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Abstract 
Appreciating music is cognitively demanding: listeners 
must learn to divide a continuous space of sound into 
culturally defined, discrete categories, and maintain a 
high degree of accuracy in their representations of those 
sounds. Here, we present a formal analysis of pitch 
category learning that reveals the trade-offs associated 
with learning the relative pitch categories that make 
music possible. Consistent with this, an empirical study 
reveals how under normal circumstances, people’s ability 
to represent absolute frequency information is lost as a  
consequence of the learning processes that facilitate 
relative pitch acquisition, a finding which may help 
explain the rarity of absolute pitch among the general 
population. Understanding the contradictory 
computational demands of conceptual and perceptual 
learning can inform the design of musical training and 
may offer insight into the development of phonological 
categories in language.  

Keywords: Musical Cognition, Relative Pitch, Absolute 
Pitch, Concepts, Categories, Learning Theory 

Introduction 
Most hearing people have the ability to learn musical 

pitch categories and the relationships between them.  
With training, listeners of every age can learn to 
distinguish types of musical intervals from one another 
and to identify and reproduce melodies from different 
starting notes, a skill known as “relative pitch” (RP).  
Far rarer, and virtually unknown outside the musical 
community, is “perfect” or “absolute pitch” (AP): the 
ability to accurately label a given note by its 
fundamental frequency (Takeuchi & Hulse, 1993). The 
acquisition of AP is overwhelmingly associated with 
musical training early in life (Chin, 2003), which has 
led to the suggestion that learning to label notes 
according to their absolute frequencies may be subject 
to a biological critical period (Trainor, 2005; Deutsch et 
al., 2006). Here, we examine whether the loss of many 
listeners’ ability to represent absolute frequency 
information may be a consequence of learning to 
discriminate relative pitch categories, as an inherent 
part of the processes that make RP acquisition possible.    

Musical sounds are initially encoded in the cochlea as 
tonotopic representations of frequency, then passed 
through the auditory pathway to cortex (Merzenich & 
Reid, 1974; Wessinger et al., 1997). Although initial 
sound representations are based on frequency, few 
listeners conceptualize music this way. Rather, most 
listeners make use of relative pitch (RP) systems: 
identifying, remembering, and producing music relative 

to the differences, or intervals, in culturally defined 
systems of pitch. 

The number of listeners able to recognize or produce 
tones in terms of their absolute frequencies (AF) varies 
by culture and task.  While nearly half of music 
conservatory students in China can name pitches in 
terms of AF, the estimated rate in North American 
conservatory students is just 15%, and less than 0.01% 
for the general population (Deutsch et al., 2006). 
However, when tasks do not include a naming 
component—e.g., identifying whether familiar musical 
excerpts are in the correct key, or singing or humming 
familiar songs from memory—evidence of sensitivity to 
AF more widespread (Terhardt & Seewann, 1983; 
Halpern, 1989; Levitin, 1994; Schellenberg & Trehub, 
2003).  Further, speakers of tonal languages, such as 
Vietnamese, display a high degree of pitch consistency 
in their speech production across test sessions (Deutsch 
et al., 2004) and North Americans without musical 
training are even sensitive to the AF of the telephone 
dial tone (Smith & Schmuckler, 2008). 

Interestingly, just as infants are initially able to detect 
and respond to the full spectrum of sounds employed in 
the world’s languages before later losing this ability 
(Werker & Tees, 1984; Kuhl et al., 2006) as they 
acquire the sound categories of their native tongues, it 
appears that infants initially favor musical 
representations based on absolute rather than relative 
pitch, and that processing tends to switch over to 
relative as they develop (Saffran & Griepentrog, 2001).  
Thus, despite the popular belief that AF sensitivity in 
music is a special ability, mysteriously acquired by a 
few, it would appear that the potential for absolute pitch 
possession is widespread. The mystery, then, is not why 
so few people have it, but rather, why so many lose it 
(Deutsch, 2002; Miyazaki, 2004; Levitin & Rogers, 
2005).  

We propose that one answer lies in the nature of pitch 
categories, and the way they are learned. In music, 
melodies are usually produced and described in relation 
to conventionalized systems of abstract musical 
categories, such that melody can be appreciated 
independently of any particular instrument, singer or 
key. Chroma—musical pitch categories—do not exist in 
nature; rather, they are culturally determined ways of 
dividing up a continuous sound space.  Here, we 
suggest that the computational demands of learning to 
recognize discrete structure in continuous perceptual 
space stands in direct opposition to the preservation of 
AF information. 
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Figure 1: Labels are perceptually discrete relative to the sets of frequencies that make up complex tones (a & b, top panels).  
When tones and labels are temporally distinct (i.e., learned in sequence), two situations are possible: either the Features of a tone 
can predict a Label (FL) or a Label can predict the Features of a tone (LF).  When a tone predicts a label (FL), the tone’s various 
frequencies compete as predictive cues to that label, leading to competitive discrimination learning (d).  However, when a label 
predicts a tone (LF), no competition can occur, since labels are discrete cues and cannot compete with themselves (c).  In LF-
learning, the absence of competition produces a simple probabilistic representation of the signal being learned about (e).  In FL-
learning, by contrast, less reliable features in the signal lose value to those that are more reliable, resulting in representations in 
which some features are “overvalued” relative to their rate of occurrence, while others may be ignored (f).  FL-learning highlights 
predictive features in the signal, improving pitch category discrimination while distorting absolute frequency information. 
 

This bears elaboration.  In Western music, the audible 
frequency continuum is divided into twelve discrete 
notes, spaced logarithmically.  These notes repeat 
cyclically over the entire span of musical space. Thus 
exemplars of each chroma are spread across a wide 
frequency range (e.g., if A occurs at 220hz, it also 
occurs at 440hz, 880hz, etc.). Further, although there is 
an AF “concert pitch” convention for chromas—such 
that A above middle C is tuned to 440hz—in practice, 
orchestras tune to A over a fairly wide frequency range, 
from A415 in early music to A446 in some 
contemporary orchestras (folk and rock musicians may 
be even more idiosyncratic in their tuning).  
Importantly, regardless of the AF tuning, it is the 
logarithmic relationship between chroma that holds 
musically: i.e., if A is tuned to 440hz, D is 294hz. To  

 
further complicate matters, musical pitch is normally 
conveyed in complex tones comprising both the 
fundamental frequency by which the pitch is identified 
(e.g., A440), and a range of other frequencies, which 
may also occur in other pitches (Hartmann, 1996).  

Categorizing pitch requires that the contributions of 
the various frequencies within a complex tone be 
weighted, such that its chromatic identity can be 
established and related to other tones (Takeuchi & 
Hulse, 1993).  In both natural and computational 
learning, discriminating the more and less informative 
components of a complex, continuous signal for the 
purposes of learning a discrete category is usually 
achieved by adjusting the degree to which individual 
parts of that signal contribute to categorization 
(Ramscar et al., 2010). A common method for 
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achieving this is competitive reinforcement learning: 
increasing the value of parts of the signal that lead to 
successful predictions, and decreasing the value of parts 
that result in error, so that the various parts of the signal 
compete for learned value (Rescorla-Wagner, 1972). 

The effects of this kind of competitive learning can 
be isolated by comparing learning from a complex 
stimulus to a series of discrete classes with the inverse 
process (Ramscar et al., 2010). As Fig.1 shows, while 
learning from a complex set of Features to simple 
Labels (FL-learning) allows for competitive learning 
amongst features (causing value to shift from features 
that produce more error to those that produce less), 
learning from discrete Labels to Features (LF-learning) 
does not allow for competition (value cannot transfer to 
other cues when there are none).   

Computational and empirical studies have shown that 
these different information structures cause different 
representations of the relationship between features and 
labels to be learned (Ramscar et al., 2010).  Critically, 
FL-learning results in better discrimination between 
categories because it distorts within-category 
representations (Nosofsky, 1991; Smith, 1989; 
Goldstone & Steyvers, 2001), whereas LF-learning 
produces poorer discrimination, but produces more 
veridical within-category learning (Ramscar et al., 
2010) This difference offers an explanation for why 
people generally lose sensitivity to absolute frequency 
in music: AF deficits may be an inevitable part of the 
process of learning relative pitch (Fig.2). 

 
LF

 
FL

 

Figure 2: Simulations of the learning of identical sets of 
labeled categories in overlapping artificial  “waveforms” 
structured LF (labels cue waves) or FL (waves cue labels) 
(Ramscar et al., 2010).  The categories are labeled a-g, and the 
probability of a wave component occurring in each category is 
represented in the right panel (the LF-learned model). As can 
be seen, the representation of each component in the FL-
learned model differs markedly from its rate of occurrence, 
with some components being completely unlearned relative to 
the labels.1 

Experiment 
To examine this idea, we manipulated information 
structure while training undergraduates with no prior 
musical training to identify pitches played on a piano. 
 
Participants 
Twenty-eight Stanford undergraduates participated for 
course credit.  Fourteen participants were randomly 
assigned to the Feature-to-Label training condition 
(Sound-first), and fourteen to the Label-to-Feature 
training condition (Label-first). 
 
Training 
Training consisted of a simple computer program 
designed to “teach” participants the names of various 
tones. Participants learned about the notes in a C major 
scale: C, D, E, F, G, A and B (Fig. A1).  Notes were 
semi-randomly distributed throughout the training 
period, so that no note was ever played twice in a row 
(even if the note was being played in another octave).   

The notes participants heard were all played on an 
electronic piano, and were spread over three contiguous 
octaves (starting at middle C, C2, and ending at C5). 
Because pitch-naming accuracy differs between white-
key notes and black-key notes (1), only whole tones 
were trained. For testing purposes, each note was heard 
in only two of the possible three octaves.  Each note 
was played ten times in both of the two octaves it 
occurred in.  In total, training consisted of 140 trials. 

Participants were divided between two training 
conditions: Feature-to-Label (Sound-first) and Label-to-
Feature (Label-first). In the Feature-to-Label condition, 
a note was played and then its label appeared on screen 
(e.g., a C was sounded and then the letter C briefly 
                                                             
1 In the Rescorla-Wagner (1972) model the change in associative 
strength between a stimulus i and a response j on trial n is defined 
as: 
 
 ΔVij

n
 =α i β j  (λj – Vtotal)    

 
The model thus specifies how the associative strength (V) 
between a conditioned stimulus (CSi) and an unconditioned 
stimulus (USj) changes as a result of discrete training trials, where 
n indexes the current trial. 0 ≤ αi ≤ 1 denotes the saliency of CSi, 
0 ≤ βj ≤ 1 denotes the learning rate of USj, λj denotes the 
maximum amount of associative strength that USj can support, 
and Vtotal is the sum of the associative strengths between all CSs 
present on the current trial and USj. Learning is governed by the 
value of (λj - VTOTAL) where λj is the value of the predicted event 
and Vtotal is the predictive value of a set of cues. In this 
simulation, all λ = 100%, αi=1 and βj=0.2. 
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appeared).  In the Label-to-Feature group, the sequence 
was simply reversed: a label would appear on screen 
and then its corresponding note would be played.  Each 
training trial lasted two seconds (Table A1). Both the 
Feature-to-Label and the Label-to-Feature groups were 
shown the exact same sequence of notes and labels.  
The only difference between conditions was whether 
the label was shown first or whether the note was 
played first. 

 
Testing 
Each participant was then given four tests: two tests to 
assess relative pitch representations and two tests to 
assess absolute frequency representations.  Each test 
was comprised of 28 trials, for a total of 112 test trials. 
All participants completed exactly the same tests, and 
were given exactly the same test instructions.  

Participants’ perceptual grasp of relative pitch was 
tested by an octave transposition task, in which they 
discriminated the chroma they had been trained on from 
tones not heard in training. Test trials contained 7 notes 
that were exactly the same as those heard in training, 7 
notes that were octave transpositions that had not been 
heard in training (but were in familiar octaves, i.e., C2-
C5), and 14 lures that were half tones away from notes 
that had been heard within a particular octave (e.g., A4# 
was played rather than the A4 heard in training).   

Participants’ conceptualization of relative pitch was 
examined in a between-category note-name 
identification task: participants listened to a note being 
played while a label was simultaneously presented on 
screen, and were asked to discriminate the pairings they 
had seen/heard in training from novel pairings.  14 of 
the notes were correctly paired with their labels, 7 of 
the notes were critical cross-category lures (which were 
one note off from their label, e.g., E with F), and 7 of 
the notes were distractors (which were two notes off 
from their label, e.g., E with G).  Although the note-
label pairings were not always correct, participants 
were only tested on notes they had already heard in 
training (e.g., they did not hear C5 if it had not been 
played in training).   

Participants’ perceptual discrimination of absolute 
frequencies was tested in a note adjustment task. 
Participants listened as a note was played, and were 
asked to discriminate the notes they had heard in 
training from notes that they had not been heard in 
training.  In this test, 14 of the notes were those that had 
been heard in training and 14 of the notes were 
“adjustments” of correct notes heard in training (the 
new notes were all slightly sharp, see below).   

Participants’ conceptual representations of 
absolute frequencies were tested by means of a within-
category note-name discrimination task: as in the 
between-category task, participants heard a note played 
while a label was being presented simultaneously on 
screen, and were asked to discriminate pairings they 

had seen/heard in training from new pairings.  
However, in this test, the critical lures were slightly 
“adjusted” versions of the original note paired with the 
original labels (e.g., a sharp B with the label B). 
Participants had to discriminate 7 of these within-
category adjusted notes from 7 original notes that were 
correctly paired with their labels (e.g., a perfect B with 
the label B). To make this a particularly rigorous 
examination of our participants’ representations of 
absolute frequencies, there were an additional 14 
distractors in this test: 7 of which were “adjusted” notes 
paired with the the note they had been moved towards 
(e.g., a slightly sharp B with the label C), and 7 of 
which were “adjusted” notes paired with the note they 
had been moved away from (e.g., a slightly sharp B 
with the label A). This meant that 75% of the test items 
were in tune with one another, while being out of tune 
with the training items.  All the notes played were either 
notes played in training, or adjustments of notes played 
in training, and all the labels had been seen in training 
(i.e. no octave transpositions were tested). 

Results 
For analysis purposes, correct and false-positive 
response rates were used to estimate recognition 
sensitivity (d’; (MacMillian & Creelman, 1991) Fig.3). 
A 2 (training condition) x 2 (absolute / relative 
frequency test) analysis of these rates revealed a main 
effect of task (participants performed better on absolute 
frequency tests; F(1,26)=5.068, p<0.05) and an 
interaction between training and testing (F(1,26)=9.593, 
p<0.0005): FL-trained participants performed better on 
relative frequency tests (t(26)=1.859, p<0.05), whereas 
LF-trained participants performed better on absolute 
frequency tests (t(26)=2.212, p<0.05).  

Analysis of the perceptual tests revealed a straight-
forward interaction between performance and training 
(F(1,26)=18.272, p<0.0001; see Fig.4), whereas, this 
interaction was not significant in the conceptual tests 
(F(1,26)=1.961, p>1.7). Instead, there was a main effect 
of training (F(1,26)=6.701, p<0.05), confirming that in 
the conceptual tests, FL-training raised participants’ 
relative performance to above chance levels 
(t(13)=2.546, p<0.05; LF-trained, (t13)=1.231, p>0.2) 
at the expense of degraded absolute performance in the 
absolute conceptual test, where FL-trained participants 
performed below chance (t13)=-2.546, p<0.05; LF-
trained t(13)=0.072, p>0.9; Fig.4). While LF-trained 
participants were unable to discriminate the correct 
notes, their performance is still notable: this test was 
strongly biased against absolute responding (75% of the 
items tested were sharp lures or distractors that were in 
tune with each other, but out of tune with the correct 
notes), and this relative bias caused the FL-trained 
participants to misidentify the sharpened notes far more 
often than they identified the correct notes (t(13)=2.59, 
p<0.05).
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Figure 3: Average rates of correct and false-positive responses in the tests (right panel) were used to calculate d’ estimates of 
recognition sensitivity (left panel): LF-trained participants performed better on the absolute frequency tasks, whereas FL-trained 
participants performed better on the relative pitch tasks (error bars are SEM). 

  

Figure 4:  The cause and consequence of a trade off: LF and FL-trained participants on the two perceptual discrimination tasks 
(left panel), and the conceptual tasks (right panel). In the perceptual test, LF-trained participants better distinguished concert pitch 
notes from sharp lures, whereas FL-trained participants better discriminated correct notes—and octave transpositions of correct 
notes—from lures. The change to the underlying representations that underlie this trade off can be seen in the results of the 
conceptual test, where the improvement in between-category discrimination performance brought about by FL-training came at a 
cost to within-category discrimination (error bars are SEM). 
 

Discussion 
As has often been noted, the mystery about absolute 

pitch (AP) is not why so few have it: it’s why most 
don’t. These results provide an explanation: there is a 
price to pay for learning relative pitch categories—the 
loss of absolute frequency sensitivity (Miyazaki, 2004; 
Levitin & Rogers, 2005). Learning pitch categories 
caused our FL-trained participants to ignore—and lose 
much of their ability to discriminate—the absolute 
frequencies of the notes that they heard.  

That our participants learned the perceptual 
categories far better than the conceptual categories can 
also help explain why AP is usually acquired early in 
life. Our results suggest that learning the conceptual 
categories may depend on first learning the right 
perceptual discriminations. Given that learning to 
perceptually discriminate pitch categories impairs 
people’s ability to represent absolute frequency, it 
follows that when perceptual and conceptual learning 
are decoupled—as happens commonly when people are  

 
exposed to music without first learning the names of 
notes—subsequent learning will be based on 
representations that contain less absolute frequency 
information.  

At the same time, exposure to the sounds of musical 
instruments prior to (or simultaneous with) learning 
about music itself may result in the development of 
representations of those sounds alongside the learning 
of musical categories. This idea is consistent with the 
overwhelming tendency for AP to be associated with 
early musical training, with the finding that many AP 
possessors are limited to AP on the instrument they 
were trained on as children (Miyazaki, 2004), and with 
a range of findings on AP naming, revealing that while 
AP listeners are accurate at identifying pitch (subject to  
influences of timbre and pitch range), they have 
difficulty perceiving pitch relations in different pitch 
contexts and in recognizing transposed melodies, as 
compared to listeners without AP (Miyazaki, 2004).  In 
the same way that learning leads to a loss of absolute 
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frequency representations to listeners without AP, our 
analysis suggests that preserving absolute frequency in 
musical representations ought to impair relative 
discrimination and processing. This highlights a simple 
principle:  there can be ‘no representation without 
taxation’ in the development of musical pitch 
representations (see also, Miyazaki, 2004). 

While our results certainly do not rule out a 
maturational or genetic component in AP ability 
(Zatorre, 2003; Theusch, Basu & Gitschier, 2009), they 
underline the importance of understanding the 
conflicting demands of discrimination and 
representational fidelity in learning, and the 
implications this has for our understanding of 
representation.  Here, we have shown how principles of 
information and learning can be used to illuminate 
some of the puzzles of pitch perception. The systematic 
application of these principles to other problems in 
cognition may shed light on a much deeper mystery: 
what it is that our human capacity to “represent our 
environment” actually involves.  
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