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Abstract 
 

Causal graphical models (CGMs) have become popular in nu-
merous domains of psychological research for representing 
people’s causal knowledge. Unfortunately, however, the CGMs 
typically used in cognitive models prohibit representations of 
causal cycles. Building on work in machine learning, we pro-
pose an extension of CGMs that allows cycles and apply that 
representation to one real-world reasoning task, namely, classi-
fication. Our model’s predictions were assessed in experiments 
that tested both probabilistic and deterministic causal relations. 
The results were qualitatively consistent with the predictions of 
our model and inconsistent with those of an alternative model.  
 

We naturally reason about causally related events that occur 
in cycles. In economics, we expect that an increase in corpo-
rate hiring may increase consumers’ income and thus their 
demand for products, leading to a further increase in hiring. 
In meteorology, we expect that melting tundra due to global 
warming may release the greenhouse gas methane, leading 
to yet further warming. In psychology, we expect that clin-
icians will affect (hopefully help) their clients but also rec-
ognize the clients often affect the clinicians.  

Many psychologists investigate causal reasoning using a 
formalism known as Bayesian networks or causal graphical 
models (hereafter, CGMs). CGMs are one hypothesis for 
how people reason with causal knowledge. There are claims 
that causal learning amounts to acquiring the structure 
and/or parameters of a CGM (Cheng, 1997; Gopnik et al., 
2004; Griffiths & Tenenbaum, 2005; 2009; Lu et al., 2008; 
Sobel et al., 2004; Waldmann et al., 1995). And, many 
models of causal reasoning assume that people honor the 
inferential rules that accompany CGMs (Holyoak et al., 
2010; Lee & Holyoak, 2008; Rehder & Burnett, 2005; 
Rehder, 2003; 2009; Rehder & Kim, 2010; Shafto et al., 
2008; Sloman & Lagnado, 2005; Waldmann & Hagmeyer, 
2005). Unfortunately, because standard CGMs prohibit the 
presence of causal cycles, these models are unable to repre-
sent any of the cyclic events mentioned above. 

In this article, we take the initial steps to extend CGMs 
using an ‘unfolding’ trick from machine learning (Spirtes, 
1993). We discuss the implications of this approach to one 
class of reasoning problem, namely classification. There is a 
rich literature on how causal knowledge among the features 
of a category changes how people classify. We first review 
evidence for causal cycles among category features and one 
proposal for how they affect classification. We then report 
two experiments that test that account. Finally, we present 
our own model for extending CGMs to represent cycles in 
people’s mental representations of categories.  

Unfolding Cycles 
One technique used to elicit people’s beliefs about the cau-
sal structure of categories is the theory drawing task. Sub-
jects are presented with category features and asked to draw 
directed edges indicating how those features are causally 
related. These drawings show that causal cycles are com-
mon. For example, Kim and Ahn (2002) found that 65% of 
subjects’ representations of mental disorders such as depres-
sion included cycles. Sloman et al. found numerous cycles 
in subjects’ theories of everyday biological kinds and arti-
facts.  

In a first attempt to account for how cycles affect cate-
gorization, Kim et al. (2009) made two assumptions. The 
first was that causal knowledge affects classification in a 
manner specified by the dependency model (Sloman et al., 
1998). On this account, features vary in their conceptual 
centrality, such that more central features provide more evi-
dence for category membership. A feature’s centrality is a 
function of its number of (direct and indirect) dependents 
(i.e., effects). Quantitatively, feature i's centrality ci can be 
computed from the iterative equation, 

 ci,t+1 = ∑dijcj,t    (1) 
where ci,t is i's weight at iteration t and dij is the strength of 
the causal link between i and its dependent j. For example, if 
a category has three features X, Y, and Z, and X causes Y 
which causes Z, then when cZ,1 is initialized to 1 and each 
causal link has a strength of 2, after two iterations the cen-
tralities for X, Y, and Z are 4, 2, and 1. That is, feature X is 
more important to category membership than Y which is 
more important than Z. Qualitatively, the dependency model 
predicts this because X has two dependents (Y and Z), Y 
has one (Z), and Z has none. 

Kim et al.’s second assumption was that people reason 
with a simplified representation of cycles. Two reasons were 
provided for this assumption. First, because variables rarely 
cause each other constantly and simultaneously, it is likely 
that people assume that they influence each other in discrete 
time steps. Second, because it is implausible that people 
represent time steps extending into infinity, only a limited 
number of steps are likely to be considered. For example, 
consider the category in Fig. 1A in which feature C causes 
feature E and features X and Y are related in a causal cycle. 
Fig. 1B shows the cycle “unfolded” by one time step. The 
assumption is that in generation 1, X and Y mutually influ-
enced one another, resulting in their states in generation 2 
(X2 and Y2). Kim et al. proposed that feature importance 
would correspond to the predictions of the dependency 
model applied to the unfolded representation in Fig. 1B, 
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where the centralities of X and Y corresponded to their first 
generation instantiations (X1 and Y1). For the unfolded rep-
resentation, features X1, Y1, and C are equally central be-
cause they each have one dependent (X2, Y2, and E, respec-
tively) and more central than E, which has zero.1  

To test this prediction, Kim et al. instructed subjects on 
artificial categories. For example, subjects learned about a 
mental disorder called hadronuria with four symptoms (e.g., 
easily fatigued, lack of empathy, depersonalization, etc.) 
that caused each other as in Fig. 1A (e.g., being easily fa-
tigued tends to cause a lack of empathy). Subjects were then 
presented with test items described as having all category 
features except one and asked to rate the likelihood that it 
was a category member. The categories and the exact word-
ing of the classification test were varied over five experi-
ments. The results, shown in Fig. 2, confirmed the predic-
tions. The test item missing only feature E was rated higher 
than the one missing C, suggesting that E was less important 
to category membership than C. (The phenomenon in which 
“more causal” features are more important to category 
membership is referred to as the causal status effect, Ahn et 
al., 2000). And, the ratings of the test item missing C did not 
differ from those missing only feature X or only Y. In an-
other experiment, Kim et al. compared two-feature causal 
cycles with more complicated acyclic structures and found 
evidence they interpreted as consistent with their model. 

Questions About the Model 
The empirical results of Kim et al. (2009) are important 
insofar as they provide an initial assessment of how causal 
cycles affect classification. Moreover, their model is the 
first to address the difficult problem of how people repre-
sent and reason with causal cycles. Virtually all attempts to 
address cycles involve “unfolding” them in some manner 
(e.g., Spirtes, 1993), and our own model below will also 

                                                             
1 Note that dependency model’s original formulation makes it 

technically inapplicable to certain causal networks, including the 
one in Fig. 2B. However, Kim et al. proposed new variants of the 
dependency model (e.g., alpha centralities) that address these is-
sues Nevertheless, these variants inherent the same qualitative 
properties (and problems) as their predecessor (see below). 

incorporate this insight. Nevertheless, as it stands, the Kim 
et al. model faces a number of difficulties.  

The first derives from the assumption of the dependency 
model that causal knowledge only affects the importance of 
individual features. In contrast, previous research has shown 
it has a larger effect on the combinations of features that are 
acceptable to category membership. For example, Rehder 
(2003; Rehder & Kim, 2006; 2010) have demonstrated co-
herence effects in which good category members are those 
that exhibit the pattern of interfeature correlations one ex-
pects to be generated by causal relations.  

Coherence effects are likely to have contributed to the 
Kim et al. results in Fig. 2. For example, a test item missing 
only feature X was likely given a low classification rating 
not just because of the importance of feature X but also be-
cause its absence violates two causal relations: X is absent 
despite the presence of Y and vice versa. Moreover, because 
they differ in how many causal links they violate, differ-
ences in the ratings of the four test items may reflect not 
only the importance of the features themselves but differ-
ences in the items’ coherence.  

A second difficulty concerns how feature importance va-
ries with the strengths of the causal links. According to the 
dependency model, a feature’s centrality increases not only 
with its number of dependents but also with the strength of 
the links with those dependents (the ds in Eq. 1). For exam-
ple, as the causal link between feature C and E in Fig. 1 
grows stronger, so too should the causal status effect (the 
centrality of C relative to E). However, research has shown 
that the causal status effect grows smaller as the strength of 
the causal links grows larger  (Rehder & Kim, 2010).  

These predictions are now tested in two new experimental 
tests of causal cycles. Following Kim et al., subjects were 
instructed on a novel category with interfeature causal rela-
tions as in Fig. 1A. But unlike Kim et al. we assess whether 
coherence effects obtain with causal cycles by testing par-
ticipants not only on test items missing a single feature but 
also those missing two features (one missing both X and Y 
and one missing both C and E) as well as the category 
“prototype” (all four features present). In addition, across 
two experiments we manipulate the strength of the causal 
links. In Expt. 1, we instruct subjects that the causal rela-
tions are probabilistic by telling them that a cause produces 

Figure 2. Classification results from Experiments 
2-6 of Kim et al. (2009). 

Figure 1. (A) Causal structure tested in Kim et al. 
(2009). (B) That representation unfolded one time step. 
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its effect 75% of the time. In Expt. 2, the causal relations are 
described as deterministic (100%) instead. We assess how 
the relative importance of individual features (e.g., C vs. E 
vs. the cycle features) varies with causal link strength. 

Experiments 1 and 2 

Method 
Materials. Three novel categories each with four features 

were tested: Myastars (a type of star), Romanian Rogos (a 
type of automobile), and Lake Victoria Shrimp. Each typical 
feature was described as occurring in most category mem-
bers whereas the opposite, non-typical value was described 
as occurring in some category members. For example, par-
ticipants were  told "Most Myastars have high density 
whereas some have low density."  

Participants learned three causal links arranged as in Fig. 
1. Each link specified the cause and effect (e.g., "Ionized 
helium causes the star to be very hot.") and some detail re-
garding the causal mechanism (e.g., "Ionized helium par-
ticipates in nuclear reactions that release more energy than 
the nuclear reactions of normal hydrogen-based stars, and 
the star is hotter as a result."). In addition, a sentence de-
scribed the strength of the causal link (e.g., "Whenever a 
Myastar has high density, it will cause that star to have a 
large number of planets with probability X%." where X was 
75 and 100 in Expts. 1 and 2, respectively). Features 1-4 of 
each category were assigned to the causal roles shown in 
Fig. 1 in four different ways (XYCE, XYEC, CEXY, and 
ECXY), so that each feature appeared in each role an equal 
number of times across subjects. 

Procedure. Participants first studied several screens of 
information about the category. Initial screens presented the 
category's cover story and which features occurred in 
"most" versus "some" category members. Features were 
presented in one order for half the subjects and in the re-
verse order for the other half. The fourth screen presented 
the three causal links, including the mechanism and causal 
strength information. The fifth screen was a diagram similar 
to the one in Fig. 1. Subjects were required to pass a multi-
ple-choice test to ensure they learned this information.  

Participants then rated the category membership of seven 
test items. On each trial, the four dimension values were 
listed in one of the two counterbalanced orders. Responses 
were entered by positioning a slider on a scale with end la-
beled “Sure that it isn’t” (a category member) and the other 
end “Sure that it is.” The position of the slider was encoded 
as a number in the range 0-100. Each test item was pre-
sented twice in separate blocks and the order of the trials 
within a block was randomized for each participant. 

Participants. There were three between-subject factors: 
the four assignments of features to roles X, Y, C, and E, the 
two feature presentation orders, and which of the three cate-
gories was learned. Subjects were randomly assigned to 
these 4 x 2 x 3 = 24 between-participant cells subject to the 
constraint that an equal number appeared in each cell. 96 
New York University undergraduates, split evenly between 
Expts. 1 and 2, received course credit for participating. 

Results  
Initial analyses revealed no effects of which category sub-
jects learned, the assignment of features to causal roles, or 
feature presentation order in either experiment, and so the 
classification results are presented in Fig. 3A (Expt. 1) and 
Fig. 3B (Expt. 2) collapsed over these factors.   

Expt. 1 results: Probabilistic links. As expected, the 
prototype item received a high rating (95.3) indicating that it 
was viewed as a very likely category member. In addition, 
the ratings of the four test items with one missing feature 
(light gray bars in Fig. 3) were similar to those of Kim et al. 
(2009) shown in Fig. 2: The item missing only the effect 
feature E (the “wo/E” item) was rated higher than the one 
missing only the cause C (“wo/C”), which in turn was rated 
about the same as those missing one of the cycle features.  

As expected, the two test items missing two features (ei-
ther missing both X and Y, or both C and E) were rated 
lower (69.4) than the prototype. Importantly, however, they 
were rated higher than the items missing one feature (33.9). 
This result reflects an effect of coherence: Although they 
have only two typical features, these items are consistent 
with the causal relations (i.e., causally-related features are 
either both present or both absent). In contrast, items with 
only one missing feature violate the causal relations and 
they receive a lower rating as a result. 

A one-way ANOVA revealed an effect of test item, F(6, 
282) = 67.71, MSE = 448.5, p < .0001. The item missing E 
was rated significantly higher than the one missing C (36.9 
vs. 31.7), t(47) = 3.64, p < .001, which in turn did not differ 
from the cycle features, t(47) = 1.28, p > .20. Items missing 
one feature were rated lower than those missing two, t(47) = 
6.07, p < .0001, which in turn was rated lower than the pro-
totype, t(47) = 7.32, p < .0001. 

Expt. 2: Deterministic links. Fig. 3B shows that in Expt. 
2 the prototype again received the highest rating. However, 
the use of deterministic causal relations in Expt. 2 resulted 
in a different pattern of ratings among the test items missing 
a single feature. Whereas in Expt. 1 the item missing C was 
rated lower than the one missing E (a causal status effect) 
and the same as those missing X or Y, in Expt. 2 it was 
rated higher than both the wo/E item (i.e., a negative causal 
status effect) and those missing a cycle feature. The latter 
result contradicts the Kim et al. model’s central claim that 
the cause feature C and the cycles features X and Y should 
be equally important to category membership (because both 
have one dependent; see Fig. 2B).  

As in Expt. 1, the two items that were missing two fea-
tures but maintained coherence were rated much higher than 
the four items missing just one feature (66.6 vs. 21.1).  

An ANOVA revealed an effect of test item, F(6, 282) = 
97.80, MSE = 491.4, p < .0001. The item missing feature C 
was rated higher than the one missing E, t(47) = 3.92, p < 
.001, which in turn did not differ from X and Y, t < 1. In 
addition, features missing one feature were rated lower than 
those missing two, t(47) = 8.41, p < .0001, which in turn 
were rated lower than the prototype, t(47) = 7.76, p < .0001. 

Fitting the Kim et al. cycles model. We also quantita-
tively fit the variant of the Kim et al. model that computes 
alpha centrality (see Footnote 1) to the classification ratings 
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from Expts. 1 and 2. Specifically, the ratings were predicted 
according to the formula,  

! 

rating ti( ) = "0 + c#,k ti, j;d75 ,d100,#( ) f j( )j
$% & ' 

( 
) * 
+

 (1) 

where ti is a test item, d75 and d100 are the causal link 
strengths in Expts. 1 and 2, respectively, and α represents a 
feature’s starting centrality. cα,k returns feature j’s alpha cen-
trality in category k (i.e., the dependency network in Fig. 
1B) and fj codes whether j is present (1) or absent (0) in ti. 
Finally, the purpose of β0 and γ is to map the model’s pre-
dictions onto the rating scale: γ scales those predictions ac-
cording to an arbitrary power function; β0 then translates the 
result. The parameters were unconstrained except that d100 ≥ 
d75 representing the stronger causal links in Expt. 2 vs. 1. 

The model was simultaneously fit to the 14 classification 
ratings from Expts. 1 and 2 by identifying values for pa-
rameters d75, d100, α, β0, and γ that minimized squared error. 
The best fitting parameters were d75 = d100 = 0, β0 = 36.8, γ = 
2.88 (when the ds = 0, parameter α has no effect on the pre-
dictions). The predicted ratings are presented in Fig. 3 su-
perimposed on the data.  

Fig. 3 illustrates the two difficulties with the Kim et al. 
model we identified earlier. First, because the model pre-
dicts that an object’s degree of category membership is the 
sum of its features weighted by their centrality, it is con-
strained to predict a lower rating for the items missing two 
features (wo/X&Y and wo/C&E) than those missing one 
(e.g., wo/X). That is, the model is unable to account for the 
coherence effect found in both Expts. 1 and 2.  

Second, the model is unable to predict the positive status 
effect found in Expt. 1 and the negative one found in Expt. 
2. This is so because the model predicts that that effect 
should be larger for stronger causal links. Because this pat-
tern is opposite than the one observed, the best model fit 
compromises by yielding a causal status effect (the differ-
ence between the wo/C and wo/E item) of zero in both ex-
periments (produced by values of 0 for the causal strength 
parameters d75 and d100). Finally, the model is unable to ac-
count for the higher rating given to the wo/C item relative 
the items missing a cycle feature. In summary, Fig. 3 illus-

trates how the Kim et al. model is unable to reproduce the 
key qualitative results from these experiments.  

A Generative Model of Causal Cycles 
We now present our own model of causal cycles based on 
the generative model proposed by Rehder and colleagues 
(Rehder, 2003; Rehder & Kim, 2006) and Directed Cyclic 
Graphs (DCG) proposed by Spirtes (1993). The generative 
model assumes that interfeature causal relations are repre-
sented as probabilistic causal mechanisms and that classifi-
ers consider whether an object is likely to have been pro-
duced or generated by those mechanisms. Objects likely to 
have been generated are considered to be good category 
members and those unlikely to be generated are poor ones.  

One advantage of the generative model is that it provides 
an account of coherence effects: A population of category 
members should exhibit the expected pattern of correlations 
between causally related features. Thus a likely category 
member is one that maintains those correlations.  

In addition, Rehder & Kim (2010) showed that the gen-
erative model predicts the observed sensitivity of the causal 
status effect to causal strength. Specifically, if a causal link 
is deterministic, then an effect should be at least as prevalent 
among category members as its cause (and more prevalent 
when the effect has additional causes), and thus the cause 
can be less important to category membership decisions 
than the effect. In contrast, if a causal link is probabilistic, 
the effect can be less prevalent than the cause, in which case 
it should have less weight on classification decisions.  

We now present an extension to the generative model that 
addresses causal cycles. Importantly, this proposal builds on 
the basic insight provided by Kim et al. (2009) regarding the 
“unfolding” of causal cycles one time step. However, our 
account will enjoy the advantages of the generative model, 
specifically a DCG, including an account of coherence ef-
fects and correct predictions regarding the strengths of 
causal links.   

The generative model assumes that a category’s causal 
knowledge is represented as a type of parameterized CGM. 
For example, a CGM associated with the category in Fig. 

Figure 3. Classification ratings from (A) Experiment 1 (probabilistic causal links) and (B) Experiment 2 (deterministic 
causal links). Fits of the Kim et al. model are superimposed on the data. Error bars are 95% confidence intervals. 
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1A is presented in Fig. 4A. The causal mechanism between 
feature C and E is assumed to operate (i.e., to bring about E) 
with probability mCE when C is present and any other poten-
tial background causes of E collectively operate with prob-
ability bE. C and E’s background causes are assumed to 
form a "fuzzy-or" network that together produce E in mem-
bers of category k conditioned on C with probability,  
  

! 

pk E =1|C =1( ) = mCE +bE "mCEbE  (2) 
When C is absent it has no effect on E. 
  

! 

pk E =1|C = 0( ) = bE  (3) 
The probability of the root cause C is a free parameter cC. 

As mentioned however, graphs with cycles are not proper 
CGMs because the standard inferential procedures that ac-
company CGMs are undefined. Accordingly, we work in-
stead with the unfolded representation in Fig. 4B. In this 
representation, the state of variable X2 is a fuzzy-or function 
of X1 and Y1, 
  

! 

pk X2 =1| X1 =1,Y1 =1( ) = mX1X2
+mYX "mX1X2

mYX  (4) 

  

! 

pk X2 =1| X1 = 0,Y1 =1( ) = mYX  (5) 
  

! 

pk X2 =1| X1 =1,Y1 = 0( ) = mX1X2
 (6) 

  

! 

pk X2 =1| X1 = 0,Y1 = 0( ) = 0  (7) 
An analogous four equations specify how Y2 is a fuzzy-or 
function of X1 and Y1.  

To represent that a variable present in generation 1 is 
guaranteed to be present in generation 2, we assume, 
  

! 

mX1X2
= mY1Y2

=1   (8) 
Finally, we assume no information is available concerning 
the presence of root causes X1 and Y1, that is, cX = cY = .5. 
That is, we apply the principle of indifference, or in Baye-
sian terms, a non-informative prior.  

According to the generative model, the probability that an 
object t is a member of category k, pk(t), is given by joint 
probability over its observed features X2, Y2, C, and E. For 
the model in Fig. 4B,   
  

! 

pk t( ) = pk X2( )pk Y2( )pk E |C( )pk C( )  (9) 
where pk(X2) and pk(Y2) are computed by summing over the 
possible states of the unobserved variables X1 and Y1, 
  

! 

pk X2( ) = pk X2 | X1Y1( )
Y1=0,1

"
X1=0,1

" pk X1( )pk Y1( )  

  

! 

pk Y2( ) = pk Y2 | X1Y1( )
Y1=0,1

"
X1=0,1

" pk X1( )pk Y1( )   

where pk(X1 = 1) = cX and pk(Y1 = 1) = cY.  
Fitting the generative model. We now fit this model to 

the results of Expts. 1 and 2 in a manner analogous to the 
Kim et al. cycles model. Specifically, the observed ratings 
are predicted according to the formula,  

  

! 

rating ti( ) /100 = "0 + pk ti;cC ,bE( )#  (10) 
The causal strength parameters mXY, mXY, and mCE were set to 
.75 for Expt. 1 and 1.0 for Expt. 2. The model was fit to the 
results of Expts. 1 and 2 by identifying values for parame-
ters cC, bE, β0, and γ that minimized squared error. cC was 
constrained to the range [.50, 1]; bE was constrained to [0, 
1]. The best fitting parameters were cC = .70, bE = .07, β0 = 
.18, and γ = .45. The predicted ratings are presented in Fig. 
5 superimposed on the empirical ratings. 

As is apparent from the figure, the generative model suc-

Figure 4. (A) An improper CGM of the category in Fig-
ure 1A. (B) That CGM unfolded one time step. 

Figure 5. Classification ratings from (A) Experiment 1 (probabilistic causal links) and (B) Experiment 2 (determi-
nistic causal links). Fits of the generative model are superimposed on the data. Error bars are 95% confidence inter-
vals. 

2948



 

 

 

ceeds in reproducing the two key phenomena from this 
study. First, it exhibits coherence effects: The items missing 
two features have a higher classification probability than 
those missing one. This is the case because, even though the 
item missing both X and Y, and the one missing both C and 
E, have fewer features, they are coherent in light the cate-
gory’s causal relations. 

Second, the model reproduces the sign of the causal status 
effect in the two experiments. Because the causal links are 
probabilistic in Expt. 1, the effect is less probable then the 
cause (see Eq. 2), and so an item missing the effect is more 
probable then one missing the cause. Because the links are 
deterministic in Expt. 2 (and E has some alternative causes, 
represented by bE = .07), the effect is more probable than the 
cause, and so an item missing the effect is less probable then 
one missing the cause.  

Because it accounts for the effects of both coherence and 
causal status, the correlation between the model’s predicted 
ratings and the observed ones was .97. Because it accounts 
for neither of these effects, the corresponding correlation for 
the Kim et al. model was .58. The better fit of the generative 
models was accomplished with fewer free parameters (4) as 
compared to the dependency model (5). 

Nonetheless, Fig. 5A reveals a few discrepancies between 
the predicted and observed ratings. Whereas the fit to Expt. 
2 is extremely good (R > .99), for Expt. 1 the model over-
predicts the wo/E test items (i.e., it predicts that the causal 
status effect should be larger than it is) and underpredicts 
the prototype. Further analysis suggests that this may have 
been due to subjects treating the strength of the causal links 
in Expt. 1 as > .75. For example, a value of .90 for the m 
parameters in Expt. 1 yields a better fit (R > .99). Determin-
ing whether the discrepancies in Fig. 5A reflect a fundamen-
tal difficulty for the model or subjects’ difficulty in repre-
senting probabilities veridically awaits further research. 

General Discussion 
We have presented a new model of how people represent 
causal cycles and applied that model to classification data. 
Recall that CGMs are used extensively throughout cognition 
research but are unable to represent cycles among variables. 
We have built on the insight provided by Kim et al. (2009) 
that, in people’s minds, cycles may be broken by unfolding 
them. Our model, however, is a type of generative model 
that has been shown to exhibit a number of other favorable 
qualities, such as accounting for coherence and causal status 
effects. By applying the generative model to an “unfolded” 
representation of cycles, we preserve these advantages.  

This work is at an early stage. At this point our claim is 
only that our model captures the qualitative trends in human 
classification judgments when causal cycles are present. 
Additional work will need to test our model’s predictions 
with other causal structures, including cyclic and non-cyclic 
structures with more than just two features.  

A perhaps more fundamental issue concerns the number 
of time steps a causal cycle is unfolded. Both Kim et al. and 
we assume one time step, but one might question whether 
people’s representation of cycles is so simplified. An alter-
native would be to assume that cycles are unfolded through 

a large number of time steps but that causal strengths get 
weaker with each subsequent step, allowing the model to 
converge to a steady state. Tests of these and other possibili-
ties await additional theoretical and empirical work.  
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