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Abstract

What processes and mechanisms underlie analogical
reasoning? In recent years, several computational models of
analogy have been implemented to explore this question.
One feature of many of these models is the assumption that
humans possess dedicated analogy-specific cognitive
machinery — for instance, a mapping or binding engine. In
this paper, we question whether it is necessary to assume the
existence of such machinery. We find that at least for some
types of analogy, it is not. Instead, some forms of analogical
processing emerge naturally and spontaneously from
relatively simple, low-level learning mechanisms. We argue
that this perspective is consistent with empirical findings
from the developmental literature and with recent advances
in cognitive neuroscience.

Keywords: Analogy; metaphor; relational reasoning;
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Introduction

In the past three decades, there has been a growing
appreciation for the possibility that analogy lies at the core
of human cognition (Gentner, 1983; Hofstadter, 2001;
Holyoak, Gentner, & Kokinov, 2001; Penn, Holyoak, &
Povinelli, 2008). On this view, it is our ability to
understand, produce, and reason with analogies that allows
us to create the wonderfully rich and sophisticated
intellectual and cultural worlds we inhabit.

In an attempt to illuminate the cognitive mechanisms that
underlie  analogical = processing, several detailed
computational models have been developed that capture
key components of the analogical reasoning process (see
French, 2002 for a review). Among the most influential of
these models are the Structure Mapping Engine (SME:
Falkenhainer, Forbus, & Gentner, 1989), and Learning and
Inference with Schemas and Analogies (LISA: Hummel &
Holyoak, 1997). These models vary drastically in many
ways; however, they share a fundamental commitment to
explicitly structured symbolic or hybrid representations
(e.g. of objects and relations), together with the existence of
a dedicated analogical mapping or binding mechanism that
operates over these representations. Indeed, proponents of
these approaches argue that analogical inference is beyond
the reach of models that lack these properties, including
fully distributed connectionist models (e.g. Gentner &
Markman, 1993; Holyoak & Hummel, 2000).

While the structured approach has successfully captured
adult behavior in numerous analogical reasoning tasks (e.g.

Markman & Gentner, 1997; Hummel & Holyoak, 1997), it
is unclear how this analogy-specific machinery comes to
exist in the brain over the course of development. Even
developmentally-oriented models such as DORA (Doumas,
Hummel, & Sandhofer, 2008), which attempts to learn the
structure used by LISA, assume a great deal of analogy-
specific cognitive machinery without specifying how this
machinery comes to exist in the first place.

Here, we address this issue by proposing that some forms
of analogical processing may emerge gradually over the
course of development through the operation of low-level
domain general learning mechanisms (Flusberg, Thibodeau,
Sternberg, & Glick, 2010; Leech, Mareschal, & Cooper,
2008). In support of this view we describe a set of
simulations carried out using the Rumelhart network
(Rumelhart, 1990), a neurally inspired model that has
succeeded in capturing many results from the literature on
semantic development in children (e.g. Rogers &
McClelland, 2004) and whose variants have been used to
understand the deterioration of conceptual knowledge in
semantic dementia (e.g. Dilkina, McClelland, & Plaut,
2008).

Simulations

Our learning task is inspired by Hinton’s (1986) family tree
model, one of the first attempts to address relational
learning in a connectionist network. The task of the model
is to learn “statements” that are true about the various
members of a family, including identity information,
perceptual features, and relations between family members.

Input to the model consists of activating a Subject unit,
corresponding to a particular family member, and a
Relation unit. The Relation units correspond to the
different kinds of relationships that can hold between
subjects and objects (e.g. “is_named”, “parent of”’). The
network is wired up in a strictly feed-forward fashion, as
shown in Figure 1, such that the input propagates forward
through the internal layers, resulting in a set of predictions
over the Object layer.

Over the course of training, the network’s weights
change (via backpropagation of the cross-entropy error on
the output units) in order to better predict which Object
outputs correspond to each combination of Subject and
Relation inputs. As the model also contains intervening
layers of units between the input and output layers, it is
forced to re-represent the inputs as a distributed pattern of
activation over these internal layers.
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The underlying model parameters were identical in all of
the simulations that we present. In all cases, the learning
rate was .005 and the network was trained for 10,000
epochs. Results were averaged over 10 runs of each
network in order to provide statistical tests. The hidden
layers were identical in each case: 6 Subject Representation
units and 16 Integration units. In all presented simulations,
error on the training patterns was very low by the end of
training (average cross-entropy error < .35).
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Figure 1: The network architecture.

The Basic Model

In the first simulation, the network learns about the Stripes
and the Solids — two families with isomorphic relational
structure (detailed in Table 1 and pictured in Figure 2) —
with a single fact omitted about the Solid family. While the
network knows that the daughter of the Solids owns their
dog, it receives no information about who walks their dog.
This network does a good job of learning the facts on which
it is trained, but the question of interest is whether it can
extend its knowledge to answer a question on which it
received no training: who walks the Solids’ dog?

SUBJECT RELATION
Daughtersyipe is_named
Daughtersipe is_a
Daughtersiipe has

OBJECT

Stripe, Daughtersgipe
Stripe, human, child, daughter
blond hair, blue eyes

Daughtersyipe daughter_of MoMsgtipe, Dadstripe
Daughtersyipe  Sister_of SONstripe
Daughtersiripe owner_of Dogstripe

DOJstripe walked by Daughtersipe

Daughtersqiq  is_named
Daughtersoiq  is_a Solid, human, child, daughter
Daughtersoiq  has brown hair, ponytail, green eyes
Daughters,iq  daughter_of Momsgiq, Dadseiid

Solid, Daughtersgig

Daughtersqiq  Sister_of SonNsiig
Daughtersqig  owner_of Dogsoiid
LDogsoiid walked by 2?? (Daughtersoig)

Table 1: A subset of the information that the
network learns about each family member.

The Stripe Family The Solid Family
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Figure 2: An illustration of the Stripe and Solid families,
which served as the source and target domain.

We can contrast two major predictions. Naively, one
might think that the network runs on raw association. As
the Solids’ dog is most similar to the Stripes’ dog, the
network would therefore conclude that the Stripes’
daughter walks the Solids’ dog! Alternatively, we might
expect that the network will encode the relational structure
between the two families, and so will correctly conclude
that the person in the appropriate position within the Solid
family -- namely, the daughter -- will be the one who walks
their dog. In fact, the latter is the case: the network decides
that within the Solid family, the daughter walks the dog. A
paired t-test contrasting the activation levels of the Stripes’
daughter with the Solids’ daughter was highly significant,
1191 =17.75, p <.001 (see Figure 3).

To ensure that the network used the relational similarity
between the two families in making this inference, we ran a
second simulation, in which the model was trained only on
the Solid family, with no information about the Stripe
family. In this network, the model does not conclude that
the daughter walks the dog. Instead, the network decides
that the dog walks itself! A paired t-test contrasting the
activation levels of the Solids’ dog with the Solids’
daughter was highly significant, /9] = 5.61, p < .001 (see
Figure 3).

Simulations 1 and 2 do not, however, distinguish another
set of predictions. It is possible that the network has
learned to align the two families, either with respect to their
relational structure or shared perceptual features, but only
in an exact way. On this account, the model may have
placed both mothers, both daughters, and both dogs in
correspondence.

On the other hand, perhaps the network has learned the
details of the family relations within each family as well as
across families. In this case, it could learn a regularity like
“whoever owns the dog, walks the dog,” which is driven
neither by perfect, global structural alignment nor by
associations between surface features. This kind of
relational binding is closely related to those tasks that
previous researchers have argued can only be done using a
distinct mapping mechanism operating over explicit
symbols (e.g. Gentner & Markman, 1993; Holyoak &
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Figure 3: Activation levels for the target units in the first three simulations.

Hummel, 2000). Therefore, it would be a surprising and
exciting finding if this network were able to succeed in
such an abstract relational mapping task.

In order to distinguish between these hypotheses, we ran
a third simulation, very similar to the first, except that in
the Stripe family, the son, not the daughter, both owns and
walks the dog. In this case, the network can only succeed
in inferring that the Solids’ daughter walks the dog if it
learns the details of the relational structure, and in
particular the regularity between owning a dog and walking
it. This is precisely what occurs. Separate tests contrasting
the activation level of the Solids’ daughter with the
activation level of the Stripes’ son, {[9] = 2.58, p < .05, the
Solids’ son, #[9] = 2.95, p <.05, and the dog, {[18] =3.35, p
<.01, are all significant (see Figure 3).

This demonstrates that raw co-occurrence, or other
simple associative processes which are often believed to
underlie the performance of error-driven learning models
(e.g., Hummel, 2010 in reply to Ramscar, Yarlett, Dye,
Denny, & Thorpe, 2010), is not the key to learning in this
model. It is, however, interesting to notice that the Stripes’
son is the model’s choice early in training, suggesting that
the network first tends to make judgments predominately
based on surface similarity, but over time shifts towards
judgments based on relational similarity. This “relational
shift” has been widely observed in the literature on the
development of analogical reasoning abilities (e.g.
Goswami, 1992). Intriguingly, this pattern is observed
throughout the various simulations presented in this paper.

Extending The Model

We have shown a basic set of simulations that succeed in
performing analogical inference from a family that is fully
described to one that is less fully described. In the
simulations below, we will extend the basic model in
several directions, addressing possible objections to our
claim that it is in fact succeeding at analogical inference.
Each of these models will extend the third simulation, in

which the son of one family owns and walks the dog, and
the task of the model is to infer that the daughter of the
other family, who owns the dog, also walks it.

Inexact Match — Can the model align non-isomorphic
structures? We can investigate the extent to which the
network relies on perfectly overlaying the two families by
making the family structures only approximately match. In
the fourth simulation, the Stripes have three children, two
sons and a daughter, and one of the sons again owns (and
walks) their dog. The Solid family still has two children,
one son and one daughter, and their daughter owns the dog.
Despite these changes, the model continues to make the
inference that she probably walks the dog as well. A paired
t-test contrasting the activation levels of the Solids’
daughter with the Stripes’ son was highly significant, t[9] =
4.28, p < .01. This demonstrates that the network can learn
to draw inferences over structures, like many of those in
previous work (such as Falkenhainer et al., 1989), which
are only partially alignable.

Distributed Inputs — Does the model rely on
implementing symbols? We have claimed that the success
of this network depends on its development of distributed,
subsymbolic representations, with which it can integrate the
perceptual and the relational information about the family
members within a high-dimensional representational space.
Others might argue instead that the network is simply
implementing symbols, and succeeds by performing some
syntax-like transformation on those symbols. Such an
argument may point to the localist input units representing
the family members. We argue that the localist inputs are a
useful simplification, but that focusing on them is a
distraction, as the network can never directly exploit these
localist units. Instead, it is required to re-represent each
item as a pattern of activation over a hidden layer, as
described above.

To make this point more clearly, we ran a fifth
simulation that used distributed input representations for
the family members. Following a model by Rogers and
McClelland (2004), these were simply chosen to be each
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family member’s corresponding perceptual features. This
should not assist the network in acquiring the relational
structure; if anything, it should bias the network towards
the surface-level perceptual features for generalization.
Nevertheless, the network still infers that the owner of the
dog walks it, transferring from the Stripes’ son to the
Solids’ daughter. A paired t-test contrasting the activation
levels of the Solids’ daughter with the Stripes’ son was
highly significant, #{9] = 6.05, p <.001.

Non-overlapping Outputs — Does the model require
perceptual overlap? On the other hand, one might argue
that the architecture is biased in the opposite direction: the
more direct overlap between the two families at the feature
level (that is, at the Output layer), the less work the model
needs to do to align their structures. What if only the
relational similarity is available, as might be the case when
constructing analogical mappings across very different
domains of knowledge? This kind of analogy may be
critical for explaining how analogy can subserve cognition
and reasoning more generally.

To test this, we constructed a sixth simulation that had
completely non-overlapping output units. The network
essentially had two copies of each output property, so that
each family’s target representations were totally distinct.
To succeed in generalizing the relation between the two
families, the network would need to align the structures
even in the absence of any surface-level similarity between
the two families. And this is precisely what it did. Again,
when the network is told that, in the Stripe family, the son
owns and walks the dog, it concludes that for the Solids, the
owner of the dog -- the daughter -- must also walk it. A
paired t-test contrasting the activation levels of the Solids’
daughter with the Stripes’ son was significant, #[9] = 3.58,
p<.01l.

Scaling up — Can the model make inferences when
given more than two families? Finally, it remains to be
shown that the ability of the model to make analogies does
not depend on it living in a world with only two different
structures. Is it able to extend its learning to multiple
families?

In this final simulation, the network learned about four
rather than two distinct families (adding the Dash family
and the Dot family). In this training set, a different person
walks the dog in each family. Additionally, two of the
families have slightly different structures: one has only a
son, another has two sons and a daughter. Despite this
added complexity, the network infers that in the target
family, the daughter must also walk the dog. A within-
subjects ANOVA using a planned contrast comparing the
activation values of the Solids’ daughter with the Stripes’
son, the Dashes’ mother, and the Dots’ father (each a dog
walker in their respective family) was significant, F]1,36] =
42.40, p < 0.01. Paired t-tests contrasting the activation
levels of the Solids’ daughter with the dog walkers in each
of the other families including the Solids’ son (¢ [9]=7.39, p
< .001), the Dashes’ mother (/[9]=7.37, p < .01), and the
Dots’ father (¢{9]=7.31, p <.001) were also significant.

Discussion

To summarize the results of the above simulations, we have
demonstrated that analogical reasoning can emerge from a
general, neurally inspired connectionist model of semantic
learning and reasoning. Critically, this analogical inference:
(1) is driven by generalization from a source domain to a
target domain; (2) relies on abstract relational structure, not
surface-level similarities or direct featural associations or
co-occurrences; (3) parallels important features of the
development of analogy in children; (4) can operate over
structures which only approximately match, or which are
only partially alignable; (5) exploits structural similarity
even in the absence of explicit overlap, allowing the
possibility of cross-domain analogical inference in guiding
learning; and (6) scales up to more complex training sets.

How is it that a connectionist model can succeed at this
kind of analogical inference task? As we have
demonstrated in several variations of the model, it is not
due to any direct co-occurrence of feature, nor is it due to
any kind of surface-level similarity between the items.
Instead, we argue that part of the answer involves the
progressive differentiation of its representations over the
course of development. Initially, all the weights are set to
very small random values, so the network essentially treats
every family member, and every relation, as being the
same. Over the course of training, the model learns to “pull
apart” those representations that must be differentiated in
order to produce the right answers. However, it only does
so in response to erroneous predictions. This biases the
network to reuse as much representational structure as it
can get away with.

In this particular network, the families share a great deal
of structure. As a result, the network’s representations of
the families become aligned over the course of training —
since this allows the network to learn more efficiently (i.e.,
to reduce error more quickly). The side effect of this
representational overlap is that when the network learns a
fact about one family (e.g. one dog’s owner walks it), the
representations of the members of the other family (e.g.
between that dog and its owner) get to come along for the
ride. This is not to say that the model is stuck with its first
guess about the structure of the world. As we indicated in
the description of Simulation 3, and as is visible in other
simulations, the model undergoes a developmental shift
from predominantly perceptual to predominantly relational
inference, when the environment warrants such a shift.

We can observe the process of progressive differentiation
in this network by looking at a clustering diagram of
activation patterns along the Subject Representation layer at
different points in time for simulation 3 (see Figure 4).
Early in training, the network groups items essentially at
random, since the weights were initialized to very small
values. Later in training, the network’s representations
capture both the surface similarities and the relational
similarities between items. Progressive differentiation in
semantic networks has been explored more extensively in
previous work (Flusberg et al, 2010; Rogers &
McClelland, 2004).
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Figure 4: The hierarchical clusters above illustrate the
similarity structure of the learned Subject representations in
Simulation 3. Early in training (the upper panel), the
network does not group individuals by family or relation.
Later in training, at 1,300 epochs (the lower panel), the
network has aligned the families according to their

relational similarity.

It is also important to clarify what aspects of the
environment we believe are encoded in our training
patterns. Many of these patterns, such as those representing
the visual features of the family members, might be thought
of as arising from perception. However, others, particularly
those representing familial relations such as “mother of”
and “owner of”’, are much more likely to be encoded
linguistically than visually. That is, part of our story is that
learners hear language describing the people and things
around them at the same time as they experience them
directly, and these different sources of information are
integrated whenever (as we think is almost always the case)
there is some coherent covariation of information between
the several sources (Rogers & McClelland, 2004). This is
consistent with a great deal of empirical work
demonstrating that relational language facilitates analogical
inference and drives the relational shift in analogical

development (Gentner, Simms, & Flusberg, 2009;
Loewenstein & Gentner, 2005). Therefore, this approach
views relational labels as another set of environmental
regularities, serving the function of augmenting the
statistical structure of the environment in ways that
facilitate learning analogical representations (rather than as
explicitly symbolic representations in the brain).

In one sense, then, our model supports the view that
analogy is a special component of cognition, because it
allows us to draw inferences about things we haven’t
directly experienced. In another sense, however, analogy is
not special, in that we do not posit a separate set of
cognitive machinery in order to accomplish analogical
inference. Instead, these inferences emerge as a byproduct
of learning to predict outcomes in an environment that
contains relevant relational structure.

Previous work has highlighted the difficulties of pursuing
subsymbolic accounts of analogy (e.g. Gentner &
Markman, 1993; Holyoak & Hummel, 2000). In part
because of the lack of progress in this direction, some
researchers have gone so far as to claim that analogical
reasoning requires at least some explicitly symbolic
representations, or even that a subsymbolic account is
impossible in principle. Our model is, of course, not the
first to counter these claims (see, e.g., Leech et al. 2008).
On the other hand, it may be the first to demonstrate that a
model equipped with subsymbolic representations can
make novel analogical inferences. Leech and colleagues
(2008) pointed to a possible reframing similar to our own
(and to the principle of coherent covariation described in
Rogers & McClelland, 2004), suggesting that, “analogical
inferences might best be understood as novel
generalizations governed by the distributional information
about which input features and relations co-vary across the
base and target domains” (p. 403).

This is not to say that this kind of semantic network can
account for all of human cognition. Far from it! We do not
believe that these models can even explain all of human
analogy. Many of the analogy tasks used in previous work,
which models like SME and LISA can capture so well, rely
on cognitive processes which we do not even attempt to
model (e.g. Markman & Gentner, 1997; Morrison et al.,
2004). In particular, we would agree that some of these
tasks may rely on strong working memory and cognitive
control processes, one-shot learning and episodic memory,
and much richer linguistic abilities than we implement in
this model. In our model, we treat relational language as a
simple environmental cue, encoding a certain kind of
statistical structure that is then used to shape semantic
representations. While this is one important role of
language in analogical reasoning, it is not the only one; the
ability to verbally re-describe a situation to oneself, for
example, is an important tool in many higher-level
reasoning tasks (Williams & Lombrozo, 2010).

Therefore, we would like to suggest that one major
unsolved problem is the integration of the kind of slow-
learning semantic cognition model described in this paper
with the online, structurally explicit models already in
place. The extensive and valuable work on models such as
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SME and LISA over the past twenty years, no less than the
connectionist models we have implemented, must be used
to guide future research into analogical processing across
development, in behavior, and in the brain.
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