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Abstract

Appreciating music is cognitively demanding: listeners
must learn to divide a continuous space of sound into
culturally defined, discrete categories, and maintain a
high degree of accuracy in their representations of those
sounds. Here, we present a formal analysis of pitch
category learning that reveals the trade-offs associated
with learning the relative pitch categories that make
music possible. Consistent with this, an empirical study
reveals how under normal circumstances, people’s ability
to represent absolute frequency information is lost as a
consequence of the learning processes that facilitate
relative pitch acquisition, a finding which may help
explain the rarity of absolute pitch among the general
population. Understanding the contradictory
computational demands of conceptual and perceptual
learning can inform the design of musical training and
may offer insight into the development of phonological
categories in language.
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Introduction

Most hearing people have the ability to learn musical
pitch categories and the relationships between them.
With training, listeners of every age can learn to
distinguish types of musical intervals from one another
and to identify and reproduce melodies from different
starting notes, a skill known as “relative pitch” (RP).
Far rarer, and virtually unknown outside the musical
community, is “perfect” or “absolute pitch” (AP): the
ability to accurately label a given note by its
fundamental frequency (Takeuchi & Hulse, 1993). The
acquisition of AP is overwhelmingly associated with
musical training early in life (Chin, 2003), which has
led to the suggestion that learning to label notes
according to their absolute frequencies may be subject
to a biological critical period (Trainor, 2005; Deutsch et
al., 2006). Here, we examine whether the loss of many
listeners’ ability to represent absolute frequency
information may be a consequence of learning to
discriminate relative pitch categories, as an inherent
part of the processes that make RP acquisition possible.

Musical sounds are initially encoded in the cochlea as
tonotopic representations of frequency, then passed
through the auditory pathway to cortex (Merzenich &
Reid, 1974; Wessinger et al., 1997). Although initial
sound representations are based on frequency, few
listeners conceptualize music this way. Rather, most
listeners make use of relative pitch (RP) systems:
identifying, remembering, and producing music relative

to the differences, or intervals, in culturally defined
systems of pitch.

The number of listeners able to recognize or produce
tones in terms of their absolute frequencies (AF) varies
by culture and task. While nearly half of music
conservatory students in China can name pitches in
terms of AF, the estimated rate in North American
conservatory students is just 15%, and less than 0.01%
for the general population (Deutsch et al., 2000).
However, when tasks do not include a naming
component—e.g., identifying whether familiar musical
excerpts are in the correct key, or singing or humming
familiar songs from memory—evidence of sensitivity to
AF more widespread (Terhardt & Seewann, 1983;
Halpern, 1989; Levitin, 1994; Schellenberg & Trehub,
2003). Further, speakers of tonal languages, such as
Vietnamese, display a high degree of pitch consistency
in their speech production across test sessions (Deutsch
et al., 2004) and North Americans without musical
training are even sensitive to the AF of the telephone
dial tone (Smith & Schmuckler, 2008).

Interestingly, just as infants are initially able to detect
and respond to the full spectrum of sounds employed in
the world’s languages before later losing this ability
(Werker & Tees, 1984; Kuhl et al., 2006) as they
acquire the sound categories of their native tongues, it
appears that infants initially favor musical
representations based on absolute rather than relative
pitch, and that processing tends to switch over to
relative as they develop (Saffran & Griepentrog, 2001).
Thus, despite the popular belief that AF sensitivity in
music is a special ability, mysteriously acquired by a
few, it would appear that the potential for absolute pitch
possession is widespread. The mystery, then, is not why
so few people have it, but rather, why so many lose it
(Deutsch, 2002; Miyazaki, 2004; Levitin & Rogers,
2005).

We propose that one answer lies in the nature of pitch
categories, and the way they are learned. In music,
melodies are usually produced and described in relation
to conventionalized systems of abstract musical
categories, such that melody can be appreciated
independently of any particular instrument, singer or
key. Chroma—musical pitch categories—do not exist in
nature; rather, they are culturally determined ways of
dividing up a continuous sound space. Here, we
suggest that the computational demands of learning to
recognize discrete structure in continuous perceptual
space stands in direct opposition to the preservation of
AF information.

2971



J
10
D F A
g o i
s £ ol \—
E{ d M\W' MW‘
-
a time
a
f
d
C time

p(training) = v(representation)

f f
d § d §
€

10
F A
)
g Al @
s e S W
S
£ Al Sd i
time
b
a
> 1
f
\ .
d
d time
p(training) = v(representation)
a a
f f
d d
f

Figure 1: Labels are perceptually discrete relative to the sets of frequencies that make up complex tones (a & b, top panels).
When tones and labels are temporally distinct (i.e., learned in sequence), two situations are possible: either the Features of a tone
can predict a Label (FL) or a Label can predict the Features of a tone (LF). When a tone predicts a label (FL), the tone’s various
frequencies compete as predictive cues to that label, leading to competitive discrimination learning (d). However, when a label
predicts a tone (LF), no competition can occur, since labels are discrete cues and cannot compete with themselves (¢). In LF-
learning, the absence of competition produces a simple probabilistic representation of the signal being learned about (e). In FL-
learning, by contrast, less reliable features in the signal lose value to those that are more reliable, resulting in representations in
which some features are “overvalued” relative to their rate of occurrence, while others may be ignored (f). FL-learning highlights
predictive features in the signal, improving pitch category discrimination while distorting absolute frequency information.

This bears elaboration. In Western music, the audible
frequency continuum is divided into twelve discrete
notes, spaced logarithmically. These notes repeat
cyclically over the entire span of musical space. Thus
exemplars of each chroma are spread across a wide
frequency range (e.g., if A occurs at 220hz, it also
occurs at 440hz, 880hz, etc.). Further, although there is
an AF “concert pitch” convention for chromas—such
that A above middle C is tuned to 440hz—in practice,
orchestras tune to A over a fairly wide frequency range,
from A415 in early music to A446 in some
contemporary orchestras (folk and rock musicians may
be even more idiosyncratic in their tuning).
Importantly, regardless of the AF tuning, it is the
logarithmic relationship between chroma that holds
musically: i.e., if A is tuned to 440hz, D is 294hz. To

further complicate matters, musical pitch is normally
conveyed in complex tones comprising both the
fundamental frequency by which the pitch is identified
(e.g., A440), and a range of other frequencies, which
may also occur in other pitches (Hartmann, 1996).
Categorizing pitch requires that the contributions of
the various frequencies within a complex tone be
weighted, such that its chromatic identity can be
established and related to other tones (Takeuchi &
Hulse, 1993). In both natural and computational
learning, discriminating the more and less informative
components of a complex, continuous signal for the
purposes of learning a discrete category is usually
achieved by adjusting the degree to which individual
parts of that signal contribute to categorization
(Ramscar et al.,, 2010). A common method for
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achieving this is competitive reinforcement learning:
increasing the value of parts of the signal that lead to
successful predictions, and decreasing the value of parts
that result in error, so that the various parts of the signal
compete for learned value (Rescorla-Wagner, 1972).

The effects of this kind of competitive learning can
be isolated by comparing learning from a complex
stimulus to a series of discrete classes with the inverse
process (Ramscar et al., 2010). As Fig.1 shows, while
learning from a complex set of Features to simple
Labels (FL-learning) allows for competitive learning
amongst features (causing value to shift from features
that produce more error to those that produce less),
learning from discrete Labels to Features (LF-learning)
does not allow for competition (value cannot transfer to
other cues when there are none).

Computational and empirical studies have shown that
these different information structures cause different
representations of the relationship between features and
labels to be learned (Ramscar et al., 2010). Critically,
FL-learning results in better discrimination between
categories because it distorts within-category
representations  (Nosofsky, 1991; Smith, 1989;
Goldstone & Steyvers, 2001), whereas LF-learning
produces poorer discrimination, but produces more
veridical within-category learning (Ramscar et al.,
2010) This difference offers an explanation for why
people generally lose sensitivity to absolute frequency
in music: AF deficits may be an inevitable part of the
process of learning relative pitch (Fig.2).
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Figure 2: Simulations of the learning of identical sets of
labeled categories in overlapping artificial “waveforms”
structured LF (labels cue waves) or FL (waves cue labels)
(Ramscar et al., 2010). The categories are labeled a-g, and the
probability of a wave component occurring in each category is
represented in the right panel (the LF-learned model). As can
be seen, the representation of each component in the FL-
learned model differs markedly from its rate of occurrence,
with some components being completely unlearned relative to
the labels.'

Experiment

To examine this idea, we manipulated information
structure while training undergraduates with no prior
musical training to identify pitches played on a piano.

Participants

Twenty-eight Stanford undergraduates participated for
course credit. Fourteen participants were randomly
assigned to the Feature-to-Label training condition
(Sound-first), and fourteen to the Label-to-Feature
training condition (Label-first).

Training
Training consisted of a simple computer program
designed to “teach” participants the names of various
tones. Participants learned about the notes in a C major
scale: C, D, E, F, G, A and B (Fig. Al). Notes were
semi-randomly distributed throughout the training
period, so that no note was ever played twice in a row
(even if the note was being played in another octave).
The notes participants heard were all played on an
electronic piano, and were spread over three contiguous
octaves (starting at middle C, C2, and ending at C5).
Because pitch-naming accuracy differs between white-
key notes and black-key notes (1), only whole tones
were trained. For testing purposes, each note was heard
in only two of the possible three octaves. Each note
was played ten times in both of the two octaves it
occurred in. In total, training consisted of 140 trials.
Participants were divided between two training
conditions: Feature-to-Label (Sound-first) and Label-to-
Feature (Label-first). In the Feature-to-Label condition,
a note was played and then its label appeared on screen
(e.g., a C was sounded and then the letter C briefly

"'n the Rescorla-Wagner (1972) model the change in associative
strength between a stimulus 7/ and a response j on trial n is defined
as:

AVijn =a; ﬂj (Ay - Vtoml)

The model thus specifies how the associative strength (V)
between a conditioned stimulus (CS;) and an unconditioned
stimulus (US;) changes as a result of discrete training trials, where
n indexes the current trial. 0 < o; < 1 denotes the saliency of CS;,
0 < Bj < 1 denotes the learning rate of US;, A; denotes the
maximum amount of associative strength that US; can support,
and V. 1s the sum of the associative strengths between all CSs
present on the current trial and US;. Learning is governed by the
value of (A - Vrorar) where A, is the value of the predicted event
and Vi is the predictive value of a set of cues. In this
simulation, all A = 100%, os=1 and (;=0.2.
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appeared). In the Label-to-Feature group, the sequence
was simply reversed: a label would appear on screen
and then its corresponding note would be played. Each
training trial lasted two seconds (Table Al). Both the
Feature-to-Label and the Label-to-Feature groups were
shown the exact same sequence of notes and labels.
The only difference between conditions was whether
the label was shown first or whether the note was
played first.

Testing

Each participant was then given four tests: two tests to
assess relative pitch representations and two tests to
assess absolute frequency representations. Each test
was comprised of 28 trials, for a total of 112 test trials.
All participants completed exactly the same tests, and
were given exactly the same test instructions.

Participants’ perceptual grasp of relative pitch was
tested by an octave transposition task, in which they
discriminated the chroma they had been trained on from
tones not heard in training. Test trials contained 7 notes
that were exactly the same as those heard in training, 7
notes that were octave transpositions that had not been
heard in training (but were in familiar octaves, i.e., C2-
C5), and 14 lures that were half tones away from notes
that had been heard within a particular octave (e.g., A4#
was played rather than the A4 heard in training).

Participants’ conceptualization of relative pitch was
examined in a  between-category  note-name
identification task: participants listened to a note being
played while a label was simultaneously presented on
screen, and were asked to discriminate the pairings they
had seen/heard in training from novel pairings. 14 of
the notes were correctly paired with their labels, 7 of
the notes were critical cross-category lures (which were
one note off from their label, e.g., E with F), and 7 of
the notes were distractors (which were two notes off
from their label, e.g., E with G). Although the note-
label pairings were not always correct, participants
were only tested on notes they had already heard in
training (e.g., they did not hear C5 if it had not been
played in training).

Participants’ perceptual discrimination of absolute
frequencies was tested in a note adjustment task.
Participants listened as a note was played, and were
asked to discriminate the notes they had heard in
training from notes that they had not been heard in
training. In this test, 14 of the notes were those that had
been heard in training and 14 of the notes were
“adjustments” of correct notes heard in training (the
new notes were all slightly sharp, see below).

Participants’  conceptual  representations of
absolute frequencies were tested by means of a within-
category note-name discrimination task: as in the
between-category task, participants heard a note played
while a label was being presented simultaneously on
screen, and were asked to discriminate pairings they

had seen/heard in training from new pairings.
However, in this test, the critical lures were slightly
“adjusted” versions of the original note paired with the
original labels (e.g., a sharp B with the label B).
Participants had to discriminate 7 of these within-
category adjusted notes from 7 original notes that were
correctly paired with their labels (e.g., a perfect B with
the label B). To make this a particularly rigorous
examination of our participants’ representations of
absolute frequencies, there were an additional 14
distractors in this test: 7 of which were “adjusted” notes
paired with the the note they had been moved towards
(e.g., a slightly sharp B with the label C), and 7 of
which were “adjusted” notes paired with the note they
had been moved away from (e.g., a slightly sharp B
with the label A). This meant that 75% of the test items
were in tune with one another, while being out of tune
with the training items. All the notes played were either
notes played in training, or adjustments of notes played
in training, and all the labels had been seen in training
(i.e. no octave transpositions were tested).

Results

For analysis purposes, correct and false-positive
response rates were used to estimate recognition
sensitivity (d’; (MacMillian & Creelman, 1991) Fig.3).
A 2 (training condition) x 2 (absolute / relative
frequency test) analysis of these rates revealed a main
effect of task (participants performed better on absolute
frequency tests; F(1,26)=5.068, p<0.05) and an
interaction between training and testing (F(1,26)=9.593,
p<0.0005): FL-trained participants performed better on
relative frequency tests (t(26)=1.859, p<0.05), whereas
LF-trained participants performed better on absolute
frequency tests (t(26)=2.212, p<0.05).

Analysis of the perceptual tests revealed a straight-
forward interaction between performance and training
(F(1,26)=18.272, p<0.0001; see Fig.4), whereas, this
interaction was not significant in the conceptual tests
(F(1,26)=1.961, p>1.7). Instead, there was a main effect
of training (F(1,26)=6.701, p<0.05), confirming that in
the conceptual tests, FL-training raised participants’
relative  performance to above chance levels
(t(13)=2.546, p<0.05; LF-trained, (t13)=1.231, p>0.2)
at the expense of degraded absolute performance in the
absolute conceptual test, where FL-trained participants
performed below chance (t13)=-2.546, p<0.05; LF-
trained t(13)=0.072, p>0.9; Fig.4). While LF-trained
participants were unable to discriminate the correct
notes, their performance is still notable: this test was
strongly biased against absolute responding (75% of the
items tested were sharp lures or distractors that were in
tune with each other, but out of tune with the correct
notes), and this relative bias caused the FL-trained
participants to misidentify the sharpened notes far more
often than they identified the correct notes (t(13)=2.59,
p<0.05).
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Discussion

As has often been noted, the mystery about absolute
pitch (AP) is not why so few have it: it’s why most
don’t. These results provide an explanation: there is a
price to pay for learning relative pitch categories—the
loss of absolute frequency sensitivity (Miyazaki, 2004;
Levitin & Rogers, 2005). Learning pitch categories
caused our FL-trained participants to ignore—and lose
much of their ability to discriminate—the absolute
frequencies of the notes that they heard.

That our participants learned the perceptual
categories far better than the conceptual categories can
also help explain why AP is usually acquired early in
life. Our results suggest that learning the conceptual
categories may depend on first learning the right
perceptual discriminations. Given that learning to
perceptually discriminate pitch categories impairs
people’s ability to represent absolute frequency, it
follows that when perceptual and conceptual learning
are decoupled—as happens commonly when people are

exposed to music without first learning the names of
notes—subsequent learning will be based on
representations that contain less absolute frequency
information.

At the same time, exposure to the sounds of musical
instruments prior to (or simultaneous with) learning
about music itself may result in the development of
representations of those sounds alongside the learning
of musical categories. This idea is consistent with the
overwhelming tendency for AP to be associated with
early musical training, with the finding that many AP
possessors are limited to AP on the instrument they
were trained on as children (Miyazaki, 2004), and with
a range of findings on AP naming, revealing that while
AP listeners are accurate at identifying pitch (subject to
influences of timbre and pitch range), they have
difficulty perceiving pitch relations in different pitch
contexts and in recognizing transposed melodies, as
compared to listeners without AP (Miyazaki, 2004). In
the same way that learning leads to a loss of absolute
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frequency representations to listeners without AP, our
analysis suggests that preserving absolute frequency in
musical representations ought to impair relative
discrimination and processing. This highlights a simple
principle:  there can be ‘no representation without
taxation’” in the development of musical pitch
representations (see also, Miyazaki, 2004).

While our results certainly do not rule out a
maturational or genetic component in AP ability
(Zatorre, 2003; Theusch, Basu & Gitschier, 2009), they

underline the importance of understanding the
conflicting demands  of  discrimination  and
representational  fidelity in learning, and the

implications this has for our understanding of
representation. Here, we have shown how principles of
information and learning can be used to illuminate
some of the puzzles of pitch perception. The systematic
application of these principles to other problems in
cognition may shed light on a much deeper mystery:
what it is that our human capacity to “represent our
environment” actually involves.
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