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Abstract 

Recently there has been a surge of interest in using structural 
priming to examine sentence production.  We present an 
analogical model of sentence production that exhibits 
structural priming effects.  It uses analogical generalization to 
acquire abstract language patterns from experience. To 
construct utterances, it uses analogical retrieval to find 
semantically similar utterances and generalizations, and 
constructs a new sentence by analogy to them.  Using the 
stimulus generator of Chang et al (2006), we show that this 
model can exhibit structural priming effects similar to those 
observed in humans, but with orders of magnitude less prior 
experience than required by a previous simulation. 

Keywords: structural priming; sentence production; syntax 
acquisition; analogy. 

Introduction 

  What mechanisms underlie sentence production? In 

particular, how do speakers choose among the multiple 

grammatical forms that are capable of expressing something 

they intend to convey? Recently, there has been a surge of 

interest in structural priming as a way to examine sentence 

production processes in adults and children (Bock, 1986; 

Bock & Griffin, 2000; Chang, Dell, & Bock, 2006; Kaschak 

& Borreggine, 2008; Savage et al., 2003). In structural 

priming, the structure of one sentence is repeated in the 

structure of a second sentence (Bock, 1986). Structural 

priming occurs without any intention to create syntactic 

parallelism. It does not require semantic or thematic overlap 

between the utterances, although the effects can be stronger 

when lexical items are repeated, and sentences are 

semantically similar (Branigan, Pickering, & Cleland, 2000; 

Goldwater et al., 2011; Hare & Goldberg, 1999; Pickering 

& Garrod, 2004; Snider, 2009).  

To illustrate, consider a scene of a man giving cake to his 

son. It could be described either by a double object dative 

construction (DO), as in 1, or by a prepositional dative 

construction (PP), as in 2.    

1. The man gave his son some cake.  

2. The man gave some cake to his son. 

If an experimenter describes this scene with the DO (the 

prime utterance), and then shows a picture of a girl telling 

her friend a story, structural priming would be shown by the 

increased likelihood that the participant's description of the 

scene (the target utterance) would use a DO as in 3 (rather 

than a PP as in 4). 

3. The girl told her friend a story 

4. The girl told a story to her friend. 

Structural priming is seen as evidence of abstract syntax 

because it can operate across semantically different 

utterances and across intervening sentences (Bock, 1986; 

Chang, Bock, & Goldberg, 2003; Thothathiri & Snedeker, 

2008). Thus the development of structural priming in 

children has been used to mark the development of syntactic 

abstraction (e.g., Savage et al., 2003). Indeed, Chang et al. 

(2006) have suggested that the mechanisms underlying 

structural priming are the same mechanisms involved in 

learning grammar. Pickering and Garrod (2004) additionally 

suggest that structural priming is one mechanism by which 

conversational fluency between interlocutors is achieved. 

Two highly influential models, by Chang et al. (2006) and 

by Pickering & Garrod (2004), each account for many of the 

phenomena of structural priming. However, research by 

Goldwater et al. (2011) shows that some phenomena of 

structural priming can best be captured by using the 

mechanism underlying analogical reasoning—structure-

mapping (Gentner, 1983; Gentner & Markman, 1997).  

We propose that structural priming can be modeled as a 

species of analogy. This proposal might seem surprising, 

given that analogy is often considered to be a conscious 

phenomenon while priming is clearly implicit.  However, 

recent results show that structure-mapping from a prior 

analog can occur without attention or awareness (Day & 

Gentner, 2007). We describe an initial computational model, 

based on analogical processes of matching, generalization, 

and retrieval.  To provide a solid basis for comparison, we 

use the experimental design and stimulus generator 

developed by Chang et al (2006).  We begin by 

summarizing the psychological experiments and the Chang 

et al (2006) model.  We then describe our analogy-based 

simulation, including its structure and operation.  The 

results of three simulation experiments are presented.  
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The Chang et al. dual-path model 

In a typical structural priming experiment (e.g., Bock & 

Griffin, 2000) participants alternate between prime trials, on 

which they hear and then repeat a sentence, and target trials, 

on which they are given a depicted scene to describe in any 

way they choose.  For example, in Bock and Griffin’s 

(2000) Experiment 1 there were 48 such sequences. Any 

prime sentence would be in one of two syntactic alternates, 

e.g., the DO or PP dative, and the dependent measure is the 

frequency of matching the structure of the prime in the 

target scene description vs. using the alternate structure.  

Chang et al. (2006) present a connectionist model of 

sentence production, the dual-path model, which simulates 

several structural priming phenomena.  Their model 

includes one system for representing the message, i.e., the 

meaning of the sentence, and a second system for producing 

sentence structure from the message. Before simulating 

structural priming, the model was trained with 60,000 

message-sentence pairs, each consisting of a meaning and a 

word sequence for that meaning. Using error-based learning, 

the model learned to produce grammatical word sequences 

when given a message. The model was then tested using 

conditions that mirrored structural priming experiments.  In 

the prime trials, the model received both a message and a 

sentence structure. In the target trials, only the message was 

given to the model.  On every prime sentence, the weights 

between nodes in the sequencing system were updated 

based on prediction error, just as in training. 

The stimulus-producing grammar consisted of a set of 

message-sentence templates corresponding to the kinds of 

constructions used in the experiments (see Table 1 for 

examples). Random satisfactory fillers were chosen from a 

small fixed lexicon of concepts and bound to empty abstract 

thematic role slots in the message portion of the template, as 

well as to the event-semantic categories indicating the tense 

(e.g. present, past) and aspect (e.g. progressive) of the event 

represented. Their model uses a XYZ thematic role 

representation scheme, wherein the roles roughly 

correspond to agent, theme/patient, and recipient/location, 

respectively. The corresponding word strings for the 

concepts in the message were then bound to corresponding 

slots in the sentence template.  Finally, a small set of 

transformations (e.g. morphemes for tense) were applied to 

produce grammatical sentences for the given sentence type.   

Every structural priming test set took 100 prime–target 

message pairs. Each target message was presented twice, 

preceded each time by a prime with the same message but 

with a different syntactic alternate. There were two versions 

of each target message with a built-in bias towards one of 

the alternates, creating 4 trials per prime-target message 

pair, yielding 400 total prime-target trial sequences. 

Chang et al. (2006)’s model was able to capture several 

key phenomena. They simulated priming both the dative 

alternation and the passive/active alternation. These 

constructions remained primed across multiple filler items 

between prime and target, as in people (Bock & Griffin, 

2000). (see Table 1 for examples).   The dual-path model 

was used to simulate other phenomena that we eventually 

plan to simulate as well, but these are our current focus. 

The success of the dual-path model in simulating 

structural priming phenomena is very impressive. It has set 

a standard against which future models of structural priming 

will be measured. We use this model as a basis for 

calibrating our analogy based model, showing that we can 

capture some of the same phenomena with many fewer 

training examples. 

Analogical learning and priming of 

constructions 

Our model uses analogical processing in both the training 

phase and the priming phase. Training is modeled as 

analogical generalization (using SAGE, described below). 

During testing, when a target message is presented, 

analogical retrieval (via MAC/FAC) is used to efficiently 

retrieve a small number of utterances (or generalizations) 

from memory that overlap in content with the target. Then 

analogical mapping (SME) is used to map their sentence 

structure onto the role bindings in the target message.  

We now review the components of our model. The major 

components—SME, MAC/FAC, and SAGE—were 

developed prior to this study, and have been shown to be 

useful in modeling other analogy-driven phenomena. We 

begin with SME, which underlies the others. Then we 

discuss analogical generalization via SAGE, which here 

models prior language learning. Finally, we turn to retrieval, 

which (along with mapping) is used to model priming. 

Mapping: The Structure-Mapping Engine (SME) 

(Falkenhainer, Forbus, & Gentner, 1989) is a computational 

model of Gentner’s (1983) structure-mapping theory of 

analogy.  Its inputs are base and target structured 

representations.  Its output is one or more mappings that 

describe how the two descriptions can be aligned (where 

alignment requires finding a like relational structure in 

which the relations match identically).
1
 Each mapping 

consists of a set of correspondences linking elements from 

the base and target, a score based on the degree of overlap 

between them, and candidate inferences that represent 

hypotheses about what elements in one description could be 

projected to the other, based on the correspondences for that 

mapping. SME is used as a component in the other two 

analogical processes, and is also used here to generate word 

sequences to describe new utterances.  

Retrieval: MAC/FAC (Forbus, Gentner, & Law, 1995) 

models similarity-based retrieval over structured 

representations.  Its inputs are a probe case and a case 

library.  The first stage of MAC/FAC rapidly retrieves up to 

three candidate matches using a crude parallel vector match, 

where the vectors are automatically constructed from the 

structured representations.  The second stage uses SME in 

parallel to compare the probe to the structured 

representations for the candidates produced by the first 

                                                           
1 Under some circumstances, nonidentical relations are re-

represented to find identical subcomponents. 
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stage, returning the best mapping (or up to three, if very 

close) as the reminding for that probe.   

Generalization: SAGE (Kuehne et al., 2000) models 

analogical generalization. It begins by storing the first input 

example (here, a message-sentence pair). When the next 

example arrives, SAGE compares it to the first one, using 

SME. If there is sufficient overlap (that is, if SME’s score is 

above a pre-set threshold) the common structure is stored as 

a generalization.  SAGE uses MAC/FAC to retrieve 

generalizations and/or examples similar to new inputs.  New 

examples are assimilated into existing generalizations if 

sufficiently similar, and the generalization is updated based 

on their common structure.  Otherwise, if the new example 

is very similar to a retrieved example, a new generalization 

is formed from their common structure.  Finally, if the new 

example is not sufficiently similar to anything retrieved, it is 

stored separately, and may serve as a seed for another 

generalization later. 

In essence, this process of progressive alignment leads to 

the gradual wearing away of the non-overlapping aspects of 

the examples. SAGE’s generalizations are structured 

representations. They may also include some specific 

features, though generally many fewer than in the input 

representations.  No variables are introduced. Further, the 

assimilation process produces probabilities attached to each 

statement in the description, indicating its frequency within 

the generalization.  For each concept to be learned, the set of 

generalizations and exemplars learned so far constitutes its 

generalization context.  

An Analogical Model of Structural Priming 

In our model, target utterances are produced by retrieving 

utterances (or generalizations) from memory whose 

meaning is similar to that of the given target meaning and 

mapping their sentence structure onto the target. 

The system’s memory has a short-term as well as a long-

term component, in order to simulate the greater availability 

of more recently encountered utterances. A buffer of 

messages, each linked to its sentence representation, is 

stored in the system’s Short Term Memory (STM); these 

serve as priming utterances, as well as “filler” or distractor 

utterances. Given the message of a target utterance as input, 

the system uses analogical retrieval with the STM as the 

case library to find similar messages. Failing to find a 

semantically similar utterance in STM, the system uses 

MAC/FAC with the system’s LTM as the case library.  The 

LTM consists of the SAGE generalization context, that is, 

the generalizations and ungeneralized exemplars produced 

during the training phase (described below).  SME is then 

used to infer a sequence of words that situates the actors and 

objects of the target utterance’s meaning in their 

corresponding roles. 

Returning to the prior example, the intended behavior of 

the model is as follows: The system is given a 

representation of an event in which a girl is telling her friend 

a story. In the structural priming condition, the STM 

contains meaning-sentence pairs.  The presence of a prior 

utterance expressing a transfer of cake from father to son in 

the double-object dative (DO) form “The man is giving his 

son some cake”, should lead to an increased likelihood for 

the system to produce the utterance “the girl is telling her 

friend a story”, rather than “the girl is telling a story to her 

friend”. Absent a priming example of this kind, the system 

should still be able to produce an utterance that conveys the 

target meaning by retrieving a generalization or exemplar 

from its LTM with a similar meaning. 

To populate the model, a set of sentences paired with their 

meaning was generated using an input environment 

grammar and simple lexicon based on those used in Chang 

et al. (2006).  We used the same grammar and lexicon as 

their generator, and compared the results of our generator to 

theirs to ensure that the sets of meaning-sentence pairs we 

produced were essentially the same.  Some of these 

meaning-sentence pairs were set aside as stimuli to use in 

the priming experiments, with a distinct set used to train the 

model, as described below.  Next we describe how these 

pairs were encoded by our simulation, and the training 

process it underwent. 

 

Table 1: Sentence types included in the input environment 

grammar 

 

Sentence type Example Sentence 

Animate intransitive “a man jump –ed” 

Animate with intransitive “the girl walk –s with a dog” 

Inanimate intransitive “the ball bounce –s” 

Locative transitive 
“a father is go –ing around a 

car” 

Theme-experiencer “a uncle scare –s a cat” 

Cause-motion 
“the grandfather carry –ed a 

cup to the store” 

Transfer dative 
“a woman give –s a girl a 

apple” 

Benefactive dative 
“a man bake –ed a cake for 

the mother” 

Benefactive transitive 
“the boy push –ed a chair for 

the man” 

State-change 
“a cat plug –s a sink with a 

ball” 

Locative alternation 

“the father spray –ed paint 

on the wall” 

“a uncle loaded –ed a plate 

with pie” 

 

Structure, Structural Priming & Sentence 

Production 

Analogical processing assumes that people use structured, 

relational representations.  Our input encodings, 

automatically produced from message-sentence pairs, reflect 

a reasonable approximation to what people would encode in 

similar situations.  A complete example of the message-

sentence pair representation used by our model can be seen 

in Figure 1. Sentence structure is represented by a series of 
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word slot entities (e.g. w1), each corresponding to a word in 

the sequence (e.g. (isa w1 (WordFn 

“grandmother”))).  Sequentiality in the sequence is 

represented by a set of relationships between word slots. 

Semantic structure is represented by entities representing 

abstract thematic role fillers (e.g. x0), whose 

interrelationships are described via binary relations (e.g. 

(roleX a0 x0)).  The referential structure ties the 

thematic roles to their corresponding word slot in the 

sentence structure, e.g. (sameObject x0 

(WordReferentFn w1)).  The use of words in the 

semantic structure (e.g. (isa x0 (WordFn 

“grandmother”))) follows the Chang et al model, which 

used words rather than internal concepts as fillers in their 

meaning representation.  Consequently, we did the same, in 

order to keep the simulations as comparable as possible. 

 
Figure 1: Interrelations between semantic and sentence 

structure through the referential structure layer. 

Seeding LTM via analogical generalization 

  Prior to the priming tests, a training procedure was run to 

seed the system’s Long Term Memory (corresponding to 

Cheng et al.’s Training phase). Our training utilized 

analogical generalization via SAGE. Five examples of each 

of the 24 variants of the 11 construction types in the input 

environment grammar were produced: 120 message-

sentence pairs in total. These stimuli were incrementally 

generalized by SAGE, using a similarity threshold of 0.9. 

This resulted in 45 separate generalizations of message- 

sentence pairs and 15 concrete, ungeneralized message-

sentence exemplars.  SAGE required just one pass through 

the 120 examples, which is two orders of magnitude less 

exposures than the dual-path model required. 

Sentence production 

Given a new semantic message mi, a prime pi, and a set of 

filler message-sentence pairs the prime and fillers are stored 

in STM. Then, the system uses MAC/FAC to find the most 

similar semantic message to mi from among the messages 

present in STM, and if that fails, MAC/FAC is used on the 

LTM.  In either case, once a sufficiently similar message is 

retrieved, SME’s alignment of that message-sentence pair 

with the input message produces candidate inferences 

representing hypotheses about the structure of the target 

sentence.  These candidate inferences are used to produce 

sentence structure for the target, by projecting word 

information and order relationships from the retrieved 

utterance (or generalization) to the description of the target 

message. 

Priming Experiments 

We next evaluate the model’s ability to produce sentences 

from messages without primes (Experiment 1) and with two 

kinds of priming alternations (Experiments 2 and 3). All 

three studies used the LTM generated by SAGE as 

described above.  

Experiment 1 

In Experiment 1, we tested the model’s production in two 

LTM-only conditions: a dative production condition and a 

transitive production condition. This examines the model’s 

ability to select a proper grammatical form for messages in 

the absence of specific prime sentences in STM. In each 

condition, the model was given a sequence of 50 examples 

of messages corresponding to the given construction type 

and required to produce a sentence for each. As noted 

above, this means that the model will use MAC/FAC to 

retrieve generalizations and exemplars from the LTM 

contents produced via SAGE to do the generation. 

We applied a twofold evaluation to the output of our 

model, similar to that used by Chang et al. (2006). Each 

sentence produced by the model is evaluated in terms of its 

grammaticality and its message accuracy.   Grammaticality 

measures the degree to which the output sentence matches 

the prototype defined in the input environment grammar. 

Message accuracy measures the degree to which the 

semantic message retrieved from memory maps to the target 

message given as input. The results are summarized in 

Figure 3. For both kinds of constructions the model’s 

message accuracy and grammaticality is quite high. Even 

with an extremely limited training set, our analogy-based 

model produces sentences conforming to the input grammar.   

Experiment 2 

Next we tested the model’s performance when presented 

with a dative prime from one of two alternates: the 

prepositional form and the dative form. We also wished to 

test whether the model would capture the finding that 

structural priming can persist across intervening sentences 

(Bock & Griffin, 2000). Therefore we varied whether there 

were intervening intransitive filler sentences in STM. This 

led to a 2X2 design: Alternative constructions (prepositional 

dative vs. double-object dative) crossed with Filler 

conditions (no fillers vs. intransitive fillers). In each 

condition the model was given a sequence of 100 prime-

target pairs with dative messages. The prime message-

sentence stimulus was stored in STM and the system was 

required to produce an appropriate sentence for the target 
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message. In the no-filler condition, no additional message-

sentence pairs were entered into STM. In the intransitive 

filler condition, 10 intransitive stimuli were entered into 

STM in addition to the prime stimulus. For both kinds of 

constructions, and with fillers and no fillers in STM, the 

model matched the sentence structure of the prime in every 

trial.  That is, the model was able to find a proper match in 

STM on every trial and to map its structure to the target 

without using the LTM store of sentences.  

 

 
 

Figure 3: Sentence production performance of model in 

LTM-only retrieval condition 

Experiment 3 

Next we tested the model’s performance when presented 

with transitive primes that were either active or passive. The 

experiment used the same basic 2x2 design and procedure as 

in Experiment 2, and the same number of prime-target 

message pairs.  As usual, the system first attempted to 

retrieve a structural match from its STM before retrieving 

from its LTM. 

  For both active and passive priming conditions without 

fillers, the model matched the target structure to the prime 

for 100 out of 100 trials using the STM store. When there 

were fillers, the model was able to do so for 98 of the 

passive trials, and 99 of the active trials. That is, LTM was 

used as a basis for target sentence structure a total of 3 times 

across 400 trials. The model produced grammatically 

appropriate sentences with both STM and LTM retrievals. 

Discussion 

These experiments show that our analogy-based model is 

(1) capable of forming generalizations over meaning-

sentence pairs; (2) able to use its learned memory of 

generalizations and exemplars to produce sentences 

conforming to the input grammar when given a meaning 

(Experiment 1); (3) able to match the structure of prime 

sentences for either the dative alternation  (Experiment 2) or 

the active/passive transitive alternation (Experiment 3). As 

per human data, the presence of intransitive fillers had 

minimal effect on the effects of a prime. The model can 

simulate structural priming when there is no lexical overlap 

between prime and target utterances across structurally 

dissimilar fillers, matching human findings. 

These findings provide evidence for the viability of 

analogical mechanisms in learning constructions and in 

applying them to form utterances. That analogical processes 

readily accommodate both learning and priming phenomena 

is in accord with the idea that the two phenomena are 

intimately related, as suggested by Chang et al (2006). We 

now discuss these two aspects in more detail, including both 

implications and limitations of the current model. We begin 

with structural priming and then turn to grammar learning. 

 

Structural priming 

While the strong priming effects our model shows is 

encouraging support for analogical mapping as a mechanism 

of structural priming, in some sense the model’s 

performance is too good.  Across Experiments 2 and 3, over 

90% of the targets conform to the structure of the prime. 

Priming effects are typically much smaller in humans; in 

general, roughly 60% of targets conform to the prime.   We 

believe there are two reasons for this.  The first is that we 

only consider structural priming, and not other types of 

constraints, such as distributional and semantic preferences 

connected with individual words and phrases, pragmatic 

constraints, and discourse constraints that enter into 

construction selection in natural language use (e.g., Bresnan 

et al., 2007). Chang et al. (2006) dealt with this issue by 

building in a bias into every message towards a particular 

construction; these bias effects can act as a competing (or 

facilitating) force on priming. We are exploring ways to 

capture these effects.  The other reason may be the overly 

strong reliance on an STM buffer in the current model.  

Recall that analogical retrieval is used on LTM only when 

retrieval on STM fails.  This happened only three times 

across Experiments 2 and 3.  We suspect that reducing the 

bias towards STM retrieval, or even eliminating the STM-

LTM distinction entirely, might more closely match human 

data.  Such a model would take into account both recency 

(thereby favoring STM) and strength of generalization 

(favoring LTM). 

 

Learning grammatical patterns 

An intriguing result is the effectiveness of analogical 

generalization, as modeled by SAGE, in learning 

grammatical patterns. SAGE was given only one pass 

through 120 example message-sentence pairs, yet it 

produced a set of generalizations (along with some isolated 

examples) that was sufficient to support the construction of 

grammatically and semantically accurate sentences over 

90% of the time. In contrast, the dual-path model required 

8,000 examples, each trained an average of 7.5 times--

around 60,000 trials.  

Why is our analogical model of construction 

generalization so effective? In an important sense, we 

believe this finding is real: Structural alignment and 

abstraction is a highly effective way of extracting common 

relational structure. For example, Kuehne et al. (2000) used 
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SEQL (a predecessor of SAGE) to simulate the Marcus et 

al. (1999) studies, in which 7-month old infants abstracted a 

grammar-like rule from exemplars. The model required only 

the amount of exposure given to the infants—16 strings 

repeated 3 times each, a total of 48 strings.  

However, the obvious challenge to our results is that 

children do not master grammar in 120 utterances, nor even 

after many thousands. We suggest that a major source of the 

disparity lies in the nature of the input. We can characterize 

learning environments on a continuum from high-alignable 

to low-alignable. In a high-alignable environment, the 

learner encounters juxtaposed alignable pairs, as in the 

Marcus et al. studies. Lab studies show dramatic learning 

under these conditions (Gentner, 2010). On the other hand, 

children’s language learning takes place in a low-alignable 

environment; they only occasionally receive perfectly 

alignable juxtapositions (Cameron-Faulkner et al., 2003)   

 

A unified approach to language 

Despite the differences in specific mechanisms between 

our models, we share an important commitment with Chang 

et al.: namely, that the mechanisms of structural priming can 

also be applied to grammar learning in children. Goldwater 

et al. (2011) found a developmental sequence towards less 

reliance on high semantic similarity in structural priming—

an effect specifically predicted by a structure-mapping 

account of grammar learning. There is also evidence that 

analogical processes enter into learning word meanings, 

particularly for relational terms such as verbs (Childers, 

2008). If further studies bear out the hypothesis that 

analogical processes are involved in grammar learning, this 

will implicate analogy as a major force in language learning.  
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