correlation 
between performance in the switch task and vocabulary size 
(comprehension and production) in 14-month-olds. This 
correlation tends to vanish with age; at 17 months, there is 
still a trend, at 20 months not at all. 

To summarise, children at 6- and 8-months-old react to all 
the switch trials (in the simplified version) with surprise 
(increased looking), while 14-month-old children only react 
with surprise if the labels are distant. By 20-months-old, and 
earlier if vocabulary size is large, surprise is reinstated for 
all switch trials. 

Accounting for the Phenomenon 
Werker et al (2002) suggest that a temporary problem with 
cognitive resource allocations in tasks like the Switch task 
could be responsible for the phenomena just discussed. That 
is, what children have to do in order to succeed in that task 
takes so much resource in working memory/mental space 
that “something has to give”, which happens to be phonetic 
processing. However, it is not clear why this would happen 
in the 14-month-old children and not in the 8- and 20-
month-olds. Such resource allocation accounts would seem 
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to be a relic of the computer-mind metaphor in which 
limited ‘brain-resources’ are dynamically assigned to 
different tasks. Biologically speaking brain processes 
operate in parallel. Perhaps a more sympathetic 
interpretation is that interference effects could be 
responsible should the same brain areas be involved in 
conflicting tasks. Indeed this is close to the account that we 
will give but to give credence to such an account far more 
details are necessary. 

Another alternative hypothesis is that children represent 
newly learnt words holistically e.g. (Charles-Luce & Luce, 
1990), that is, as an underspecified phonetic representation. 
In other words, instead of having stored a phonemic string 
for “dog” like /d/-/O/-/g/, they have stored a global acoustic 
representation. This holistic stage would signal a 
discontinuity in the process of language development, given 
that in early childhood infants display excellent phonetic 
processing abilities. And although it is reasonable to 
suppose that children may in fact develop both phonetic and 
holistic recognition simultaneously, to account for the 
Switch task data the former would have to be lost or 
suppressed during the holistic stage, which would extend 
from 12 months to 18 months. Furthermore it is not clear 
why a holistic classification would necessarily be less 
sensitive to phonetic changes than phonetic classifications. 
Nevertheless if holistic recognition were less sensitive then 
the requirement for increasingly fine-grained recognition 
due to an increasing vocabulary would force another 
reorganization –back to phonetics again-, though again one 
may well ask why. Despite our reservations, even if this 
account is correct then it has little to say about similar U-
shaped curves in development elsewhere. 

What we propose as an alternative account is both simpler 
than either of these hypotheses and sufficiently detailed to 
provide an implemented computational model as task and 
modality independent as U-shaped curve phenomena are 
developmental psychology. The simple idea is that first the 
infant gains recognition abilities in an isolated way relying 
on local information only. Simultaneously associations are 
formed between classifications in different areas and they 
provide more information (via priming). So far, this is fairly 
uncontroversial. However this additional information can be 
used to further refine / reorganize pattern recognition 
abilities. During this reorganization, independent 
recognition performance should remain high but multi- or 
inter-modal tasks will suffer, as priming becomes 
temporarily misaligned causing interference. Using the 
previous example of visual object - sound association, we 
hypothesise that the recognition of the visual object leads to 
an expectation of the word “lif” via priming. However, if 
what is heard contrasts with what is primed then this is not a 
familiar pairing and the child elicits surprise. So to state our 
hypothesis more formally: If priming is influential in the 
organization of local recognition, then there will necessarily 
be a lag during which priming is temporarily mis-aligned 
and performance suffers producing a U-shaped curve in 
performance. As an example consider the following: 

 
1) A, and B frequently co-occur and so are associated 
2) the priming from A to B changes B into B’ (the thing 

that previously responded to B now responds to B’) 
3) A and B’ are in a different relationship to A and B or 

do not co-occur 
4) BUT A still primes B’ and so we have interference or 

mis-priming 
5) Eventually the association becomes weak and A no 

longer primes B’, the interference goes away 
 

Eventually this reorganization will conclude and the 
system will stabilise with new competencies and high 
performance once again in both independent and cross-
modality / cross-sub-modality tasks. Furthermore the 
simultaneous priming of multiple recognisers in one map 
will draw them together while differential priming of close 
features will push them apart both enhancing meaningful 
experienced feature discrimination and potentially reducing 
discrimination of non-experienced features. 

Details of the model 
We begin by suggesting that the sensory input areas of the 
brain perform some kind of pattern recognition, adapting to 
classify the input they receive. Cognitive development can 
be seen as the learning of associations between emerging 
discrimination capacities through interaction with the world 
(Morse, Belpaeme, et al., 2010). In the previous example 
this would consist on transformation of acoustic input in one 
area, and visual input in another. Herein we will use Self-
Organizing-Maps (SOM) (Kohonen, 1998) to provide a 
simple and biologically relevant classifier and simple 
Hebbian learning to form associations between 
classifications in different maps. We anticipate that our 
results should be independent from the classifier used 
(though timescales may vary). While standard SOM’s 
provide pattern recognition, they do not allow for active 
Hebbian links to participate in the map learning process, 
thus instead we use the active learning equations proposed 
by Althus (2010) as follows: 

 
Equation 1: Initial direct activation of SOM units 
 

 
 
Where DirAj is the resulting activity of each node in the 
map following a forward pass of the SOM, vi is an input, 
and wij is the weight between that input and the current 
node.  The winning node is the node with the smallest value 
for DirAi 
 
Equation 2: Initial indirect activation of SOM units 
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Where IndAj is the resulting activity of each node in the map 
due to indirect activation via Hebbian association, xi is the 
pre-gaussian activity of unit i, in the other map and wij is the 
Hebbian weight between it and unit j in this map. 

 
Equation 3: Gaussian direct or indirect activation of SOM 
units 
 

 
 

Where yi is the final activation of the ith node in the map, ß is 
the distance from node i to the winning unit (either direct or 
indirect), and n is the total number of nodes in the map.  
Note: units not within the neighborhood size are set to zero 
output activation, the neighborhood size and learning rate 
are logarithmically decreased. 

 
Equation 4: Joint activation of SOM units 
 

 
 
Where JoinTj is the final resulting activity of each node in 
the map due to the combination of direct and indirect 
activation, and λ is the activation mixture co-efficient (0.1).  
 
Equation 5: SOM weight changes 
 

 
 

Where wij  is the weight between input j and unit i, αis the 
learning rate (0.1 – 0.0), and ζ is the inhibition rate (0.001 - 
0.07). 
 
Equation 6 Positive Hebbian learning (weight changes 
between maps) 
 

 
 

Where wij  is the weight between node j and node i, αis the 
hebbian learning rate (0.01), DirAi is the initial direct 
activity of node i, in one map and DirAj is the initial direct 
activity of node j, in the other map. 
 

Using these equations, where direct and indirect 
activation coincide things proceed as normal, however 
where they don’t coincide the indirect input is given 
precedence and the direct input falling outside the influence 
of the indirect input is pushed away. This reduces the 
number of outliers responding to a given category and has 
been argued as a move from topographic representation to 

category representation (Althaus, 2010). While Althus 
(2010) used dynamically varying parameters forα, λ, and ζ, 
we find our results are consistent and immune to variation in 
parameter settings within the ranges attempted (stated in the 
equations above) with the exception of λ which must remain 
low, i.e. the direct influence on the map’s activity should 
remain larger than the indirect (primed) influence. 

Method 
In this model, two SOMs, each of 100 units and each 
receiving three inputs were randomly initialised in the range 
0-1.  The two SOMs might be considered examples of 
visual (e.g. color/shape) and auditory (phonetic) recognition 
processes (as in the language learning model in Morse, 
Belpaeme, et al., 2010), though the current modelling 
experiment represents a general, task-independent model of 
developmental learning. 10 input categories were defined by 
uniformly distributing points (in the range 0-1) within the 
3D input space so as to ensure no distribution bias. In 
experiment 1 no noise was used, however in the experiment 
2, each example of each category included random noise 
around the category locus according to a noise window 
parameter (0.1), and both maps received different exemplars 
of the same category simultaneously. The network is given 
input examples of each of the 10 categories in turn (in 
random order) whilst learning. Learning is then temporarily 
disabled and the network is tested with a fixed category 
example to one map and a number of fixed inputs to the 
other map, corresponding to: a No-Switch trial (input is 
generated from the same category), a Switch trial using 
input generated from a neighbouring category, and a Switch 
trial using input equidistant between the two categories. 
This testing phase is analogous to the switch trials in which 
‘wrong’ words differed from the correct paired word by 
differing amounts (“lif”-“neem” Vs “lif”-“rif”). Following 
this testing learning is re-enabled and the network is shown 
the 10 category examples again. This whole cycle is then 
repeated 1500 times and the results of testing at each cycle 
recorded to produce data for one individual. In each 
experiment this method was repeated for 20 randomly 
initialised networks to produce data for 20 individuals. 
Connection weights between the two maps where all 
initialised at 0. 

Results 
In every test instance, the input produces a winning unit in 
each SOM. This unit then primes (via learned Hebbian 
connections) a unit in the other map, which in turn primes 
one in the first map and so on. With few exceptions (and 
usually within 2 or 3 cycles) the priming from each ‘winner’ 
falls into an attractor (e.g. units that mutually prime each 
other). If the priming from each winner falls into the same 
basin of attraction then there is no interference between the 
maps. The expectations of activity in each map, as primed 
from the other map, are met and a familiarity judgment is 
made. If however the priming from each winner falls into 
different basins of attraction then there is interference 
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(competition between the primed and direct signals), this 
means that expectations have not been met, thus a novel 
pairing judgment is made. Figure 1 and Figure 2 show the 
mean scores of each 50 consecutive trials for the three 
conditions. In both population averaged (Figure 1) and 
individual (Figure 2) graphs we can see that following early 
learning No-Switch trials resulted in consistently low 
(familiar) judgments, and the Switch condition with high 
category difference resulted in consistently high (novel) 
judgments. 

 
Figure 1: Showing the mean category judgment for each 50 

consecutive trials across 20 individuals for 3 different 
conditions; Switch trial with a large difference (1), Switch 

trial with a small difference (0.5), and No-Switch trial 
 

 
Figure 2: Showing the mean category judgment for each 50 
consecutive trials for a single individual and for 3 different 
conditions; Switch trial with a large difference, Switch trial 

with a small difference, and No-Switch trial 
 
Inspection of the data plotted on Figure 1 suggests a U-
shaped curve for performance in the Switch conditions, with 
a clear minimum at time step 9 preceded by a maximum at 
time step 4. In order to evaluate the significance of this 
behavior, an ANOVA was conducted on individual 
averaged responses with condition (same items or different 
items) and peaks (value at time step 4 = max , followed by 
value at time step 9 = min) as within-participant factors. A 
main effect of condition was found (F(1, 19) = 14.8, p = 
.001), due to performance in the No-Switch condition being 
above that of the Switch conditions (.85 vs. .55). There was 

also a very predictable effect of peaks (F(1, 19) = 6.50, p = 
.02), due to the fact that we selected a maximum (.81) 
followed by a minimum (.59). Most importantly, there was a 
significant interaction between conditions and peaks (F(1, 
19) = 4.46, p = .048) due to the decrease in the Switch 
condition being larger than in the No-Switch condition. 
 

 
Figure 3: Showing the mean category judgment for each 50 

consecutive trials across 20 individuals for 4 different 
conditions; For networks trained with noise; Switch trial 

with a large difference, Switch trial with a small difference, 
and No-Switch trial, and for networks trained without noise; 

Switch trial with a small difference (0.6). 
 
In experiment 2 the same procedure was followed but with 
the addition of noise during training. Again similar results 
were found however the mid category decision line was 
pushed up indicating an increased level of surprise. The min 
of the dip was significantly higher (F(1,19) = 4.99, p = 
0.038), and the dip of the U-shape was extended (see Figure 
3). This has a similar effect to increasing the distance 
between the categories in the noise-free experiment (the 
dashed line shown in Figure 3 for comparison), though the 
dip remains higher.  

Discussion and Conclusion 
The results presented here represent a novel modelling 
approach to developmental U-shaped curves, not only 
replicating a significant and general U-shaped pattern but 
also capturing additional details such as the increase in 
levels of surprise using noisy training data, akin to the use 
of different speakers in Rost and McMurray’s (2009) 
experiments.  

Ongoing work has already begun in which the model 
receives speech and vision input from a real humanoid robot 
(the iCub robot (Metta, Sandini, Vernon, Natale, & Nori, 
2008)), with which we plan to more closely replicate the 
experiments of Stager and Werker (1997) discussed in the 
introduction. Nevertheless we have here provided evidence 
for our simple, task and modality independent, but detailed, 
account of the U-shape phenomena. This simple but 
effective model and simulation data allow us to make 
several predictions. Firstly as the drop in performance is due 
to interference, caused by a lag between the re-organization 
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of classifications and the updating of associative links, this 
should work both ways. That is to say, for example, the 
familiar Vs novel priming of phonetic classifications by 
visual stimuli should be accompanied by a similar familiar 
Vs novel priming of visual stimuli from auditory input. 
Arguably priming between different regions need not be 
uniform in strength and vision is more developed than 
auditory capabilities at this time, however there should still 
be a measurable effect, that is to say any U-shaped pattern 
of performance should be accompanied by another U-
shaped pattern of performance in a related area. Further 
more while noise in training increases levels of surprise, it 
also appears to extend the duration of the U-shape (see 
Figure 3) though further analysis would be required to 
establish this. 

We can also make neuroscience predictions from the 
model as the topology of the SOM’s is related to the 
organisation of topographic maps in sensory regions of the 
brain and potentially throughout much of the cortex (see 
Morse, Belpaeme, et al., 2010; Morse, DeGreeff, et al., 
2010). Naturally there is change in these topologies in early 
learning but there should be further notable changes in the 
organization of these topologies immediately proceeding 
and during the dipped phase of a U-shaped curve in 
development. We are not currently aware of such data from 
neuroscience but the prediction is certainly verifiable. 

Once embodied on the iCub humanoid robot we hope to 
use this model to capture a greater range of U-shaped 
phenomena and demonstrate an ability to counter noise by 
varying the similarity of stimuli used. Future work will also 
begin to explore possible reasons for the ordering of various 
developmental transitions. Those interested should note that 
the software developed to generate this data is freely 
available (Peniak, Morse, Larcombe, Ramirez-Contla, & 
Cangelosi, 2011). 
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