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Abstract

Recently there has been a surge of interest in using structural
priming to examine sentence production. We present an
analogical model of sentence production that exhibits
structural priming effects. It uses analogical generalization to
acquire abstract language patterns from experience. To
construct utterances, it uses analogical retrieval to find
semantically similar utterances and generalizations, and
constructs a new sentence by analogy to them. Using the
stimulus generator of Chang et al (2006), we show that this
model can exhibit structural priming effects similar to those
observed in humans, but with orders of magnitude less prior
experience than required by a previous simulation.

Keywords: structural priming; sentence production; syntax
acquisition; analogy.

Introduction

What mechanisms underlie sentence production? In
particular, how do speakers choose among the multiple
grammatical forms that are capable of expressing something
they intend to convey? Recently, there has been a surge of
interest in structural priming as a way to examine sentence
production processes in adults and children (Bock, 1986;
Bock & Griffin, 2000; Chang, Dell, & Bock, 2006; Kaschak
& Borreggine, 2008; Savage et al., 2003). In structural
priming, the structure of one sentence is repeated in the
structure of a second sentence (Bock, 1986). Structural
priming occurs without any intention to create syntactic
parallelism. It does not require semantic or thematic overlap
between the utterances, although the effects can be stronger
when lexical items are repeated, and sentences are
semantically similar (Branigan, Pickering, & Cleland, 2000;
Goldwater et al., 2011; Hare & Goldberg, 1999; Pickering
& Garrod, 2004; Snider, 2009).

To illustrate, consider a scene of a man giving cake to his
son. It could be described either by a double object dative
construction (DO), as in 1, or by a prepositional dative
construction (PP), as in 2.

1. The man gave his son some cake.

2. The man gave some cake to his son.

If an experimenter describes this scene with the DO (the
prime utterance), and then shows a picture of a girl telling
her friend a story, structural priming would be shown by the

increased likelihood that the participant's description of the
scene (the target utterance) would use a DO as in 3 (rather
than a PP as in 4).

3. The girl told her friend a story

4. The girl told a story to her friend.

Structural priming is seen as evidence of abstract syntax
because it can operate across semantically different
utterances and across intervening sentences (Bock, 1986;
Chang, Bock, & Goldberg, 2003; Thothathiri & Snedeker,
2008). Thus the development of structural priming in
children has been used to mark the development of syntactic
abstraction (e.g., Savage et al., 2003). Indeed, Chang et al.
(2006) have suggested that the mechanisms underlying
structural priming are the same mechanisms involved in
learning grammar. Pickering and Garrod (2004) additionally
suggest that structural priming is one mechanism by which
conversational fluency between interlocutors is achieved.

Two highly influential models, by Chang et al. (2006) and
by Pickering & Garrod (2004), each account for many of the
phenomena of structural priming. However, research by
Goldwater et al. (2011) shows that some phenomena of
structural priming can best be captured by using the
mechanism underlying analogical reasoning—structure-
mapping (Gentner, 1983; Gentner & Markman, 1997).

We propose that structural priming can be modeled as a
species of analogy. This proposal might seem surprising,
given that analogy is often considered to be a conscious
phenomenon while priming is clearly implicit. However,
recent results show that structure-mapping from a prior
analog can occur without attention or awareness (Day &
Gentner, 2007). We describe an initial computational model,
based on analogical processes of matching, generalization,
and retrieval. To provide a solid basis for comparison, we
use the experimental design and stimulus generator
developed by Chang et al (2006). We begin by
summarizing the psychological experiments and the Chang
et al (2006) model. We then describe our analogy-based
simulation, including its structure and operation. The
results of three simulation experiments are presented.
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The Chang et al. dual-path model

In a typical structural priming experiment (e.g., Bock &
Griffin, 2000) participants alternate between prime trials, on
which they hear and then repeat a sentence, and target trials,
on which they are given a depicted scene to describe in any
way they choose. For example, in Bock and Griffin’s
(2000) Experiment 1 there were 48 such sequences. Any
prime sentence would be in one of two syntactic alternates,
e.g., the DO or PP dative, and the dependent measure is the
frequency of matching the structure of the prime in the
target scene description vs. using the alternate structure.

Chang et al. (2006) present a connectionist model of
sentence production, the dual-path model, which simulates
several structural priming phenomena.  Their model
includes one system for representing the message, i.e., the
meaning of the sentence, and a second system for producing
sentence structure from the message. Before simulating
structural priming, the model was trained with 60,000
message-sentence pairs, each consisting of a meaning and a
word sequence for that meaning. Using error-based learning,
the model learned to produce grammatical word sequences
when given a message. The model was then tested using
conditions that mirrored structural priming experiments. In
the prime trials, the model received both a message and a
sentence structure. In the target trials, only the message was
given to the model. On every prime sentence, the weights
between nodes in the sequencing system were updated
based on prediction error, just as in training.

The stimulus-producing grammar consisted of a set of
message-sentence templates corresponding to the kinds of
constructions used in the experiments (see Table 1 for
examples). Random satisfactory fillers were chosen from a
small fixed lexicon of concepts and bound to empty abstract
thematic role slots in the message portion of the template, as
well as to the event-semantic categories indicating the tense
(e.g. present, past) and aspect (e.g. progressive) of the event
represented. Their model uses a XYZ thematic role
representation scheme, wherein the roles roughly
correspond to agent, theme/patient, and recipient/location,
respectively. The corresponding word strings for the
concepts in the message were then bound to corresponding
slots in the sentence template. Finally, a small set of
transformations (e.g. morphemes for tense) were applied to
produce grammatical sentences for the given sentence type.

Every structural priming test set took 100 prime—target
message pairs. Each target message was presented twice,
preceded each time by a prime with the same message but
with a different syntactic alternate. There were two versions
of each target message with a built-in bias towards one of
the alternates, creating 4 trials per prime-target message
pair, yielding 400 total prime-target trial sequences.

Chang et al. (2006)’s model was able to capture several
key phenomena. They simulated priming both the dative
alternation and the passive/active alternation. These
constructions remained primed across multiple filler items
between prime and target, as in people (Bock & Griffin,
2000). (see Table 1 for examples). The dual-path model

was used to simulate other phenomena that we eventually
plan to simulate as well, but these are our current focus.

The success of the dual-path model in simulating
structural priming phenomena is very impressive. It has set
a standard against which future models of structural priming
will be measured. We use this model as a basis for
calibrating our analogy based model, showing that we can
capture some of the same phenomena with many fewer
training examples.

Analogical learning and priming of
constructions

Our model uses analogical processing in both the training
phase and the priming phase. Training is modeled as
analogical generalization (using SAGE, described below).
During testing, when a target message is presented,
analogical retrieval (via MAC/FAC) is used to efficiently
retrieve a small number of utterances (or generalizations)
from memory that overlap in content with the target. Then
analogical mapping (SME) is used to map their sentence
structure onto the role bindings in the target message.

We now review the components of our model. The major
components—SME, MAC/FAC, and SAGE—were
developed prior to this study, and have been shown to be
useful in modeling other analogy-driven phenomena. We
begin with SME, which underlies the others. Then we
discuss analogical generalization via SAGE, which here
models prior language learning. Finally, we turn to retrieval,
which (along with mapping) is used to model priming.

Mapping: The Structure-Mapping Engine (SME)
(Falkenhainer, Forbus, & Gentner, 1989) is a computational
model of Gentner’s (1983) structure-mapping theory of
analogy. Its inputs are base and farget structured
representations. Its output is one or more mappings that
describe how the two descriptions can be aligned (where
alignment requires finding a like relational structure in
which the relations match identically).! Each mapping
consists of a set of correspondences linking elements from
the base and target, a score based on the degree of overlap
between them, and candidate inferences that represent
hypotheses about what elements in one description could be
projected to the other, based on the correspondences for that
mapping. SME is used as a component in the other two
analogical processes, and is also used here to generate word
sequences to describe new utterances.

Retrieval: MAC/FAC (Forbus, Gentner, & Law, 1995)
models  similarity-based  retrieval over  structured
representations. Its inputs are a probe case and a case
library. The first stage of MAC/FAC rapidly retrieves up to
three candidate matches using a crude parallel vector match,
where the vectors are automatically constructed from the
structured representations. The second stage uses SME in
parallel to compare the probe to the structured
representations for the candidates produced by the first

! Under some circumstances, nonidentical relations are re-
represented to find identical subcomponents.
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stage, returning the best mapping (or up to three, if very
close) as the reminding for that probe.

Generalization: SAGE (Kuehne et al., 2000) models
analogical generalization. It begins by storing the first input
example (here, a message-sentence pair). When the next
example arrives, SAGE compares it to the first one, using
SME. If there is sufficient overlap (that is, if SME’s score is
above a pre-set threshold) the common structure is stored as
a generalization. SAGE uses MAC/FAC to retrieve
generalizations and/or examples similar to new inputs. New
examples are assimilated into existing generalizations if
sufficiently similar, and the generalization is updated based
on their common structure. Otherwise, if the new example
is very similar to a retrieved example, a new generalization
is formed from their common structure. Finally, if the new
example is not sufficiently similar to anything retrieved, it is
stored separately, and may serve as a seed for another
generalization later.

In essence, this process of progressive alignment leads to
the gradual wearing away of the non-overlapping aspects of
the examples. SAGE’s generalizations are structured
representations. They may also include some specific
features, though generally many fewer than in the input
representations. No variables are introduced. Further, the
assimilation process produces probabilities attached to each
statement in the description, indicating its frequency within
the generalization. For each concept to be learned, the set of
generalizations and exemplars learned so far constitutes its
generalization context.

An Analogical Model of Structural Priming

In our model, target utterances are produced by retrieving
utterances (or generalizations) from memory whose
meaning is similar to that of the given target meaning and
mapping their sentence structure onto the target.

The system’s memory has a short-term as well as a long-
term component, in order to simulate the greater availability
of more recently encountered utterances. A buffer of
messages, each linked to its sentence representation, is
stored in the system’s Short Term Memory (STM); these
serve as priming utterances, as well as “filler” or distractor
utterances. Given the message of a target utterance as input,
the system uses analogical retrieval with the STM as the
case library to find similar messages. Failing to find a
semantically similar utterance in STM, the system uses
MAC/FAC with the system’s LTM as the case library. The
LTM consists of the SAGE generalization context, that is,
the generalizations and ungeneralized exemplars produced
during the training phase (described below). SME is then
used to infer a sequence of words that situates the actors and
objects of the target utterance’s meaning in their
corresponding roles.

Returning to the prior example, the intended behavior of
the model is as follows: The system is given a
representation of an event in which a girl is telling her friend
a story. In the structural priming condition, the STM
contains meaning-sentence pairs. The presence of a prior

utterance expressing a transfer of cake from father to son in
the double-object dative (DO) form “The man is giving his
son some cake”, should lead to an increased likelihood for
the system to produce the utterance “the girl is telling her
friend a story”, rather than “the girl is telling a story to her
friend”. Absent a priming example of this kind, the system
should still be able to produce an utterance that conveys the
target meaning by retrieving a generalization or exemplar
from its LTM with a similar meaning.

To populate the model, a set of sentences paired with their
meaning was generated using an input environment
grammar and simple lexicon based on those used in Chang
et al. (2006). We used the same grammar and lexicon as
their generator, and compared the results of our generator to
theirs to ensure that the sets of meaning-sentence pairs we
produced were essentially the same. Some of these
meaning-sentence pairs were set aside as stimuli to use in
the priming experiments, with a distinct set used to train the
model, as described below. Next we describe how these
pairs were encoded by our simulation, and the training
process it underwent.

Table 1: Sentence types included in the input environment
grammar

Sentence type Example Sentence

Animate intransitive
Animate with intransitive
Inanimate intransitive

“a man jump —ed”

“the girl walk —s with a dog”

“the ball bounce —s”

Locative transitive “a f’ather is go ~ing around a
car

“auncle scare —s a cat”

“the grandfather carry —ed a

cup to the store”

“a woman give —s a girl a

apple”

“a man bake —ed a cake for

the mother”

“the boy push —ed a chair for

the man”

“a cat plug —s a sink with a

ball”

“the father spray —ed paint

on the wall”

“a uncle loaded —ed a plate

with pie”

Theme-experiencer

Cause-motion
Transfer dative
Benefactive dative
Benefactive transitive

State-change

Locative alternation

Structure, Structural Priming & Sentence

Production
Analogical processing assumes that people use structured,
relational  representations. Our input encodings,

automatically produced from message-sentence pairs, reflect
a reasonable approximation to what people would encode in
similar situations. A complete example of the message-
sentence pair representation used by our model can be seen
in Figure 1. Sentence structure is represented by a series of
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word slot entities (e.g. wl), each corresponding to a word in
the sequence (e.g. (WordFn
“grandmother”))). Sequentiality in the sequence is
represented by a set of relationships between word slots.
Semantic structure is represented by entities representing
abstract thematic role fillers (e.g. x0), whose
interrelationships are described via binary relations (e.g.
(roleX a0 x0)). The referential structure ties the
thematic roles to their corresponding word slot in the

(isa wl

sentence structure, e.g. (sameObject x0
(WordReferentFn wl)). The use of words in the
semantic  structure  (e.g. (isa %0 (WordFn

“grandmother”))) follows the Chang et al model, which
used words rather than internal concepts as fillers in their
meaning representation. Consequently, we did the same, in
order to keep the simulations as comparable as possible.
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Figure 1: Interrelations between semantic and sentence
structure through the referential structure layer.

Seeding LTM via analogical generalization

Prior to the priming tests, a training procedure was run to
seed the system’s Long Term Memory (corresponding to
Cheng et al.’s Training phase). Our training utilized
analogical generalization via SAGE. Five examples of each
of the 24 variants of the 11 construction types in the input
environment grammar were produced: 120 message-
sentence pairs in total. These stimuli were incrementally
generalized by SAGE, using a similarity threshold of 0.9.
This resulted in 45 separate generalizations of message-
sentence pairs and 15 concrete, ungeneralized message-
sentence exemplars. SAGE required just one pass through
the 120 examples, which is two orders of magnitude less
exposures than the dual-path model required.

Sentence production

Given a new semantic message m;, a prime p;, and a set of
filler message-sentence pairs the prime and fillers are stored
in STM. Then, the system uses MAC/FAC to find the most
similar semantic message to m; from among the messages
present in STM, and if that fails, MAC/FAC is used on the
LTM. In either case, once a sufficiently similar message is

retrieved, SME’s alignment of that message-sentence pair
with the input message produces candidate inferences
representing hypotheses about the structure of the target
sentence. These candidate inferences are used to produce
sentence structure for the target, by projecting word
information and order relationships from the retrieved
utterance (or generalization) to the description of the target
message.

Priming Experiments

We next evaluate the model’s ability to produce sentences
from messages without primes (Experiment 1) and with two
kinds of priming alternations (Experiments 2 and 3). All
three studies used the LTM generated by SAGE as
described above.

Experiment 1

In Experiment 1, we tested the model’s production in two
LTM-only conditions: a dative production condition and a
transitive production condition. This examines the model’s
ability to select a proper grammatical form for messages in
the absence of specific prime sentences in STM. In each
condition, the model was given a sequence of 50 examples
of messages corresponding to the given construction type
and required to produce a sentence for each. As noted
above, this means that the model will use MAC/FAC to
retrieve generalizations and exemplars from the LTM
contents produced via SAGE to do the generation.

We applied a twofold evaluation to the output of our
model, similar to that used by Chang et al. (2006). Each
sentence produced by the model is evaluated in terms of its
grammaticality and its message accuracy. Grammaticality
measures the degree to which the output sentence matches
the prototype defined in the input environment grammar.
Message accuracy measures the degree to which the
semantic message retrieved from memory maps to the target
message given as input. The results are summarized in
Figure 3. For both kinds of constructions the model’s
message accuracy and grammaticality is quite high. Even
with an extremely limited training set, our analogy-based
model produces sentences conforming to the input grammar.

Experiment 2

Next we tested the model’s performance when presented
with a dative prime from one of two alternates: the
prepositional form and the dative form. We also wished to
test whether the model would capture the finding that
structural priming can persist across intervening sentences
(Bock & Griffin, 2000). Therefore we varied whether there
were intervening intransitive filler sentences in STM. This
led to a 2X2 design: Alternative constructions (prepositional
dative vs. double-object dative) crossed with Filler
conditions (no fillers vs. intransitive fillers). In each
condition the model was given a sequence of 100 prime-
target pairs with dative messages. The prime message-
sentence stimulus was stored in STM and the system was
required to produce an appropriate sentence for the target
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message. In the no-filler condition, no additional message-
sentence pairs were entered into STM. In the intransitive
filler condition, 10 intransitive stimuli were entered into
STM in addition to the prime stimulus. For both kinds of
constructions, and with fillers and no fillers in STM, the
model matched the sentence structure of the prime in every
trial. That is, the model was able to find a proper match in
STM on every trial and to map its structure to the target
without using the LTM store of sentences.

0.95
09
0.85
0.8
0.75 O Dative
B Transitive

e
N

0.65

o
o

Proportion of responses matching target

0.55

0.5

Grammaticality Message Accuracy

Figure 3: Sentence production performance of model in
LTM-only retrieval condition

Experiment 3

Next we tested the model’s performance when presented
with transitive primes that were either active or passive. The
experiment used the same basic 2x2 design and procedure as
in Experiment 2, and the same number of prime-target
message pairs. As usual, the system first attempted to
retrieve a structural match from its STM before retrieving
from its LTM.

For both active and passive priming conditions without
fillers, the model matched the target structure to the prime
for 100 out of 100 trials using the STM store. When there
were fillers, the model was able to do so for 98 of the
passive trials, and 99 of the active trials. That is, LTM was
used as a basis for target sentence structure a total of 3 times
across 400 trials. The model produced grammatically
appropriate sentences with both STM and LTM retrievals.

Discussion

These experiments show that our analogy-based model is
(1) capable of forming generalizations over meaning-
sentence pairs; (2) able to use its learned memory of
generalizations and exemplars to produce sentences
conforming to the input grammar when given a meaning
(Experiment 1); (3) able to match the structure of prime
sentences for either the dative alternation (Experiment 2) or
the active/passive transitive alternation (Experiment 3). As
per human data, the presence of intransitive fillers had
minimal effect on the effects of a prime. The model can
simulate structural priming when there is no lexical overlap

between prime and target utterances across structurally
dissimilar fillers, matching human findings.

These findings provide evidence for the viability of
analogical mechanisms in learning constructions and in
applying them to form utterances. That analogical processes
readily accommodate both learning and priming phenomena
is in accord with the idea that the two phenomena are
intimately related, as suggested by Chang et al (2006). We
now discuss these two aspects in more detail, including both
implications and limitations of the current model. We begin
with structural priming and then turn to grammar learning.

Structural priming

While the strong priming effects our model shows is
encouraging support for analogical mapping as a mechanism
of structural priming, in some sense the model’s
performance is too good. Across Experiments 2 and 3, over
90% of the targets conform to the structure of the prime.
Priming effects are typically much smaller in humans; in
general, roughly 60% of targets conform to the prime. We
believe there are two reasons for this. The first is that we
only consider structural priming, and not other types of
constraints, such as distributional and semantic preferences
connected with individual words and phrases, pragmatic
constraints, and discourse constraints that enter into
construction selection in natural language use (e.g., Bresnan
et al., 2007). Chang et al. (2006) dealt with this issue by
building in a bias into every message towards a particular
construction; these bias effects can act as a competing (or
facilitating) force on priming. We are exploring ways to
capture these effects. The other reason may be the overly
strong reliance on an STM buffer in the current model.
Recall that analogical retrieval is used on LTM only when
retrieval on STM fails. This happened only three times
across Experiments 2 and 3. We suspect that reducing the
bias towards STM retrieval, or even eliminating the STM-
LTM distinction entirely, might more closely match human
data. Such a model would take into account both recency
(thereby favoring STM) and strength of generalization
(favoring LTM).

Learning grammatical patterns

An intriguing result is the effectiveness of analogical
generalization, as modeled by SAGE, in learning
grammatical patterns. SAGE was given only one pass
through 120 example message-sentence pairs, yet it
produced a set of generalizations (along with some isolated
examples) that was sufficient to support the construction of
grammatically and semantically accurate sentences over
90% of the time. In contrast, the dual-path model required
8,000 examples, each trained an average of 7.5 times--
around 60,000 trials.

Why is our analogical model of construction
generalization so effective? In an important sense, we
believe this finding is real: Structural alignment and
abstraction is a highly effective way of extracting common
relational structure. For example, Kuehne et al. (2000) used
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SEQL (a predecessor of SAGE) to simulate the Marcus et
al. (1999) studies, in which 7-month old infants abstracted a
grammar-like rule from exemplars. The model required only
the amount of exposure given to the infants—16 strings
repeated 3 times each, a total of 48 strings.

However, the obvious challenge to our results is that
children do not master grammar in 120 utterances, nor even
after many thousands. We suggest that a major source of the
disparity lies in the nature of the input. We can characterize
learning environments on a continuum from high-alignable
to low-alignable. In a high-alignable environment, the
learner encounters juxtaposed alignable pairs, as in the
Marcus et al. studies. Lab studies show dramatic learning
under these conditions (Gentner, 2010). On the other hand,
children’s language learning takes place in a low-alignable
environment; they only occasionally receive perfectly
alignable juxtapositions (Cameron-Faulkner et al., 2003)

A unified approach to language

Despite the differences in specific mechanisms between
our models, we share an important commitment with Chang
et al.: namely, that the mechanisms of structural priming can
also be applied to grammar learning in children. Goldwater
et al. (2011) found a developmental sequence towards less
reliance on high semantic similarity in structural priming—
an effect specifically predicted by a structure-mapping
account of grammar learning. There is also evidence that
analogical processes enter into learning word meanings,
particularly for relational terms such as verbs (Childers,
2008). If further studies bear out the hypothesis that
analogical processes are involved in grammar learning, this
will implicate analogy as a major force in language learning.
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