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Abstract

Human learning involves multiple sources of information.
Their ability to adapt to changes in the environment depends
on having such multiple learning modes. In this paper, we ex-
tend an existing cognitive architecture to have three distinct
learning modes, in an effort to test the hypothesis that multiple
learning capabilities bring synergistic effect in the overall per-
formance. We show experimental results in a simplified route
generation domain.
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Introduction
People acquire knowledge from various sources. They learn
from their own success and failures, by observing situations
around them, and by imitating others’ behavior. Their abil-
ity to adapt to changing situations depends on such multiple
modes of learning (Ohlsson, 2011). There have been many
previous work on each of such learning modes, but we are
particularly interested in their interactions and the synergy
among them.

Since cognitive architectures (Newell, 1990) provide gen-
eral framework for modeling cognition, they are suitable
for our research on multiple learning modes and their in-
teractions. In this work, we use one such architecture,
ICARUS, that supports both learning from success (Langley
& Choi, 2006) and learning from failures (Choi & Ohlsson,
2010; Ohlsson, 1996). We extended the architecture with a
third mode of learning declarative knowledge in an effort to
broaden the scope of our research, although we do not yet
perform a lesion study in the current work with this learning
mode turned off.

In the following sections, we first review some basic as-
sumptions of ICARUS starting with its representation and
memories and continuing to the inference and execution
mechanisms. We then describe the three learning mecha-
nisms in some detail and show experimental results that show
synergy in a route generation domain. We also discuss related
and future work before we conclude.

Representation and Memories
As with other cognitive architectures (Laird et al., 1986;
Anderson, 1993), ICARUS makes commitments to a specific
way to represent knowledge, infer beliefs, perform execu-
tion and learn new knowledge. In this section, we review
ICARUS’s representation of knowledge and the correspond-
ing memories.

ICARUS makes distinctions in two separate dimensions.
The first exists between concepts and skills. Concepts give
ICARUS a language to describe its surroundings by enabling
the system to infer beliefs about the current state of the world.
Skills, on the other hand, are procedures that ICARUS believes
to achieve certain concept instances. The second distinction
lies between long-term knowledge and short-term structures.
Long-term concepts and skills are general descriptions of sit-
uations and procedures, and ICARUS instantiates them for a
particular situation at hand. Instantiated concepts and skills
are short-term structures, in that they are constantly created
and destroyed as the situation changes. These two distinc-
tions result in four separate memories in ICARUS.

In its long-term conceptual memory, the architecture en-
codes concept definitions that are similar to Horn clauses
(Horn, 1951). As shown in Table 1, concepts include a head
and a body that includes perceptual matching conditions or
references to other concepts. The first concept with the head,
(at ?location), matches against an object of type, self,
and its attribute, location, in its :percepts field. The
second concept, (connected ?from ?to), matches against
an additional object of type, location, and tests if its
accessible attribute is not null and the two locations, ?from
and ?to, are different. These two concepts do not have any
reference to other concepts in their definitions, so they are
primitive concepts. On the other hand, the third concept,
(not-dead-end ?location), matches against a location
object and refers to two subconcepts in addition to a test.
This makes the last concept a non-primitive one. This way,
ICARUS builds a hierarchy of concepts that provides multiple
levels of abstraction.

Another long-term memory stores ICARUS’s skills that re-
semble STRIPS operators (Fikes & Nilsson, 1971). The head
of each skill is the predicate it is known to achieve, making
all skills indexed by their respective goals. Each skill has
a body that includes perceptual matching conditions, some
preconditions, and either direct actions to the world or a sub-
goal decomposition. Skills with no references to subgoals
are primitive, while the ones with subgoals are non-primitive.
Table 2 shows some sample ICARUS skills. The first skill
that achieves (at ?location) has two preconditions, (at
?from) and (connected ?from ?location), in its :start
field and an action in its :actions field. Without any ref-
erence to subgoals, this skill is primitive. The second skill,
however, is a non-primitive one that provides a subgoal de-
composition to achieve (at B). Namely, this skill instructs
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ICARUS to consider two ordered subgoals, (at W6) and (at
B), to achieve the eventual goal.

Table 1: Some sample ICARUS concepts for a route genera-
tion domain. Question marks denote variables.

((at ?location)
:percepts ((self ?self location ?location)))

((connected ?from ?to)
:percepts ((self ?self location ?from)

(location ?to accessible ?access))
:tests ((not (equal ?from ?to))

(not (null ?access))))

((not-dead-end ?location)
:percepts ((location ?location))
:relations ((connected ?location ?to1)

(connected ?location ?to2))
:tests ((not (equal ?to1 ?to2))))

Table 2: Some sample ICARUS skills for a route generation
domain. Question marks denote variables. The second skill
is a part of a specific route that is learned.

((at ?location)
:start ((at ?from)

(connected ?from ?location))
:actions ((*move-to ?location)))

((at B)
:subgoals ((at W6) (at B)))

In addition, ICARUS has two short-term memories to store
instantiated concepts and skills. While a short-term concep-
tual memory holds the current beliefs of the system, its short-
term skill memory stores the selected skill instances indexed
by their corresponding goals or subgoals. When ICARUS
works on complex problems, information on goals and sub-
goals tends to dominate the short-term skill memory since it
also serves as the goal stack for the system. Next, we ex-
plain the processes that generate contents of these short-term
memories from their long-term counterparts.

Inference and Execution
ICARUS operates in cycles. On each cycle, it performs a se-
ries of processes as shown in Fig 1. The system first instan-
tiates its long-term concepts based on the data from its sen-
sors. The bottom-up inference of concepts creates beliefs in
the form of instantiated conceptual predicates. The inference
process starts with the perceptual information about objects

in the world. The system attempts to match its concept def-
initions to the perceptual information and, when there is a
match, it instantiates the head of the definitions to compute
its current beliefs.
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Figure 1: ICARUS’s memories and the processed that work
over them on each cycle.

Once the architecture computes all its beliefs, it starts the
skill retrieval and execution process. ICARUS’s goals guide
this process, and the system retrieves relevant long-term skills
based on the current beliefs. When it finds an executable path
through its skill hierarchy, from its goal at the top to actions
at the bottom, ICARUS executes the actions specified at the
leaf node of the path. This execution, in turn, changes the
environment, and the system starts another cycle by inferring
beliefs from new data received from the environment.

Learning Mechanisms

The original ICARUS includes a single learning mechanism
that acquires new skills from successful problem solving
traces (Langley & Choi, 2006). It uses a version of means-
ends problem solver to decompose its goals into subgoals and
generate a solution trace. The system then uses it to compose
a new skill for each subgoal. Our recent work added a second
mechanism for learning from failures using a new constraint
language (Choi & Ohlsson, 2010). Given constraints that are
expressed as relevance–satisfaction condition pairs, the sys-
tem revises its skills that cause violations of such constraints
by adding new preconditions to them.

Although our previous observations showed that the two
learning mechanisms yield some synergistic effects, we were
concerned that the overall system assumes fully observable
domains and this causes ICARUS’s problem solver to be
overly powerful. In response, we moved toward a partially
observable domain and introduced a third learning mecha-
nism to ICARUS that can handle this change. In this section,
we review the two existing learning mechanisms briefly and
explain the details of the new extension to ICARUS for learn-
ing declarative knowledge.
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Learning from Problem Solving
When ICARUS hits an impasse with no executable skills for
the current goal, it invokes its means-ends problem solver to
find a solution. As shown in Figure 2, the system has two
options, either using a skill definition to propose an unsatis-
fied precondition as the next subgoal (skill chaining), or using
a concept definition to decompose the current goal into sub-
goals (concept chaining). By default, ICARUS gives priority
to the former and proceeds to the latter only when there is no
skill chains available.

Skill 
defini*on 

Precondi*on  Goal 

Goal 

Subgoal 

Subgoal 

Subgoal 

Concept 
defini*on 

skill chain 

concept chain 

level n in goal stack level n+1 in goal stack 

Figure 2: Two types of problem solving chains in ICARUS.
For a skill chain, the system uses a skill definition to push the
unsatisfied precondition as subgoal, while in a concept chain
it uses a concept definition to decompose a goal into subgoals.

The architecture applies problem solving chains recur-
sively until it finds a subgoal for which it can execute im-
mediately. When such a subgoal is found, ICARUS proceeds
with the execution to achieve it. Once the system satisfies the
subgoal in the world, it learns a new skill from this experience
by generalizing the situation and the procedures used.

Learning from Constraint Violations
ICARUS has the notion of constraints, expressed as pairs of
relevance and satisfaction condition adopted from Ohlsson
(1996). On every cycle, the system checks if the relevance
conditions of each constraint is true in its belief state, and
if so, it also checks the satisfaction conditions. When a con-
straint is violated, namely, when it is relevant but not satisfied,
ICARUS invokes its constraint-based specialization mecha-
nism to revise skills that caused the violation.

There are two different cases of violations. One is when a
constraint has been irrelevant but it becomes relevant and not
satisfied, and the other is when a constraint has been relevant
and satisfied but it becomes unsatisfied. The system treats
the two cases differently, using two distinct rules as shown
in Table 3 to compute additional preconditions it adds to the

corresponding skills. See Ohlsson (2011) for a more detailed
description of this learning mechanism.

Table 3: Added preconditions computed differently based on
the type of the constraint violation. Cr, Cs, Oa, and Od de-
note relevance conditions, satisfaction conditions, add list,
and delete list, respectively.

Type \ Revision 1 2

A ¬(Cr−Oa) (Cr−Oa)∪ (Cs−Oa)
B ¬Cr Cr ∪¬(Cs∩Od)

Learning Declarative Knowledge
The newest learning mechanism in ICARUS outputs a dif-
ferent kind of knowledge. Instead of creating or revising
skills, it remembers and maintains declarative knowledge in
the form of ICARUS beliefs. The original architecture per-
forms bottom-up inference of its beliefs from scratch on every
cycle, but the extended system carries over some of previous
beliefs while it still infers new ones based on the updated per-
ceptual information on a cycle.

This process happens in a straightforward fashion. ICARUS
first performs the bottom-up inference with updates from the
environment. It then compares this belief state to the previous
one and finds conflicting beliefs in the previous state that get
removed. The rest of previous beliefs get added to the cur-
rent belief state. What is crucial in this process is the mecha-
nism for removing conflicting beliefs from the previous state.
ICARUS uses negations in the definitions of concepts to find
the beliefs that are, in some sense, opposed to new beliefs in
the current state. However, this is not enough to find all con-
flicts, and it causes a catastrophic expansion of beliefs when
it operates alone.

Therefore, the latest extension also includes a new field
:delete in concept definitions that stores what is similar to
a delete list. Since not all conflicting relations are explicitly
expressed in the form of negated subconcepts, developers can
manually add such relations in concept definitions. This is
particularly useful to ensure uniqueness of some concept in-
stances like an agent’s current location. For example, in the
definition for (at ?location) that shows the current loca-
tion of the ICARUS agent in a route generation domain (see
the first concept in Table 1), we can guarantee that only one
instance of this concept exists in the belief state on a given cy-
cle by including (at ?other) in the delete list for this con-
cept. This process is shown in Figure 3.

Experiments
To prove the synergistic effect of having multiple learning
mechanisms, we performed experiments in the route genera-
tion domain we have developed for our previous work (Choi
& Ohlsson, 2010) with some modifications to make it par-
tially observable. Instead of seeing all connections at all
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Figure 3: After inferring the current beliefs from the percep-
tual information on cycle n+1, ICARUS combines this result
with previous beliefs that are both not in conflict with the cur-
rent ones and not removed while processing the delete lists.
In this example, only static beliefs for connectivity are main-
tained in the belief state for cycle n+1.

times, the agent can only see the connections from its current
location to the neighboring ones. In this section, we describe
our experimental setup and the results from our experiments
in this domain.

Experimental Setup
In our route generation domain, the agent starts at a location
on one side, and it has the goal to get to a target location on
the other side. Using the connectivity information between
various neighboring locations, an agent should traverse from
its origin to the target. Although there are multiple possible
routes in the environment, some of the routes might become
unavailable for travel due to various reasons such as criminal
activity or damage to a bridge. When this happens, the agent
can encounter situations where it is unable to use routes it has
learned before, requiring it to adapt to the new situation.

The domain is modified from its original form to give par-
tial knowledge of the environment to ICARUS agents, restrict-
ing the available connectivity information to the visible ones
from the agent’s current location. We give only the basic con-
cept and skill sets to the system at the beginning, along with a
constraint. This means that the system knows how to operate
in the world, but not at the level of expertise that enables it to
satisfy the constraint at all times.

A typical run in this domain goes as follows. We give the
system a goal to get to a target location, B, starting from the
initial location, A. The two locations are connected by two
alternate routes using waypoints W1 and W2, respectively.
From the location A, the agent sees connections to the neigh-
boring locations, W1 and W2. Without a complete connec-
tivity information from the current location to the target, both
execution and problem solving fails, and the system falls back

to random exploration. This gets the agent to a waypoint,
W1. From this location, the agent can see a direct connection
to its target, which it takes by executing its skill for moving
between neighboring locations (the first skill in Table 2).

Once the agent reaches the target, it is transported back to
its origin for repeated trials. During the first trial, the system
has remembered all the connectivity information it saw us-
ing declarative learning. Therefore, on the second trial, the
problem solver can generate the route, A - W1 - B, from the
beginning. It then takes the route by executing its skill twice
for the two segments and achieves its goal. From this success,
the agent learns the route as specific skills like the second one
in Table 2.

Before continuing subsequent trials, we designate the way-
point W1 as dangerous. This causes a violation of the con-
straint ICARUS is given, namely:

(at ?location)→ (not (dangerous ?location))

which simply says that it should not be at a location that
is dangerous. During the next trial, the system attempts to
use the known route, A - W1 - B, but it realizes that taking
this route would cause a constraint violation. In response,
ICARUS revises its skill to include an additional precondition,
which ensures that the location the skill takes it to is not dan-
gerous. Then again, there is no executable skill from A, and
the system finds an alternate route A - W2 - B through prob-
lem solving and learns a specific skill for this route. Starting
from the next trial, the agent can simply execute its specific
route skills to get to the target without any problem solving.

Experimental Results
We ran similar experiments at two different levels of com-
plexity, with 100 simulated subjects for each. There are nine
waypoints and four different routes between the origin and
the target at the first level, while there are 12 waypoints and
eight possible routes at the second level. There were four con-
ditions, in which 1) we turn on all learning modes, 2) turn off
learning from constraint violations, 3) turn off learning from
problem solving, or 4) turn off both of these learning modes.
Since turning off the declarative learning causes the system
to fall back to exploration all the time, we did not include any
conditions that involve turning off this learning mode.

Figure 4 summarizes main findings. The measure of com-
putational effort is the total number of cycles per trial. The
first four trials show the initial learning of a route to target.
After the fourth trial, the learned route was declared out of
bounds by marking some waypoints on that route to have
become dangerous. The fifth trial is thus the one in which
ICARUS discovers this change and faces the problem of adapt-
ing to it. The subsequent trials trace the discovery and learn-
ing of a novel route. The figure shows four curves for each
complexity level, corresponding to the four learning condi-
tions outlined above.

The curve at the top of these graphs shows the result for the
fourth condition where only the declarative learning is active.
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Figure 4: Number of cycles taken to reach the target location
in situations with three different levels of complexity. Four
conditions are shown in different shapes and colors consis-
tently throughout the three graphs.

As one would expect, there is no change in effort across the
four initial learning trials. Once the environment is changed,
the system should perform search to find a path around the
dangerous waypoints, so computational effort is higher on the
fifth trial, and then stays high because the system does not
acquire new skills from its experience.

The next curve marked with triangular shapes is for the
third condition, in which learning from constraint violations
is active along with the declarative learning. Since the system
does not learn any specific routes under this condition, there is
no noticeable difference from the above condition on the first
four trials. However, after the environment is changed, the
system revises its skill for moving to a neighboring location
based on the expected constraint violation of being at a dan-
gerous location. For this reason, it performs noticeably better
than the above condition where only the declarative learning
is turned on.

In the other two conditions where learning from problem
solving is active, the system rapidly learns an initial route
in the first four trials. There is no measurable difference be-
tween the two learning conditions with respect to the system’s
ability to learn an initial path, and the number of cycles re-
quired to traverse the landscape decreases about 50% from
the first trial to the fourth. After the peaks at their fifth tri-
als, the two conditions once again meet at roughly the same
number of cycles in their steady states.

One crucial finding is that, on the fifth trial, the system
adapts quicker to the changed environment when it runs with
both learning from problem solving and learning from con-

straint violations than with either mechanism by itself. As
shown in Figure 5, the synergy is substantial: the number of
cycles is 17, compared to 19 for learning from constraint vi-
olations at complexity level 1 and the difference increases to
20 versus 26 at complexity level 2. These represents savings
of 10% and 22%, respectively. When compared to learning
from problem solving, the savings are even higher at 17%
and 32%.
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Figure 5: Learning efforts measured by the number of cycles
at the fifth trial. The different between the two conditions
shows the synergistic advantage of adding another learning
mode as complexity increases.

Both the performance differences at the final steady state
and the learning effort measured at the fifth trials suggest syn-
ergistic effects of having multiple learning mechanisms in a
single system. We found that the performance of the system
when the mutiple mechanisms are active is distinctly better
than the performance with any one of the mechanisms.

Related and Future Work
This paper covers an ongoing research effort toward human-
level variety of learning capabilities. In the current state, the
system includes three different modes of learning, each of
which has a vast amount of related work in the literature.
First of all, learning from problem solving is closely related
to previous research on macro-operators (Mooney, 1989;
Shavlik, 1989) among work on explanation-based learning.
The ICARUS approach shares the basic principle of compos-
ing knowledge elements into larger structures. However, it
support disjunctions and recursions in the skill hierarchy, in
addition to the simple fixed sequences learned in systems with
macro-operators.

The mechanism for learning from constraint violations also
has important similarities to previous work in explanation-
based learning literature (Ellman, 1989; Wusteman, 1992).
These methods assume a significant amount of domain theo-
ries presumed to be perfect. To augment this limitation, re-
searchers worked on the similar problems of blame assign-
ment and theory revision, although the exact formulations
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were different from ours. Unlike most of these work, our ap-
proach includes explicit descriptions of constraints, which the
system uses to detect failures and revise existing procedural
knowledge accordingly.

In contrast to the two learning methods above, the topic of
learning declarative knowledge is significantly less studied.
Researchers agree on the fundamental differences between
declarative and procedural knowledge (Anderson, 1976), and
the both types of learning are popular research topics among
neuroscientists in relation to particular brain regions (e.g.,
Weis et al., 2004; Quintero-Gallego et al., 2006). However,
research for simulating declarative learning through compu-
tational means is not common. Chi and Ohlsson classified
various types of changes to declarative knowledge as learn-
ing proceeds, but the work does not attempt to model them
computationally. We extended ICARUS to support declara-
tive learning, but the research is in a preliminary stage and
requires further investigation.

Although our current work successfully shows the syner-
gistic effects of multiple learning mechanisms in ICARUS,
this research is still at an early stage. We plan to extend the
architecture with yet another learning mechanism, possibly
learning by analogy, to further verify our hypothesis of syn-
ergy among learning mechanisms. As this paper suggests,
it is not our focus to implement a powerful single learning
mechanism. Rather, we aim to build a collection of distinct
learning capabilities that are written in a straightforward man-
ner. Learning by analogy will not be an exception, and we
plan to start with a simple mechanism that maps objects to
similar objects or predicates to to related ones. We find re-
search on representation mapping by Könik et al. (2009) as a
good inspiration in this direction.

Conclusions
The human ability to adapt to changing situations depends on
a variety of learning mechanisms. Therefore, an intelligent
agent cannot be limited to a single learning mode to simulate
human behavior properly. We extended ICARUS to support
three different modes of learning to model this behavior. Our
initial results in a route generation domain show synergistic
effects of having multiple learning mechanisms, especially
evident at higher levels of complexity in the environment. We
plan to continue exploring additional types of learning capa-
bilities in this framework.
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