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Abstract

We investigated how subjects sample information in order to
improve performance in a visuomotor estimation task.
Subjects were rewarded for touching a hidden circular target
based on visual cues to the target’s location. The cues were
'dots' drawn from a Gaussian distribution centered on the
middle of the target. Subjects could sample as many cues as
they wished, but the potential reward for hitting the target
decreased by a fixed amount for each additional cue
requested. The subjects' objective was to balance the benefits
of increased information against the costs incurred in
acquiring it. We compared human performance to ideal and
found that subjects sampled more cues than dictated by the
optimal stopping rule that tries to maximize expected gain.
We contrast our results with recent reports in the literature
that subjects typically under-sample.

Keywords: decision making, information sampling, optimal
stopping, adaptive cue-combination, value of information.

Introduction

A critical challenge facing human decision makers is
balancing the potential advantage gained by gathering (i.e.,
sampling) information against the time, energy, or money
spent collecting it. For example, Stigler (1961) analyzed the
economic costs of prolonging a search for a better price on a
commodity. Since a relatively cheap price is easily obtained
after a brief search, the cost of exhaustive search will often
not offset the increased savings of finding the cheapest
price. Instead, consumers should search only so long as the
expected savings from finding a cheaper price are enough to
offset the costs in continuing to search. Similar ideas are
reflected in the mathematical literature on optimal stopping
and optimal search (Wald, 1945a,b; Arrow et al., 1949;
Stone, 1989), and feature prominently in the study of animal
foraging (Stephens & Krebs, 1986). Less is known,
however, about how effective humans are in trading off the
costs and benefits of additional information, or how their
performance varies across decision environments.

Optimal information sampling behavior was a topic of
interest in psychology in the 1960s (Green et al., 1964;
Edwards, 1965; Tversky & Edwards, 1966; Wendt, 1969;
Rapoport & Tversky, 1970), and this question has returned
to prominence recently (Hertwig et al., 2004; Hau et al.,
2008; Gureckis & Markant, 2009; Vul et al., 2009; Hertwig
& Pleskac, 2010). The critical issue in all this past research
has been a comparison of human sampling behavior to that
of an optimal decision maker. A common finding in the
more recent studies is that participants often collect less

information than needed in order to maximize expected gain
(i.e., they “under-sample”).

However, a key limitation of recent work in this area
(e.g., Hertwig et al., 2004) is that the cost of additional
information was not precisely specified and, as a
consequence, it was difficult to determine the optimal
decision strategy for the task at hand.

The goal of the present study was to examine
information-sampling behavior in a simple visuomotor task
where the cost of additional information was made explicit,
and the optimal decision strategy was amenable to
mathematical analysis. The subject had to estimate the
location of an invisible target on a monitor, and touch it to
earn rewards. Participants sampled cues that provided
information about the location of the hidden target. Each
cue was sampled from a bivariate Gaussian distribution
centered on the target and, the more cues subjects had, the
better their localization (Tassinari et al., 2006). However,
each additional cue reduced the potential reward for hitting
the target by a fixed amount. Participants had to balance the
benefits of additional information (more cues) against the
costs required to collect it. In the analysis below, we analyze
our task and show how to compute the optimal number of
samples to request in order to maximize expected gain. We
then compare ideal performance to the performance of
human subjects.

Our experiment departs from previous work on
information sampling in three key ways. First, unlike a
number of recent analyses (e.g., Hertwig et al., 2004; Hau et
al.,, 2008), we made the costs of collecting information
explicit. Second, our novel decision making task involved
accumulating evidence to guide a single, continuous,
reaching movement (as opposed to, for example, making a
one-off decision between multiple, discrete choice options).
Finally, in our task, all the sampled cues were
simultaneously present on the screen, limiting the secondary
task demands placed on participants (e.g., keeping recent
samples in memory). Prior work with similar tasks has
shown that subjects are close to optimal in their ability to
integrate such cues to guide action (Battaglia & Schrater,
2007).

In contrast to the recent findings and emphasis on under-
sampling in the decision making literature (e.g., Hertwig &
Pleskac, 2010; Vul et al, 2009), we find that people
systematically over-sample information. In our analysis, we
rule out a number of possible explanations for why this
might be the case. Ultimately, our results appear consistent
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with a type of risk-aversion wherein participants are biased
against uncertain outcomes (Tversky & Kahneman, 1981).

Prior work on adaptive information sampling

In a classic study, Tversky & Edwards (1966) had people
perform a simple probability learning task requiring them to
guess which of two lights would light up on each of 1000
trials. Correct guesses were rewarded and incorrect guesses
punished, but the observer did not receive immediate
feedback. To learn about the event probabilities, participants
were given the option to, at any point, forgo guessing on a
trial and observe the outcome instead. Optimal performance
in the task entails observing a certain number of trials at the
start of the experiment to learn the relative probabilities of
each event, and then selecting on the rest of the trials the
more frequent of the two events (Wald, 1947). However,
participants in this study greatly oversampled (preferring on
average around 300 observation trials compared to the
optimal strategy of sampling around 30 trials). One likely
explanation is that the participants mistakenly thought that
the underlying reward probabilities were non-stationary
(changing across time), and would therefore return
intermittently to observe more outcomes to track changes in
the relative probabilities.

In contrast to Tversky & Edwards (1966), recent work on
adaptive information sampling has focused on tasks were
participants are forced to first sample information from
various alternatives, only to utilize that information in a
later decision phase (cf. Hertwig et al., 2004; Weber, Shafir,
Blais, 2004; Hau et al., 2008; Gureckis & Markant, 2009).
The key dependent measure of interest in such studies is
how much information people collect before stopping and
making a decision. A striking finding in this literature is
how little information people collect before making a
decision. For example, in Hau et al. (2008) subjects were
presented with two decks of cards and given as much time
as they wanted to sample freely the payout distribution of
each deck before making a final decision as to which deck
to choose from to be rewarded. Interestingly, subjects
sampled a median of around 11 cards across the two decks
before making their final decision. This very low level of
search was often insufficient to accurately assess the
expected gain of the choices (see also Rapoport & Tversky,
1970). A similar preference for less rather than more
information is observed in naturalistic choice scenarios as
well (Todd, 2007). For example, in high stakes choices such
as marriage, it has long befuddled social economists that
individuals report dating relatively few people prior to
marriage (Miller & Todd, 1998).

The frequent reports of under-sampling has led to a
number of recent papers arguing that collecting small
samples may actually be advantageous in certain decision
environments. For example, Hertwig & Pleskac (2010)
present an analysis showing how the limited samples
participants take in certain tasks may actually help to
amplify small differences between payoff functions and may
enable relatively effective choice behavior in particular

environments (meeting the criterion of “satisficing” laid out
by Simon, 1956). However, one limitation of these analyses
is that, due to the complexity of the empirical tasks, it is
mathematically challenging to define the optimal rule for
terminating information-sampling. In addition, access to
information is often free (in terms of money) but entails
unspecified costs associated with time or effort. In the
present study we attempt to quantify and control both of
these variables to help us better define the normative
standard against which to judge human performance.

Overview and model of the present experiment

In the current experiment, subjects performed a task similar
to those used by Battaglia & Schrater (2007) and Tassinari
et al. (2006). The goal on each trial was to touch a hidden
circular target on a touch-screen, akin to throwing a dart at a
dartboard. The target's location changed from trial to trial
and was cued by dots drawn from a Gaussian distribution
that was centered on the middle of the target. To increase
the probability of hitting the target, subjects were given the
option to sample dots one at a time at a set cost-per-dot.
With increased dots sampled, subjects had a greater chance
of hitting the target, because the variance of the sampling
distribution decreases with increased sample size. Indeed,
previous work with such tasks has shown that subjects
correctly interpret the arrival of more dots as reducing
uncertainty about the target's location (Battaglia & Schrater,
2007; Tassinari et al., 2006). But in the present task, the
expected benefit of more information comes at the cost of
reducing the points awarded for hitting the target. Do
subjects know when to stop sampling and plan an action?

How much information is enough? Specifying
optimal sampling behavior

In order to analyze behavior in the task, we begin by
defining the behavior of an optimal subject who samples
information with the goal of maximizing expected gain. The
variance of the underlying Gaussian distribution from which
the cues were sampled, denoted 0>, remained constant
throughout the experiment. To maximize expected gain,
optimal subjects must minimize their estimation variance by
using the mean (center of gravity) of the sample as the
estimate of the target's location. The variance of the sample
mean, denoted o-i/;z, depends critically on sample size,
denoted 7. Furthermore, the optimal subject must take into
account other sources of variability such as one's ability to
precisely specify a location using the experimental
apparatus. We refer to the aggregate of all the other sources
of variability as "adjustment" variability and denote it o7.
These two sources of variance give rise to the subject's total
experimental estimation variance:

o’(n) =cln + 0. (1)
The amount of adjustment variability (O'j) is a latent
parameter to our model that we could estimate empirically.
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Figure 1: The expected gain function £G(n) is the product of the
probability of hitting the target with #» samples, and the gain earned
for hitting the target (which takes into account the costs of the
samples). Probability is plotted on the left vertical scale, gain and
expected gain on the right.

In defining our optimal decision maker, we assume that
adjustment variability was zero for simplicity.

Given o°(#), we can compute the probability of hitting
the circular target as a function of sample size as follows:

p[hitln] = JJ¢((),Z(n)) dxdy, (2)

T
where the region of integration 7 is the invisible circular
target, and ¢(6,2(n)) denotes the probability density

function of a bivariate Gaussian distribution centered on
()z(0,0) with covariance

o*(n) 0
)y = . 3
Given p[4it|n], we can compute the expected gain as a

function of sample size as follows:

EG(n) = p| hit|n] (R=nC), 4)

where R is the initial point value of the target, and C is the
fixed cost to the target value that is incurred for each cue
that is sampled. (Note that in the current experiment
subjects were never penalized for missing the target, and so
both 2 and »C must be mediated by p[4i|n]. Subjects

were allowed to sample additional cues only so long as
R—-nC > 0. All the figures will be cut off where Z£G(n)

starts to dip below zero.)

Figure 1 shows an example of the expected gain function
EG(n) elicited in Equation 4, using the actual p[4i|n] of
the current experiment (assuming ¢, =0), and the potential
gain (R—nC) used in one condition of the current

experiment (the "low stakes, low cost" condition).

24 241124 24

Figure 2: Schematic display of the "high risk, high cost" condition.
Left panel: Subject has sampled 6 cues (i.e., dots) and thus the
potential reward for hitting the hidden grey target has been reduced
from 60 points to 24 points. Right panel: The purple response dot
shows the subject's response (made after touching the display and
making fine adjustments) and the revealed target. Since the purple
dot is within the target, the trial would be coded as a hit. The
reward for this trial was 24 points. Had the subject's final setting
been outside the target, the center of the target would show 0 (no
reward).

Note that the experimental design gives rise to a single-
peaked expected gain function (cf. Hertwig & Pleskac,
2010, Fig. 3). The ideal subject would continue sampling on
each trial until £G(#) peaks and then attempt to hit the
target using the mean of the sample as their estimate. This
strategy, irrespective of the adjustment variability ¢, will

always lead to the maximum expected gain. In the following
experiment, we computed the ZG(#») curve and its
maximum for two different decision environments and
compared this normative standard to the number of samples
taken by participants in the task.

Experiment

The cover story for the estimation task was a simple game
where the goal was to collect points by hitting an invisible
dartboard (using one’s finger instead of darts). To gain
information as to the location of the dartboard, subjects
could only observe the end-points of darts thrown by
another shooter who could see the target and who would be
aiming for the center of the target. The subject could use the
outcomes of the other shooter’s attempts as a guide to the
location of the target.

Each subject alternated between blocks of two different
conditions: "low stakes, low cost" and "high stakes, high
cost". In the first condition, the initial reward for hitting the
target was 40 points, and decreased by 2 points per cue. In
the second condition the initial reward for hitting the target
was 60 points, and decreased by 6 points per cue.

For illustration, in Figure 2 (left panel), the subject has
sampled six cues on a high stakes trial and must decide
whether to sample a seventh cue or attempt to hit the target
based on the sample of size #»=6. In the right panel, the
subject has successfully hit the target (the purple dot was
visible to the participant and represented the response). The
reward for that trial is: 60 points - (6 cues x 6 points) = 24
points. If the subject had missed the target then there would
have been no reward or penalty for that trial.
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Subjects were obligated to sample at least one cue per
trial, and they were allowed to continue sampling one cue at
a time so long as the value of the potential reward (Z- #C)

would not be reduced to zero. Thus, they were limited to
sampling 9 cues in the high stakes condition and 19 cues in
the low stakes condition.

These two conditions and the properties of the stimuli
were carefully chosen so that the expected gain of the ideal
subject (with ¢’ =0, and who stops sampling optimally)
would be approximately the same for the two conditions
(18.55 points per trial). The main difference between
conditions was in their expected gain functions. The high
stakes condition (red) had very steep curvature at its
maximum and peaked at 4.05 cues, while the low stakes
condition (green) had shallower curvature at its maximum
and peaked at 6.77 cues (see Figure 3).

Subjects Eight subjects at New York University
participated in the experiment. None were aware of the
purpose of the experiment and each was paid $10 per hour
for their participation, plus a potential monetary bonus.

Apparatus Stimuli were displayed on a vertically mounted
338 mm by 270 mm touch-screen LCD in a dimly lit room.
The monitor was set at a resolution of 1280 pixels by 1024
pixels (1 pixel = 0.26387 mm) with a 60-Hz refresh rate.
Subjects were asked to seat themselves at a comfortable
distance and adjust the height of the chair so that they could
perform the experimental task with ease. The experiment
was programmed and run using MATLAB and the
Psychtoolbox libraries (Brainard, 1997; Pelli, 1997).

Stimuli The hidden target was a grey circle with radius =
12.67 mm. The cues were small white dots with radius =
1.056 mm. The cues were drawn from a Gaussian
distribution (SD = 21.11 mm) that was centered on the
target].

At the far ends of the screen there were two vertical
reward bars that decreased in height with each additional
cue sampled. Additionally, there was a number at the top of
each bar indicating how many points would be awarded for
hitting the target. To help subjects remember which
condition they were in, green and red bars indicated the
“low stakes, low cost” and “high stakes, high cost”
condition, respectively.

Design Each subject ran in a practice session followed by
the experimental session. The practice session consisted of
30 trials for each condition in alternating blocks of 10 trials,

! These properties entail that approximately 16.5% of the cues
landed directly on the target. So if an extreme risk taker would
choose to sample only one cue on each trial and use that as the
estimate of the location of the target, then they would hit the target
and get the maximum reward only 16.5% of the time—a strategy
that in the current experiment is far from optimal.

for a total of six practice blocks and 60 practice trials. The
actual experiment consisted of 100 trials for each condition
in alternating blocks of 25 trials, for a total of 8§
experimental blocks and 200 experimental trials. The
ordering of the conditions was randomly assigned and
counterbalanced between subjects. However, the ordering
was kept constant between the practice session and the
experimental session. Hence, a subject assigned to start with
the high stakes condition would start both the practice and
the experimental sessions with a high stakes block. Since
the task was self-paced, subjects' participation time
(including practice) ranged from 41 min to 74 min with an
average of 62 min.

Monetary bonus Points earned in the task were converted
into bonus money at a rate of five cents per point. This
means that the maximum potential reward for hitting the
target was 38 x $0.05 = $1.90 per low stakes trial, and 54 x
$0.05 = $2.70 per high stakes trial. In order to maintain
motivation throughout the task, subjects were informed that
they would receive a monetary bonus on 5% of the trials, by
randomly choosing five trials from each condition at the end
of the experiment. The total expected monetary bonus of the
most optimal ideal subject was $9.28.

Procedure Subjects were asked to use their dominant hand
throughout the experiment. The experimenter stayed in the
room during the practice blocks to explain the display and
encourage subjects to use the practice trials to explore and
observe the outcome of different decision strategies.

At the start of each block, subjects were shown an
instruction screen providing explicit information as to the
initial point value of the target (40 points or 60 points) and
the cost per sample (2 points or 6 points). In addition, each
condition ("low stakes, low cost" or "high stakes, high
cost") was associated with a particular color scheme for the
display elements (green or red). Lastly, subjects were
required to confirm the appropriate cost per sample by
pressing "2" or "6" before the block would begin.

At the start of each trial, the screen was completely black
except for the colored reward bars and numbers at the far
ends of the screen indicating the current reward for hitting
the target. To sample a cue, subjects pressed the space bar
causing a white dot to appear on the screen. Concurrent with
the appearance of the cue, the reward bars and numbers
would decrease to indicate the lower reward available for
hitting the target. If subjects wanted more samples, they
simply hit the space bar repeatedly until they were ready to
reach for the hidden target.

To hit the invisible target, subjects simply touched the
screen with their finger causing a small purple response dot
to appear. Subjects were allowed to adjust their response by
moving the purple dot with their finger or by pressing the
arrow keys. Once satisfied with their response, subjects
pressed the space bar to receive feedback. During the
feedback phase of each trial, the hidden target would appear
in grey along with all the white cues sampled on that trial.
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Figure 3: Results: Points per trial earned by subjects is plotted
versus the number of samples taken (error bars mark the standard
deviation of the number of samples taken by each subject) for the
“low stakes, low cost” (green) and “high stakes, high cost” (red)
conditions. The expected gain curve for each condition is plotted in
the corresponding color, with corresponding dashed lines marking
the number of samples needed to maximize expected gain. For this
figure, we plot the corresponding expected gain curves for

0’ =0 (see Figure 4 and Discussion).

If the small purple response dot was within the target, the
trial was counted as a hit and the number of points awarded
for that trial would appear at the center of the target. If,
however, the small purple response dot was not within the
target, then the trial was coded as a miss and a 0 appeared at
the center of the target. A second space bar press began the
next trial.

Finally, at the end of both the practice session and the
experimental session, subjects were given feedback as to
how they performed on each of 10 randomly selected trials
and how much bonus money they received as a result. This
feedback at the end of the practice session (which was not
actually paid out) served to give subjects a rough sense of
the range of actual bonuses possible.

Results

On average, subjects collected 14.06 points per trial
(SD=2.19), which is 76% of the maximum possible
expected gain of 18.55 points per trial.

Figure 3 shows each subject's mean and standard
deviation of the number of cues sampled for each of the two
conditions. For illustration, we place individual data points
at heights that correspond to their average gain per trial. For
the same sampling behavior, some subjects where better
able to successfully hit the target and collect more points.
This is primarily due to each individual's adjustment
variability Gi' (However, see Discussion for an explanation

of why this does not affect our results.)

All subjects correctly sampled more cues in the low
stakes condition (M=8.04, SD=1.5) than the high stakes
condition (M=5.87, SD=0.72), #7)=4.54, p <.003. The solid
curves show the respective low stakes and high stakes
expected gain functions for the perfect, ideal subject whose
adjustment variability 0> =0. The expected gain for this
ideal sampler is maximized when sampling 6.77 cues in the
low stakes condition and 4.05 cues in the high stakes
condition.

20 T >
18 O°a
_ 16 ; 0 mm

© a
51‘21 i 4 mm
§10 : 6 mm
€ 8 8 mm
S 6F : i
&y
2 i
0

123456 7 8 91011121314151617 1819 20
Number of cues sampled

o

Figure 4: The expected gain function EG(n) changes with
increased adjustment variability O i Notice that as adjustment
variability increases, one would need to sample fewer and fewer
cues to have the maximum expected gain (indicated by the black
solid and dashed lines for different degrees of adjustment
variability).

Statistical tests back up the intuition shown in Figure 3
that almost all subjects were risk-averse and sampled more
cues than dictated by the optimal stopping rule that tries to
maximize expected gain. The exceptions were one subject
who was risk-seeking and under-sampled in the low stakes
condition (M=5.38, SD=1.36), #(99)=-11.9, p <.001, and one
other subject who was not significantly different from the
optimal stopping rule in the low stakes condition (M=7.03,
SD=1.55), #(99)=0.19, p > .05.

Discussion

Our discussion takes the form of a set of questions and
explores possible alternative explanations of our results.

Question 1: In our model, we assumed that adjustment
variability 6 was 0. Could the observed oversampling be

due to subjects' adjustment variability?

Figure 4 shows how the expected gain function £G(#) of
an ideal sampler changes as the adjustment variability
increases. Notice first that as 0, increases, one must sample
fewer and fewer cues in order to have the maximum
expected gain. Thus, accounting for increased adjustment
variance would lead to a decrease in the number of samples
taken and could not account for the pattern of oversampling
that we found. Different individual settings of ¢’ might
explain why some subject's data fall right beneath the curves
in Figure 3 (due to low 0?), while others fall lower (due to

high ¢). Note that none of the subjects' data in Figure 3 is

higher than the expected gain curves for 07 =0,

Question 2: Could sub-optimal decision-making reflect an
inability of participants to discern small differences around
the peak of the utility function (i.e., the ‘flat maxima
phenomena”)?

Failure to distinguish regions around the peak should look
like an unsystematic tendency to both over- and under-
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sample. Only one subject under-sampled, and only in one
condition. The systematic tendency to over-sample in our
experiment indicates that subjects were sensitive to the
expected gain differences that accompanied changes in the
number of cues sampled.

Question 3: Why might people oversample?

We conjecture that over-sampling is the result of a form
of risk-aversion (Tversky & Kahneman, 1981). Risk-averse
subjects are willing to pay money to reduce the variability
of their rewards. They accept a smaller expected gain per
trial, but the variation in gain from trial to trial is reduced as
well. In our task, risk-aversion implies that subjects will
systematically collect more information than is optimal for
maximizing expected gain. The additional information
offers them a higher probability of hitting the target, but at
the cost of a reduced expected reward for doing so.
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