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Abstract

The present work examines persistence in situations where de-
lays are open-ended. From a normative standpoint, appropriate
behavior in such situations depends on the statistical distribu-
tion of possible delay lengths. Depending on this distribution
it may be appropriate either to persist indefinitely or to give
up after a short period of time. In a behavioral experiment,
human participants experienced reward timing statistics that
implied it was productive to adopt either a high or low level of
persistence. Human decision makers were highly responsive
to these statistical cues. In a condition where timing statis-
tics implied patience was productive, participants performed
exceptionally well, and had little difficulty in waiting for de-
layed outcomes. In contrast, participants showed substantially
lower willingness to wait when temporal statistics implied pa-
tience was an inappropriate strategy. The results demonstrate
that seemingly impatient behavior can arise as an adaptive re-
sponse to the perceived statistics of the environment.
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Introduction

Persistence in pursuing delayed rewards is widely regarded
as an important self-control skill (Ainslie, 1975; Mischel,
Shoda, & Rodriguez, 1989). Likewise, the inability to tol-
erate delay of gratification has been viewed as a source of
maladaptive inconsistencies in choice.

Theoretical analyses of intertemporal choice have focused
primarily on situations where decision makers know in ad-
vance how long a delay is scheduled to last (e.g., Ainslie,
1975). However, real-life decision makers routinely find
themselves waiting through uncertain, open-ended delay in-
tervals. When decision makers do not know how soon a re-
ward will arrive, they face a nontrivial task of deciding how
long to continue waiting.

Open-ended delays occur when commuters wait for buses,
when job-seekers wait for offers, and when sit-and-wait
predators wait for prey. In each of these cases, a decision
maker must continuously choose whether to keep waiting
or move on to new opportunities. Several of the most fa-
mous and compelling empirical examinations of delay-of-
gratification behavior have involved delays that were open-
ended from the decision maker’s point of view (Mischel &
Ebbesen, 1970; Mischel, Ebbesen, & Zeiss, 1972; Mischel et
al., 1989).

Little is known about how decision makers cope with tim-
ing uncertainty during intertemporal choice. From a norma-
tive standpoint, as we show in detail below, the appropriate

behavior depends on the statistical distribution of possible de-
lay durations. The shape of this distribution determines how
a decision maker’s expectation should change as time passes.
For some distributions the anticipated delay grows steadily
shorter over time, presumably increasing the reward’s present
subjective value. For others, however, time-passage can actu-
ally increase the expected remaining delay time. In this case
a delayed outcome loses value over time. Giving up on the
delayed outcome would be inappropriate in the former case,
but is potentially justified in the latter.

Here we present a behavioral experiment in which decision
makers had the opportunity to wait for rewards in environ-
ments that differed in terms of their timing statistics. Results
suggest that individuals successfully learned about these tim-
ing statistics through experience, and responded by making
appropriate adjustments in their willingness to tolerate delay.

Impulsivity and inability to tolerate delay often have a
detrimental influence on human decision making. Neverthe-
less, a potentially productive route to understanding these as-
pects of behavior is to examine situations in which they are
adaptive. It may turn out that mechanisms that support appro-
priate responding in some situations are also responsible for
maladaptive delay-of-gratification failure in others. As a gen-
eral point, it is important to recognize that a decision maker’s
computational-level objective is to calibrate behavioral per-
sistence, not merely to maximize persistence in all cases.

The present work relies on the assumption that an individ-
ual’s temporal expectations take the form of a probability dis-
tribution, not merely a point estimate. We therefore begin by
reviewing evidence that supports this contention.

Experience-based learning of time-interval
distributions

Considerable evidence suggests that decision-making organ-
isms can encode and use information about full distributions
of time intervals.

A first category of evidence involves instrumental behav-
ior under interval schedules of reinforcement. Fluctuations in
response frequency are highly sensitive to the specific reward
schedule in effect. If rewards are made available at fixed tem-
poral intervals, response rates show a “fixed-interval scallop”
(Gibbon, 1977), rising and falling as if to reflect subjective
reward probability. Catania and Reynolds (1968) observed
that pigeons’ response rates tracked reward hazard rates that
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were increasing, constant, or decreasing as a function of time.
More recent work confirms that when animals experience bi-
modal interval schedules, response rates show a correspond-
ing non-monotonic pattern (Bateson & Kacelnik, 1995).

Other evidence comes from “variable foreperiod”
paradigms (Nickerson, 1965). Here, a preparatory cue
precedes an imperative stimulus by a random “foreperiod”
interval. The hazard rate for the imperative stimulus rises
within the foreperiod. Reaction times are faster if the
stimulus appears later, suggesting preparation is based on
veridical instantaneous expectancy.

Distribution knowledge can influence the perceived dura-
tion of individual time intervals (Jazayeri & Shadlen, 2010).
Distribution knowledge can also support explicit inferences.
Griffiths and Tenenbaum (2006) asked survey respondents
to estimate total durations for familiar types of events given
given that the duration had already exceeded some minimum
(for example, predicting the total length of a movie that has
played for 110 min already). Participants’ responses were
largely consistent with valid inference based on objectively
accurate prior distributions.

A willingness-to-wait task

We developed a behavioral task in which participants ac-
quired experience with a statistical distribution of time inter-
vals and decided how long they were willing to wait for de-
layed rewards. Participants’ objective was to maximize their
total monetary reward in a fixed 10-min period. In essence
they faced a rate-based optimization task, similar to a forag-
ing problem. Participants could wait for one reward at a time,
with each reward being delivered at the end of a random de-
lay. At any time (and as often as they wished), participants
could give up waiting, receive a much smaller immediate re-
ward, and begin a new trial.

Two participant groups each experienced a different distri-
bution of delay intervals. The two distributions were selected
so that they implied qualitatively different optimal strategies.
Delays in one condition were drawn from a uniform distribu-
tion spanning (0,12) sec (UD group). Delays in the second
condition were drawn from a truncated heavy-tailed distribu-
tion with quartile upper boundaries at 0.8, 3.6, 15.9, and 90
sec (HTD group). Figure 1A shows the two distributions.

Timing statistics in the UD group were such that wait-
ing was productive. The hazard rate for reward increased
as a function of time already waited. Subjective reward ex-
pectancy should increase over time, and the expected remain-
ing delay should correspondingly decrease. As a result, the
rate-maximizing strategy was always to continue waiting. In-
tuitively, it would be unwise to quit after waiting 8 sec, be-
cause at that point a reward in next 4 sec is guaranteed (a
better prospect than starting a new trial).

For the HTD group, conversely, waiting was counterpro-
ductive. This distribution was characterized by a falling haz-
ard rate, meaning that reward became less likely in succes-
sive temporal intervals, and the passage of time increased the
expected length of the remaining delay. A rate-maximizing
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Figure 1: Panel A shows the distribution of delay intervals
in each condition. Delays in the UD group were drawn
from a uniform distribution (¢ = 0, b = 12). Delays in the
HTD group were drawn from a generalized Pareto distribu-
tion (k =8, 6 = 3.4, 6 = 0) truncated at a maximum value
of 90 sec. Panel B shows the total monetary return expected
under a range of waiting policies (see text for details).

strategy would at some point call for giving up and moving on
to a new trial. The heavy-tailed distribution can be intuitively
understood as involving a mixture of short and long delays.
As more time passes it becomes more likely that the current
trial falls in the long tail of the distribution and is best aban-
doned. (See Griffiths & Tenenbaum, 2006 for further discus-
sion of prediction updating as a function of elapsed time.)

These two distributions were selected because they broadly
represent two categories of situations that real-world decision
makers are likely to encounter. The UD condition reflects a
simple form of uncertainty: the delay’s precise length is un-
known, but the decision maker expects it will lie within a de-
limited range of values. A Gaussian probability distribution
over delay lengths would have the same essential properties
as the uniform distribution: estimates of the time remaining
would decrease monotonically (though not linearly) as time
passed. This form of uncertainty could arise not just from
variability in external events, but also from internal noise as-
sociated with time-interval estimation (Gibbon, 1977).

The HTD condition, in contrast, was designed to represent
situations where delays are open-ended. There is growing
evidence that time intervals associated with many human ac-
tivities are well characterized by a heavy-tailed form (e.g., a
power-function distribution). Such distributions characterize
activities such as email reply latencies, where most delays are
short but some are very long (Barabdasi, 2005). Heavy-tailed
distributions tend to arise when fast and slow processes are in-
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termixed. From a decision maker’s point of view, such mixing
implies that a given event’s past duration is a direct predictor
of its duration in the future (for an application of the same
principle to the longevity of memory traces, see Anderson,
2001). In addition, when specific predictive information is
unavailable, a heavy-tailed distribution may be a reasonable
uninformative prior (Gott, 1993). As such, this type of dis-
tribution might characterize individuals’ expectations in un-
certain situations such as waiting on hold (Griffiths & Tenen-
baum, 2006) or waiting for unreliable buses (Rachlin, 2000).

In principle, an exponential distribution occupies a mid-
dle ground between these two categories, implying a constant
probability of reward arrival per unit time. Waiting would
be neither productive nor counterproductive. However, un-
certainty about the value of the exponential rate parameter
would produce, in effect, a mixture of exponentials, which
would take on a heavy-tailed form (Sozou, 1998).

It would clearly be beneficial for decision makers to be ca-
pable of distinguishing situations where waiting is productive
from those where it is not. We predicted that decision mak-
ers would adaptively calibrate their level of behavioral persis-
tence on the basis of the timing statistics they experienced.

Normative analysis

We will define a decision maker’s waiting policy as the time
at which he or she would quit a trial if the reward had not yet
arrived. Figure 1B shows the total earnings expected under
a range of policies in each condition (if each policy were ap-
plied consistently over the course of the entire experiment).
These curves are based on the following parameters: a 10-
minute session, a 15¢ reward, a 1¢ gain upon quitting, a 2
sec inter-trial interval (ITI), and the delay-length distributions
shown in Figure 1A.

Expected total earnings were calculated in the following
way. Suppose a given policy calls for quitting at time z. Let p,
be the proportion of trials that will be rewarded because they
have a delay shorter than ¢ (i.e., the cumulative probability at
t). Let 1, be the mean duration of these rewarded trials. The
expected return for a single trial, in dollars, is R, = 0.15(p;) +
0.01(1 — p;). One trial’s expected cost, in seconds, is C; =
T (p:) +t(1 — p;) + 2, including the 2-sec ITI. The expected
return over the 600-sec experiment is 600 x R; /C;. This is the
quantity that participants should seek to maximize.

At one extreme, quitting immediately on every trial would
yield 1¢ every 2 sec, or $3.00 total. At the opposite extreme,
a perfectly patient participant in the UD condition could ob-
tain a 15¢ reward every 8 sec on average, for $11.25 total.
The maximum possible rate of return in the HTD condition
is comparable, but is achieved under a very different waiting
policy. Here, a return of $11.25 or greater could be obtained
with waiting policies between 1.4 sec and 3.4 sec. Persistence
beyond this point would be counterproductive.

Of course, individual decision makers enter the task with
no advance knowledge. Lacking direct access to the distri-
butional information in Figure 1A, they are not equipped to
undertake a complete optimality analysis at the outset. It is

nonetheless possible that participants will be capable of re-
sponding adaptively to the timing statistics they experience
over the course of the task. If this is the case, individuals in
the UD condition may come to show greater persistence than
those in the HTD condition.

A result of this kind would indicate that decision makers
are capable of calibrating persistence in an adaptive manner
through temporal learning. This finding would open the way
for an examination of the specific information-processing
steps that enable time-interval experience to impact subse-
quent behavioral persistence.

Empirical investigation

Participants in a behavioral experiment were given opportuni-
ties to wait for delayed outcomes under temporal uncertainty.
We tested whether the form of uncertainty—specifically, the
statistical distribution of delay lengths—would impact partic-
ipants’ willingness to wait.

Methods

Participants The experiment was run in a New Jersey
shopping mall. There were n = 40 participants, 23 female,
ranging in age from 18-64 (mean = 32). Years of education
ranged from 11-20 (mean = 15). Each participant was ran-
domly assigned to one of two conditions (n = 20 each).

Time left: 09:51

Amount won: $0.15

Figure 2: Behavioral task interface.

Materials and procedure Participants were tested indi-
vidually at a laptop computer. The waiting task was pro-
grammed using the Psychophysics Toolbox extensions for
Matlab (Brainard, 1997; Pelli, 1997); the interface is shown
in Figure 2. The task proceeded as follows. A yellow light
appeared near the top of the screen. Instructions stated that
the light would remain illuminated for a random length of
time, eventually going out and delivering a 15¢ reward. Be-
low the light were two boxes representing possible responses.
The right-hand box was labeled, “Wait for 15¢.” Participants
could wait for the reward by leaving the cursor in this box.
The left-hand box was labeled, “Take 1¢.” By moving the
cursor to this box, participants could extinguish the light, re-
ceive 1¢ immediately, and move on to a new trial. If partici-
pants did not wish to wait at all, they could simply leave the
cursor in the left-hand box across multiple trials.
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Each monetary outcome (either 15¢ or 1¢) involved a 2-
sec ITI before a new trial began. The bottom of the screen
displayed the participant’s total earnings so far, as well as the
amount of time left in the 10-min session.

A delay duration was selected on each trial according to the
relevant distribution (see Figure 1A). The reward was deliv-
ered at the end of this delay if the participant did not choose
to end the trial earlier.

We wished to ensure that even short spans of experience
would reflect the statistics of the underlying distribution. To
accomplish this, delays were not drawn fully randomly. In-
stead, successive samples were balanced over the four quar-
tiles of the distribution (i.e., a sample was drawn from all
quartiles in random order before a quartile was repeated).
While this approach has the disadvantage of introducing sub-
tle sequential structure, it has the important advantage of
reducing within-condition variability in the timing statistics
participants experienced.

Results

We hypothesized that both groups would shift toward a wait-
ing policy that was productive given the timing statistics in
place. Willingness to wait should increase in the UD group
and decrease in the HTD group.

Monetary earnings Total monetary earnings serve as a
rough gauge of task success. The maximum possible re-
turn was approximately $11.25 for each group. The median
amounts actually earned were $10.69 in the UD group and
$7.29 in the HTD group (see Figure 3). These values differed
significantly (rank-sum p < 0.001). Performance was strik-
ingly successful in the UD group, with 12 of 20 participants
obtaining an amount within $1 of the theoretical optimum.

Monetary outcomes
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Figure 3: Total monetary earnings in each group. Each point
represents a participant. The dashed line shows the approx-
imate earnings expected under the best waiting policy (see
Fig. 1B for details).

Survival analysis Each group’s willingness to wait was
summarized by plotting a conditional survival curve (see Fig-
ure 4A). For each time ¢, the survival curve considers only
trials that were experimentally scheduled to last longer than 7.
It plots the proportion of these trials that were still in progress
at ¢ (i.e., that went on either to be rewarded or to be quit at a

Survival analysis
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Figure 4: Survival analysis results. Panel A shows the mean
conditional survival curve in each group (with standard error).
These curves represent participants’ proportional willingness
to wait a given length delay. Panel B summarizes the survival
curves by showing each participant’s area under the curve
(AUC). Panel C shows the mean local AUC in each group
(shaded region shows standard error) for a sliding Gaussian-
weighted epoch across the testing session.

later time). The survival curve is more informative than a plot
of raw frequencies because it is not directly influenced by the
experimentally imposed pattern of delay lengths. Instead, it
depicts participants’ willingness to wait various durations.

It is important to note that individual trials reveal different
amounts of information about participants’ waiting policies.
Quit trials are maximally informative, as they provide a point
estimate for the longest time a participant is willing to wait. In
contrast, rewarded trials only signify a willingness to wait at
least the length of the trial.! Rewards that follow short delays
are relatively uninformative, whereas a reward after a long
delay conveys considerable information about an individual’s
willingness to wait.

In general, the survival curves in Figure 4A suggest that
for any given delay from 1 to 11 sec, UD participants showed
greater willingness to wait than HTD participants. The area
under the curve (AUC) is a useful summary statistic. The
AUC values in Figure 4B were obtained by summing the 11
points in each participant’s survival curve. The AUC repre-
sents an individual’s average willingness to wait during the

'In the terminology of survival analysis, these observations are
“right-censored,” analogous to a patient in a clinical trial who was
still alive at the end of data collection.

2 A participant in the task faces an inverted version of the same
problem. For an individual trying to estimate the typical duration
of delays, a rewarded trial is the most informative because it reveals
the delay’s exact length. In contrast, quit trial reveals only a lower
bound on the delay’s duration.
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11-sec interval evaluated. An individual who always waited
at least 11 sec would have an AUC of 11, whereas someone
who was willing to wait 4 sec but not 5 sec would have an
AUC of 4.

A comparison of the AUC values in Figure 4B supports
the study’s central prediction. Individuals in the UD group
(median AUC=9.73) showed greater willingness to wait than
individuals in the HTD group (median AUC = 3.34; rank-
sum p = 0.002).

The results in Figure 4A-B aggregate across the entire 10-
min experiment. However, participants initially knew nothing
about the relevant timing statistics, so performance is unlikely
to have been stable over time. Rather, we would expect group
differences to emerge progressively with experience.

To assess change over time, AUC values were calculated in
a sliding window over the 10-minute testing period. For each
plotted point, an AUC value was computed based on trials
weighted according to a Gaussian function of their distance
from that point (u = 0, 6 = 60 sec). The window was cen-
tered at points ranging from 0.5 min to 9.5 min. The resulting
timecourses, shown in Figure 4C, depict the gradual develop-
ment of differences in the two groups’ behavior. The results
also suggest differences began to appear as early as the first
minute or so of testing.

Choice reversals A phenomenon of particular interest to
decision-making researchers is the reversal of intertemporal
choices. That is, instances where decision makers do not
merely forego a delayed reward outright, but reverse their
own initial decision to pursue the same reward.

Survival analysis, trials exceeding 1 sec
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Figure 5: Survival analysis restricted to trials in which par-
ticipants waited at least 1 sec. The first point in the survival
curve is therefore fixed at 1. This analysis reflects partici-
pants willingness to continue waiting for a delayed outcome
after having begun to wait. Panels A—C correspond to the
panels in Fig. 5.

In some situations, choice reversals are viewed as reflecting
non-rational dynamic inconsistency, potentially arising from
a failure of self control (Ainslie, 1975; Mischel & Ebbesen,
1970). In contrast, the present task (in the HTD condition)
required such behavior for optimal performance: the best-
performing strategy is initially to wait for the delayed out-
come but to quit if it fails to arrive after about 2 sec. Reversals
in this context do not signify dynamic inconsistency (i.e., they
do not signal a violation of stationarity) because time passage
is a source of new, predictive information about the timing of
the awaited reward.

We ran a secondary analysis focusing specifically on dy-
namic reversals. This analysis excluded trials where partici-
pants opted for the small, immediate reward immediately (an
unproductive strategy in either condition). Focusing only on
trials where the participant waited at least 1 sec, this analysis
evaluated willingness to continue waiting beyond that point.

Figure 5A shows survival curves restricted to these trials.
Because trials quit in the first 1 sec are excluded, the first
point in each survival curve is fixed at 1 while the other points
remain free to vary. The curves reveal that even after partic-
ipants had begun to wait, they gave up waiting earlier in the
HTD condition than in the UD condition. Figure 5B shows
AUC values summarizing these curves for individual partici-
pants. The minimum possible AUC is 1. All but 3 individu-
als in the UD condition showed high willingness to continue
waiting; that is, dynamic reversals were virtually absent. Re-
versals occurred far more frequently in the HTD condition.
The median AUC in the UD group (10.74) significantly ex-
ceeded that in the HTD group (7.38; rank-sum p < 0.001).
Consistent with findings shown previously, this effect devel-
oped progressively over time (see Figure 5C).

This analysis shows that group differences do not depend
on HTD-group participants becoming categorically unwilling
to pursue the delayed outcome, but instead reveal the gradual
development of a less patient waiting policy.

Discussion

We have shown evidence that decision makers adaptively
modulate their willingness to wait for delayed outcomes in
response to the timing statistics of their environment. The ad-
justments occurred after a short period of relevant experience.
Two aspects of the results deserve special emphasis.

The first is that participants in the UD condition were re-
markably successful at waiting patiently for delayed rewards.
Tasks that require patience or delay tolerance are often as-
sumed to present a challenge to human decision makers. In
contrast to this assumption, the present results suggest such
demands posed little difficulty when the value of persistence
was supported by direct experience with timing statistics.

The second key point is that participants in the HTD group
tended to develop significantly less patient waiting policies,
which constituted an adaptive response the timing statistics
in effect. The observed behavior was isomorphic to behavior
usually interpreted as reflecting self-control failure: partici-
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pants chose to begin waiting for a delayed outcome, but re-
versed their choice before the outcome was obtained. We cre-
ated a situation where such reversals, far from being anoma-
lous, were optimal by objective criteria. Without introducing
any direct element of temptation, we have shown impatience-
like behavior arising as a result of valid statistical learning.

Our results agree well with the idea that intertemporal
decision-making mechanisms tend to be effective at maxi-
mizing reward rate over time (Kacelnik, 2003). There is a
natural connection between the present work and topics in the
optimal foraging literature such as patch-departure decisions
(Brunner, Kacelnik, & Gibbon, 1996).

Several factors might contribute to participants’ overall su-
perior performance in the UD condition, which called for
high persistence, compared to the HTD condition. The
reward-maximizing strategy in the HTD condition is arguably
more complex: decision makers can err by quitting either too
soon or too late (whereas in the UD condition the only error
is to quit too soon). Individuals in the HTD condition might
therefore require more experience to reach equivalent perfor-
mance. A related idea is that the relevant properties of the
uniform distribution might be easier to learn; followup work
should introduce additional measures of temporal beliefs to
track how beliefs evolve with experience in each condition. A
further possibility is that individuals may hold an initial bias
toward patient strategies in the context of this task. Several in-
dividuals remained highly patient even in the HTD condition
(see Figure 4B). Such a bias could stem from high valuation
of individual delayed rewards, from a motive to seek informa-
tion, from prior beliefs about the time-interval distribution, or
perhaps from a motive to appear outwardly consistent.

The present work has addressed the topic of dynamically
inconsistent decision behavior by examining circumstances
under which such behavior would be appropriate. An account
of dynamic inconsistency based on statistical learning and in-
ference (even in cases where errors may occur) is a potential
alternative to accounts positing competition among multiple
internal systems or objective functions. To the extent that the
failure to tolerate delay involves an aversive affective experi-
ence such as frustration (Mischel et al., 1972), the present re-
sults highlight that affective processing may promote adaptive
responses in some contexts (cf. Bechara, Damasio, Tranel, &
Damasio, 1997) and should not be seen solely as an impedi-
ment to advantageous decision making.
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