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Abstract

A model of similarity is presented which is based o
Quantum Probability (QP) theory. The model is agplio the
case of violations of symmetry in similarity judgme, as
demonstrated by Tversky (1977). The QP similaritgded
can predict such violations, on the basis of thenesa
underlying intuitions as Tversky (1977). Moreovere
discuss how the model can be extended to account fo
violations of the triangle inequality and also tempirical
findings in relation to Tversky’s diagnosticity pciple.
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Similarity and Violations of Symmetry

Similarity is a key theoretical construct in mamgas of
cognitive psychology (principally categorizatiors aearly
all formal accounts of categorization involve simity, but
also memory, decision making, and attention). Oh¢he
most intriguing empirical findings in relation torslarity is
Tversky's (1977) demonstration of violations of syetry
in similarity judgments. Tversky asked participarts
indicate which of two phrases ‘they preferred tece’'us
country a is similar to country b, or country bsigilar to
country a. For example, 66 out of 69 participantiggd the
similarity between Korea and China (denotedSasilarity
(Korea, China) or jussim(Korea, China)) as higher than
that of China and Korea (denoted &snilarity (China,
Korea); note that Tversky employed several othéirspaf
countries and stimuli from other domains). This hasn a
hugely influential finding in the development ofrslarity
research (his 1977 paper has been cited more t/200 2
times) and, as we shall shortly see, presents lienga for
the dominant approaches to similarity.

One of the main ways in which similarity hasebe
understood is as a function of distance in a coaitéi space.
Such an approach is embodied in most formal modgls
categorization, such as exemplar and prototyperyhéiois
also the basis for Shepard’'s (1987) celebrated/atdoin of
a similarity law in psychological spaces. Unforttety, if
psychological similarity is a function of distanoe some
coordinate, representation space, then it musyimengtric,
since distance is symmetric. Nosofsky (1991) suggethe
use of a ‘directionality’ parametepg, SO that the distance
between A and B would be written a®,g - d 5. This

parameter might take different values, depending o

whether we consider the distance from A to B oroBAt

n

This approach can account for an asymmetry in aiiy,
though is not satisfactory in the absence of aepeddent
way to predict the value of the directionality paeter.
Tversky's (1977) own proposal is also dependenthan
appropriate setting of parameters. Tversky sugdeste
thatsimilarity(A,B) = 6f(AnNnB) —af(A—B) —
Bf (B — A), wheref, a, § are parameterg, N B denotes the
common features between A and B, A-B the featofes
which B does have and B-A the features of B whictogs
not have. Let's say tha® =1, a=1, andf = 0. Then,
similarity(China, Korea) = f(ANB) — f(A — B),
which is low, since China has many features whichreé
does not have. By contrastimilarity(Korea, China)
would be high, since Korea has very few featuresclvh
China does not have. So, such a setting of parasnate
Tversky’'s similarity model predicts an asymmetry in
similarity judgments in the observed direction. Hmer,
setting 6 =1, a=0, and §=0, would predict no
asymmetry. Thus, the ability of Tversky's similgrinodel
to account for his key empirical finding is depemntden
particular parameter choices in his similarity mode
Specifying a formal approach to similarity whiclanc
predict asymmetries in similarity judgments in agvaeter-
free way, has been the focus of intense effort (s
Perrin, 1988; Bowdle & Gentner, 1997; Hahn et 2009;
Krumhansl, 1978). We build on this effort and désera
formal similarity model which can predict violat®nof
symmetry in similarity judgments, without paramstefhe
model is based on quantum probability theory (QB¥.
theory is a framework for assigning probabilities t
observables, much like classic probability theolsh@m,
1989). It has been favored by physicists for ov@d §ears
over classic probability theory, because of certain
fundamental properties of QP theory, such as itteroand
context dependence. It is exactly these propethias we
believe make QP theory a suitable framework for
understanding many psychological processes as (sed
also Aerts & Gabora, 2005; Atmanspacher, Filk, &nfeo,
2004; Busemeyer, Wang, & Townsend, 2006; Busemelyer
al., in press; Bruza, 2010; Khrennikov, 2004; Petl&®
Busemeyer, 2009; Trueblood & Busemeyer, in press).

QP Theory and Similarity

Perhaps contrary to intuition, the basics of QPRotheare
extremely straightforward. The current knowledgastesty),
is a unit length vector in a multidimensional spastich
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corresponds to, broadly speaking, whatever a peison only use unidimensional subspaces then the sityilari
thinking at a particular time (we will also referthis as the measure is symmetric, and so multidimensional satesp
initial state vector). If we employ Dirac notatidghen|y) is  (e.g., planes or hyper-planes) are necessary.iJ loise key
a column vector an¢lp| is the adjoint (conjugate transpose) advance made by using quantum theory. It is impreshat
of this vector (we will often drop the bracket for Sloman, using mostly intuitive arguments, was kalsided
convenience and refer thp) as justy). Then, |P)y|  to measures very similar to those in QP theory.
indicates an outer product and is the projectoo oin¢ one- In examining how to coMputt?,ning * Prorea * W12, We
dimensional subspace defined |lgy). A projection operator make the assumption that when asked to evaluate the
is a linear operator, typically expressed as aimatrhich  similarity between two entitiegy andB, the initial vector is
identifies the part of a vector which is restri¢tedntained set so that |P,-|? = |Pg-¥|?>. The intuition for this
in a particular subspace. Alsdy|y) indicates a standard assumption is that prior to assessing the simyldritween
dot product. In this model, different elements afiro A andB, the initial vector is set in a way that is biased
knowledge (such as ‘Korea’ or ‘China’) corresporml t neither towards\ nor B. The implication of this assumption
different subspaces. This is a key departure fr@ditional is that the assessment of the similarity betweew tw
geometric models of representation and similaiitywhich ~ elementsA and B depends only on the geometric relation
different elements are individual points. An im@ott between the two, corresponding subspaces, and mot o
construct in QP theory is that of a projector (oojgction  whatever it is that the person may be thinking ptiothe
operator), which is a linear operator taking a eeand similarity assessment. Note that in this case jfassible to
projecting it onto a particular subspace. For eXdamp derive closed-form expressions fay so as to satisfy
suppose thapP,,,., IS the projector to the Korea subspace.|P, - ¥|? = | P - ¥|?, whereby theA andB subspaces have
Then, Pyoreq - W corresponds to the part of the vectbr arbitrary dimensionality, but it would be too muoi a
which is contained in the Korea subspace hg,., - ¥|? diversion to do this here. Finally, the fact th&;,,
(the squared magnitude of the projection of vegtopnto  Pyoreq - P|* depends only on the geometric relation between
the Korea subspace) corresponds to the probathilitiyy) is  the two subspaces reveals that this is indeed somadle
about Korea (this is one of the fundamental axioms of QPway to define similarity in QP theory.
theory and a key result differentiating QP thewoonf linear The most important implication of the definition
algebra).This probability reflects the extent toiaththe  Sim(Korea, China) = |Peying * Prorea - W|? is that the
vector and the subspace are consistent with edudr and outcome of the similarity process is order depehdenthat
so is a measure of similarity (cf. Tenenbaum & f&éh§, Sim(Korea, China) may be different from
2001). Sim(China, Korea) (as long asP.ina * Prorea * Prorea *
Evaluating a conjunction of probabilities in QP dheis  P.uine, Which will be generally the case, unless the two
not as straightforward as in classic probabilityedty, subspaces can be expressed with the same basissyent
because it is typically the case that in QP theovp the basis vectors of one subspace form a propsesobthe
observables cannot be evaluated concurrently (sudbasis vectors of the other). Thus, the QP formatimaof
observables are called incompatible ones). Thukgwing similarity judgments allows for the possibility tremilarity
Busemeyer et al. (in press), we suggest|[tPal,, - Prorea ©  judgments will not be symmetrical, as required ¢ocaant
Y|? is the joint probability that vectap is consistent with for Tversky's (1977) corresponding empirical fingin
the Korea subspace and that the projectiop tf the Korea  Specifically, the QP model would be consistent with
subspace is consistent with the China subspacdadty empirical results if it predicts th&fim(korea, china) >

|Pehing * Prorea * lzblz = |Pehina * lpkorealzlpkorea ’ l,b|2, Sim(china, korea) or, equivalently, |Ping * Prorea *
Wherey, o o, = —Xerea¥ W|? > |Prorea * Penina - W|?. But, recall, that we have
IProrea ¥l postulated thatP.ping * WI? = |Proreq - |2, 1.€., the initial

The above concerns basic assumptions of QP thaoty,
specific to psychology. The link with psychologigabcess
is made if we assume that the conjunction of proitials
corresponds to similarity, so that, for examp|&,;n, *
Prorea - W|?, would correspond to the similarity between
Korea (the projection which is evaluated first) abhina.
Note that this proposal can, in fact, be seen as
generalization of Sloman’s (1993) proposal that th
similarity between two categoriesA and B, can be

state vector is not biased towards Korea or Chénathat,
without loss of generality, the condition which istés
empirical observation s |Pping * Yroreal? > |Prorea *
Weninal®s WhereWyoreas Wening are normalized vectors in
the corresponding subspaces.

The next challenge we face is to show how a viotabf
Qymmetry can be predicted in lawful way, from the
E‘specification of Tversky’s similarity task. Our gtag point

' Fla)F(B) is the same as Tversky's, namely we assume that his
computed asim(4,B) = FOIFGE whereF(A) andF(B)  participants had a more extensive knowledge of &hivan
are the vectors representing the categories, theerator is ~ Korea. The way to formalize this in the QP similarnodel
a dot product, andF(4)| = (A|A)/2. If one employs IS by assuming t.hat the subspace correspondlngnmmas
normalized vectors and in the special case wheee tH higher dimensionality than the one correspontbrigorea
considered subspaces are unidimensional, Sloman(@ Subtlety arises in relation to the meaning o0& th
similarity measure and ours are identical. Howeviewe  dimensions in the subspace and the relation oermifft
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dimensions to each other, however, it is not neogss
provide a full consideration of these issues foe th
development of the model). Of course, there isrdimite
number of ways in which the dimensionality of one
subspace can be greater than the dimensionaliynather.

In this work, we consider two particular exampldsone
subspace having a greater dimensionality than anoth
More importantly, we also discuss why the model is
generally expected to be consistent with violatioofs
symmetry in similarity judgments, under circumstsc
consistent with those in Tversky's (1977) demortitra

Application of the QP similarity model

In our first example, the dimensionality of the KKar
subspace is just one and the dimensionality of Ghaa
subspace is two. In order to comp®g, ., andP.ina We
need to identify the basis vectors for each sulesfhat is,
the vectors which span all other vectors in thespabe).
Note that all the vectors we consider are normdliz&'e
assumed that both the Korea and the China subspade

be subspaces of the same three-dimensional sphise (t
three-dimensional space is, in turn, assumed toabe
subspace of our overall knowledge space). Gives, thie
basis for the Korea subspace was just a randome-thre
dimensional vector. Two basis vectors are requicespan
the China subspace, since this is a two-dimension
subspace. The first basis vector for China was hemot
random three-dimensional vector, call it Chinalefhwe
created another random vector, call it Random. Gdimg

(I — |Chinal){Chinall) - Random (wherel is the three-
dimensional identify matrix) and normalizing gives a
vector which is orthogonal to Chinal (in generdig t
projector to the orthogonal complement of a subspsds

given byP,1 =1 — Py,). It was verified that the two basis
vectors for the China subspace in each iteratidchefmodel
were orthogonal to each other (very occasionatlig, is was
not the case due to rounding error).

Overall, each iteration of the computation iwead the
specification of projectors for a random one-dimenal

1 [O]
[0 |1]
we letx; =0l x, =10/, etc., then the projector to the
Lol ™~ 1ol
Lo o]
China subspace was defined to be
Pepina = [0 ){xq [+ 122000 | + 2033+ ]xa (x4 | The

projector to the Korea two-dimensional subspace was
computed as before. In this larger dimensionabitses it is a
little more involved to compute an initial statect@ which
is neutral, but, as noted above, it is still possifo do so
analytically. In 100,000 iterations of this scherhevas,
again, the case that th&im(Korea, China) was always
predicted to be larger than similardim(China, Korea).
Note that empirical results for such a task mayiateyfrom
the 100% prediction because, e.g., it would nothgecase
that for all participants the knowledge of Chinaukbbe
greater than the knowledge of Korea. Also, we agsthmt
the requirement of making a similarity judgmentsstte
initial state vector to be neutral between the subspaces,
but in practice this would not be entirely true.

As a final check of the model, we examinedtaasion in
which both China and Korea corresponded to one-
dimensional subspaces (the corresponding basisorgect
were computed as random vectors in a three-dimeakio

ubspace), to findim(china, korea)< sim(korea, china)

35.8% of all times in 100,000 repetitions of $wheme,
with 28.2% of all cases being to exact equalitiduis, in a
case where there is no reason to expect a violabion
symmetry, the model correctly predicts symmetrical
similarity judgments.

We can explore in more abstract terms why tHe Q
similarity model works. Consider a vectdk) and a
projector P = |x){x| + |y){y| and suppose that we are
interested in examining how much |é&f) is reflected in the
subspace corresponding B In other words, we need to
compute the projectio®|k) = |x)(x|k) + |y){(y|k) (recall
that (x|k), (y|k) indicate the dot products between vector
|k) and each of the basis vectors of th@ubspace; these
basis vectors argr) and|y)). Clearly the amplitude of the

subspace (corresponding to Korea) and a random Wsrojection depends on the absolute magnitude df Ggt)

dimensional one (corresponding to China). Theahgtate
vector was computed so thE.,ing * ¥I? = |Prorea * ¥12.
Then, in each iteration we comparfl,ing * Peoreq * WI?
and |Pyoreq * Pening * W|%. It turned out that in 100,000
iterations of this scheme it was always the casat th
|Pehina * Prorea * 1;[)'2 was always greater thalP,re, -
Pepina * W%, meaning thasim(Korea, China) was always
predicted to be larger than similaritym(China, Korea),

and (y|k). By contrast, the projection to the one-
dimensional subspace defined |y would be|x){x|k) and

its amplitude would depend on just the absolute nitade

of (x|k). In other words, the larger the subspace, the more
likely it is that the resulting projection will darge; at the
extreme, if the subspace considered is the entiosvledge
space, then in projecting a vector to this subsparebtain

the original vector. It is exactly in this way thtte QP

as required for a demonstration of Tversky's (1977)similarity model can account for violations of symtmy in

empirical observation regarding violations of syntmmen
similarity judgments.

In an alternative demonstration, we employedaerall
five-dimensional subspace, with China correspondm@
four dimensional subspace and Korea to a randogeplé

similarity judgments, that is, in situation wheke tentities
compared correspond to subspaces of different
dimensionality. This prediction closely resonatesthw
Tversky’'s (1977) intuition of when violations of mynetry

in similarity judgments are expected, which is whea
have more knowledge about one of the comparediemntit
relative to the other. But, the QP similarity modamiuld
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reach the
parameters. This contrasts with Tversky's (197 0ppsal,
which requires a specific parameter setting, beforean
predict violations of symmetry in the right diresti

Extensions

Tversky's (1977) paper has had a profound influendie
development of similarity research, because it gresi a
series of (seemingly) puzzling empirical phenomentaich

right prediction without manipulating anyinequality. For example, consid&istance (A,B)=5 units,

Distance (A,C)=4 units, andistance (C,B)=4 units; these
distances clearly obey the triangle inequality. Rbe
similarities to still obey the triangle inequalitye would
need thatSmilarity(A,B)>Smilarity(A,C)+Smilarity(C,B).
However, it follows immediately that™> < e ™* +e™* <
0.0067 < 0.018 4+ 0.018, thus violating the triangle
inequality. Thus, a violation of the triangle inadjty does

not present a challenge for standard approaches to

set boundary conditions for any aspiring model ofSimilarity, even those based on a coordinate reptation.

similarity. In this work we have considered viotats of
symmetry. Other key empirical demonstrations inrskg's
paper concern the violation of minimality, the atbn of
triangle inequality, and his so-called diagnosfigtinciple.
We consider each of these findings in turn andugisdow
the QP model could be extended to account for them.
Minimality, the triangle inequality, and symmetare
together known as the metric axioms, that is, a dafet
properties which any distance measure in a mepace
must obey. According to minimality, the distancéwsen a
point and itself is zero and, therefore, the sirtifebetween
an entity and itself should be maximal. Tversky 120

However, it is still important to confirm that th@P
similarity model is consistent with violations dfet triangle
inequality. In this paper we provide an outline Fmw this
comes about.

Tversky (1977) explained the violation of théangle
inequality in terms of different similarity judgmisn
eliciting a different context of comparison, sosty, for the
compared quantities. For example, when comparingsiau
and Cuba, the context of the comparison is oneobfigal
alignment. The basis for predicting violations loé triangle
inequality with the QP similarity model is analogou
Imagine a geometrical space where different coestand

showed that, in some cases, naive observers wautld ptheir properties are represented. In one regioth@fspace,

assign the maximum similarity rating for an ideatipair of
stimuli, thus violating minimality. However, from a
theoretical point of view, the violation of mininigl is
perhaps less interesting. This is because miniynaditld be
violated by, e.g., noise in the system (so that shene
stimulus presented twice would lead to slightlyfefiént
representations). Therefore, violations of minityatlo not
lead to strong constraints on a similarity model.
According to the triangle inequality, the dista between
two points A and B will always be shorter than tligance
between A and C plus the distance between C anbh B.
other words, the triangle inequality is a statentbat the
shortest distance between two points is a strdigbt In
terms of similarities, the triangle inequality smtthat the
Dissimilarity (A,B) would always be less thddissimilarity
(A,C) plus theDissimilarity (C,B) or theSmilarity (A, B)
would always be greater than tBenilarity (A, C) plus the

we would have the property ‘communism’ and both s
and Cuba would be placed in that region. In anotbgion

of that space, the property ‘in the Caribbean’ wobke
present, as well as Cuba and Jamaica. In fact, ,Gudad
have to be in-between the regions corresponding to
‘communism’ and ‘in the Caribbean’. Figure 1 shaasvo-
dimensional example for how to specify vectors sipat
with these intuitions (all three countries are assd to
correspond to one-dimensional subspaces, there msis
either in Tversky's original work or in terms of rggral
intuition for assuming otherwise). In such a capecifying
directly a neutral initial state vector introducamsiderable
unnecessary complexity to the model. Thus, we simpl
assumed that, for example,sim(Russia, Cuba) =
|PCubaPRussia¢|2 = |PCuba¢Russia|2’ Whereby lpRussia =
|Russia) and likewise for the other similarity terms. Based
on the representation in Figure 1, one readily iobtéhat

Smilarity (C, B). Tversky (1977) reported an examp|e|PCuba¢Russia|2+|P]amaica¢(}uba|2>|P]amaica¢Russia|21

where the triangle inequality is violated. ConsideRussia
and B=Jamaica, so th&imilarity (A, B) is very low.
Consider also C=Cuba. Bufimilarity (A, C) = Smilarity
(Russia, Cuba) is high (because of political a&ffibn) and
Smilarity (C, B) =Smilarity (Cuba, Jamaica) is also high
(in this case because of geographical proximityhusy
Tversky's example suggests a violation of the glan
inequality. Such a finding goes against any measire
similarity according to which similarity is a linea
transformation of distances. But, if one employsian-
linear function of distance as a similarity measuten
violations of the triangle inequality can occurrxample,
consider similarity as an exponentially decayingcfion of
distance in a metric space, as is commonly assuimed
models of categorization (Nosofsky, 1984; Shepa8{7).
Such a model

of similarity can violate the triangle

with |PCuba¢Russia|2 =0.79, |P]amaica¢Cuba|2 =0.79, and
|PramaicaWrussial® = 0.33. In other words, this computation
reveals that the similarity between Jamaica andsiduis
less than the sum of the similarities for Cuba, SRusnd
Jamaica, Cuba, as required for demonstrating atidol of
the triangle inequality in similarity judgment. Bhprovides

an existence proof that the QP similarity model can
accommodate violations of the triangle inequalityhen
there is an intuition that this can happen emgisica
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Figure 1: A representation of the countries in Blgis
(1977) demonstration regarding the triangle ineityal

Perhaps the most significant finding in Tversky
(1977) paper concerns his so-called demonstratfothe
diagnosticity principle. Tversky asked participatdsick a
country most similar to Austria amongst a set afirtdes
including Sweden, Hungary, and Poland. In such se,ca
participants tended to prefer Sweden. In anothedition,
participants were asked to decide which country mast
similar to Austria amongst the set of countries Geve
Norway, and Hungary. In such a case, participaasred
Hungary. This is an intriguing phenomenon: how ftis i
possible that the presence of irrelevant (unsed@aiptions
affects the similarity between the target item atie
preferred item (cf. Roe, Busemeyer, & Townsend,1290
Tversky (1977) suggested that the range of avalaptions
establish a context for the similarity judgment atinis
context, in turn, determines the features alongctvhthe
similarity judgment takes place (see also Goldstdedin,

projection from one subspace to another dependshen
angle between the two subspaces. Specifically, wggest

that such a scheme is appropriate for predictiegotitcome
of forced-choice similarity tasks, whereby all thatities

involved are fairly similar to each other—this iket
structure of Tversky's (1977) experiments in r@atio the

diagnosticity principle. Our preliminary computatfo
indicate the QP similarity model, if extended ifstivay, is

consistent with the diagnosticity principle.

Conclusions

We have presented the QP similarity model and some
promising analyses in support. One key conclussathat if
we associate different entities with subspaces in
multidimensional space, instead of individual psjrthen a
suitably defined similarity measure becomes natufah a
parameter-free way) asymmetric. Also, we have $esna
notion of similarity as projection between subspgacgkes
similarity judgments context dependent. This is tmos
evident in considering diagnosticity. More genegraibur
work shows that similarity judgments can be unaerdtin
a formal geometric framework, a conclusion coningst
with both Tversky's (1977) arguments and more stigri
approaches to understanding similarity.

Is the QP similarity approach falsifiable? No geter
framework is directly falsifiable, as particular deds can
always be augmented with post hoc parameters to
accommodate data. The strength of the QP apprioesinl
the reasonableness of the assumptions which gulide t
specification of the model and corresponding tdstab
qualitative properties (such as order dependeiNzoubt,
much additional work will be required before the QP
similarity model can be established as a model whdn

a

& Halberstadt, 1997). For example, in the case whesimilarity judgments. We are optimistic for a numbud
Austria is compared to Sweden, Hungary, and Polandgasons.

‘Eastern Europe’ emerges as a diagnostic featuhéchw
then makes Austria and Sweden very similar. Tvessky
finding is significant for the study of similarityecause it
shows that pairwise similarity judgments cannotrimaleled

in isolation, rather the context of the similajilglgment can
have a profound influence on the outcome of thghjueht.

First, the idea of using dot products and projextidn
modeling similarity judgments has already beenseaech
focus by psychologists (e.g., Sloman, 1993). Theaathge
of the QP similarity model is that it draws from @feory, a
theory for assigning probabilities to observabldsclv has
been at the forefront of scientific discovery foreo 100

The QP similarity model can be extended to cover thyears and has been key to some of the most impeessi

empirical findings in relation to the diagnosticityinciple,
though in this paper we only provide an outlinéhofv this
can be done. In brief, a key aspect of the QP aiitjl
model is that in a series of projection operatidhe
penultimate projection effectively establishes ategt for
the final projection. In the case of assessingsihdlarity
between an isolated pair of item&,and B, we measured
similarity as Sim(4,B) = |Pg- P, -|%. An alternative
interpretation of this computation is that it refile how
much of B can be understood in the contextfo{Sloman,
1993). Such a scheme could be extended so thaewher

achievements of human science (for example, timsiseor,
and so the microchip, and the laser). Note thatdtetance
between two vectors, VY, is a function of their dot product.
The distance between two vectofsY (both unit length, in

a real space) is given byX —Y|* = |X|?+|Y|* -
2(X|Y) =2 —2(X|Y). Thus, if X and Y are one-
dimensional subspaces, a computation |ieby|? depends
on the distance between the corresponding pointthén
knowledge space, so that our proposal can be seem a
generalization of older approaches equating disiityi
with distance. A key difference between such older

other elements, these other elements correspond fgter is not constrained to equate concepts (emgiars)

projection operationgrior to those forA andB. That such a  ith single points in psychological space. Ratltencepts
scheme introduces context dependence is evidghairthe -5 pe subspaces of any dimensionality and, asave h
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seen, this allows the prediction of important res(guch as  Atmanspacher, H., Filk, T., & Romer, H. (2004). @tuan

the violation of symmetry in similarity judgments). zero features of bistable perceptionBiological
Second, probabilistic approaches to cognition appea Cybernetics, 90, 33-40.

work. Cognitive models based on QP theory are tlose Bowdle, B. F. & Gentner, D. (1997). Informativityné

related to models based on Bayesian, classicahapitity asymmetry in comparisonsCognitive Psychology, 34,

theory. In the last couple of years, the scientfionmunity 244-286.

has welcomed the emergence of several sophisticatd&tuza, P. D. (2010) Quantum MemonAustralasian

cognitive models based on classical probabilitytiide.g., Science, 31, 34-35.

Tenenbaum, Griffiths, & Kemp, 2006). The succesthee Busemeyer, J. R., Wang, Z., & Townsend, J. T. (2006

models attests to the promise of formal proballist Quantum dynamics of human decision-makidgurnal

approaches to cognition in general. Indeed, theigtiens of Mathematical Psychology, 50, 220-241.

from QP theory and classical probability theoryeaft Busemeyer, J. R., Pothos, E. M., Franco, R., & Biaed,

converge. However, there is a difference betweenttyo J. (in press). A quantum theoretical explanatiom fo

theories: probability assessment in QP theory idelr probability judgment errorgsychological Review.

dependent, so that, for example, sometinf¥gI\B) # Goldstone, R. L., Medin, D. L., & Halberstadt, 1997).

P(BAA). By contrast, in classic probability theory it has Similarity in contextMemory & Cognition, 25, 237-255.

be that P(AAB) = P(BAA). Some kinds of cognitive Hahn, U., Close, J., & Graf, M. (2009). Transforimat

processing (such as similarity judgments) displéaprg direction  influences  shape-similarity  judgments.

order effects. Classical probability theory coulde b  Psychological Science, 20, 447-454.

augmented to produce order-dependent predictignfoif Isham, C. J. (1989).ectures on quantum theory. Singapore:

example, one postulates thaP(AAB|0,) # P(BAA|0,), World Scientific.

where, basically,0, and 0, are two different orders. Khrennikov, A. Y. (2004). Information dynamics in

However, we contend that where order effects dsteri cognitive, psychological, social and anomalous

cognitive processes, then QP theory provides a magal phenomena. Kluwer Academic.

framework for modeling. Krumhansl, C. L. (1978). Concerning the applicapilbf
Third, the QP theory is a linear theory. In QP nisgdi¢ is geometric models to similarity data: The interrielaship

often possible to derive closed-form expressionsniiajor between similarity and spatial densitisychological

components. Moreover, the key elements of QP théary  Review, 85, 445-463.

this paper we have seen projection; also, rotatidrich has  Nosofsky, R. M. (1991). Stimulus bias, asymmetric
a more natural application in decision making peatd and similarity, and classificationCognitive Psychology, 23,
can capture dynamical aspects of such problems; e.g 94-140.

Pothos & Busemeyer, 2009) can be expressed in hasic Pothos, E. M. & Busemeyer, J. R. (2009). A guantum

intuitive terms. This, we hope, endows QP theorthva probability explanation for violations of ‘ratiohdkcision
transparency and explanatory penetrability whi¢hmaitely theory. Proceedings of the Royal Society B, 276, 2171-
make corresponding models easier to apply and test. 2178.

Overall, it is true that QP theory sometimes looksRoe, R. M., Busemeyer, J. R., & Townsend, J. TO(20
counterintuitive (and, indeed, physicists apply@g theory Multialternative decision field theory: A dynamic

for the measurement of physical observables ar sti connectionist model of decision makingsychological
puzzled by certain aspects of QP theory models or Review, 108, 370-392.

predictions). Nonetheless, QP theory has been widelShepard, R. N. (1987). Toward a Universal Law of
adopted in physics because it does provide a vewerul Generalization for Psychological Scien&eience, 237,
coverage of physical phenomena. Likewise, we hape t 1317-1323.

have demonstrated in this paper that the QP sitgilar Sloman, S. A. (1993). Feature-based inductiGognitive
model (and QP theory more generally) has many [siogi Psychology, 25, 231-280.

elements in relation to the description of relevantTenenbaum, J. & Griffiths, T. L. (2001). Generdiian,
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