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Abstract 

A model of similarity is presented which is based on 
Quantum Probability (QP) theory. The model is applied to the 
case of violations of symmetry in similarity judgments, as 
demonstrated by Tversky (1977). The QP similarity model 
can predict such violations, on the basis of the same 
underlying intuitions as Tversky (1977). Moreover, we 
discuss how the model can be extended to account for 
violations of the triangle inequality and also the empirical 
findings in relation to Tversky’s diagnosticity principle.  

Keywords: Similarity; symmetry; quantum probability; 
representation. 

Similarity and Violations of Symmetry 
Similarity is a key theoretical construct in many areas of 
cognitive psychology (principally categorization, as nearly 
all formal accounts of categorization involve similarity, but 
also memory, decision making, and attention). One of the 
most intriguing empirical findings in relation to similarity is 
Tversky’s (1977) demonstration of violations of symmetry 
in similarity judgments. Tversky asked participants to 
indicate which of two phrases ‘they preferred to use’, 
country a is similar to country b, or country b is similar to 
country a. For example, 66 out of 69 participants judged the 
similarity between Korea and China (denoted as Similarity 
(Korea, China) or just sim(Korea, China)) as higher than 
that of China and Korea (denoted as Similarity (China, 
Korea); note that Tversky employed several other pairs of 
countries and stimuli from other domains). This has been a 
hugely influential finding in the development of similarity 
research (his 1977 paper has been cited more than 2,200 
times) and, as we shall shortly see, presents a challenge for 
the dominant approaches to similarity.  
    One of the main ways in which similarity has been 
understood is as a function of distance in a coordinate space. 
Such an approach is embodied in most formal models of 
categorization, such as exemplar and prototype theory. It is 
also the basis for Shepard’s (1987) celebrated derivation of 
a similarity law in psychological spaces. Unfortunately, if 
psychological similarity is a function of distance in some 
coordinate, representation space, then it must be symmetric, 
since distance is symmetric. Nosofsky (1991) suggested the 
use of a ‘directionality’ parameter, pAB, so that the distance 
between A and B would be written as  ��� ∙ ��� . This 
parameter might take different values, depending on 
whether we consider the distance from A to B or B to A. 

This approach can account for an asymmetry in similarity, 
though is not satisfactory in the absence of an independent 
way to predict the value of the directionality parameter.  

Tversky’s (1977) own proposal is also dependent on the 
appropriate setting of parameters. Tversky suggested 
that ��	�
���
���, �� = ���� ∩ �� − ���� − �� −
���� − ��, where �, �, � are parameters, � ∩ � denotes the 
common features between A and B,  A-B the features of A 
which B does have and B-A the features of B which A does 
not have. Let’s say that � = 1, � = 1, and � = 0. Then, 
��	�
���
���ℎ���, � �!�� = ��� ∩ �� − ��� − ��, 
which is low, since China has many features which Korea 
does not have. By contrast, ��	�
���
��� �!�, �ℎ���� 
would be high, since Korea has very few features which 
China does not have. So, such a setting of parameters in 
Tversky’s similarity model predicts an asymmetry in 
similarity judgments in the observed direction. However, 
setting � = 1, � = 0, and � = 0, would predict no 
asymmetry. Thus, the ability of Tversky’s similarity model 
to account for his key empirical finding is dependent on 
particular parameter choices in his similarity model.  

 Specifying a formal approach to similarity which can 
predict asymmetries in similarity judgments in a parameter-
free way, has been the focus of intense effort (Ashby & 
Perrin, 1988; Bowdle & Gentner, 1997; Hahn et al., 2009; 
Krumhansl, 1978). We build on this effort and describe a 
formal similarity model which can predict violations of 
symmetry in similarity judgments, without parameters. The 
model is based on quantum probability theory (QP). QP 
theory is a framework for assigning probabilities to 
observables, much like classic probability theory (Isham, 
1989). It has been favored by physicists for over 100 years 
over classic probability theory, because of certain 
fundamental properties of QP theory, such as its order and 
context dependence. It is exactly these properties that we 
believe make QP theory a suitable framework for 
understanding many psychological processes as well (see 
also Aerts & Gabora, 2005; Atmanspacher, Filk, & Romer, 
2004; Busemeyer, Wang, & Townsend, 2006; Busemeyer et 
al., in press; Bruza, 2010; Khrennikov, 2004; Pothos & 
Busemeyer, 2009; Trueblood & Busemeyer, in press).  

QP Theory and Similarity 
Perhaps contrary to intuition, the basics of QP theory are 
extremely straightforward. The current knowledge state, ", 
is a unit length vector in a multidimensional space, which 
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corresponds to, broadly speaking, whatever a person is 
thinking at a particular time (we will also refer to this as the 
initial state vector). If we employ Dirac notation, then #|"% is 
a column vector and &"|# is the adjoint (conjugate transpose) 
of this vector (we will often drop the bracket for 
convenience and refer to #|"% as just "). Then, #|"%&"|# 
indicates an outer product and is the projector onto the one-
dimensional subspace defined by #|"%. A projection operator 
is a linear operator, typically expressed as a matrix, which 
identifies the part of a vector which is restricted/ contained 
in a particular subspace. Also,  '"|"( indicates a standard 
dot product. In this model, different elements of our 
knowledge (such as ‘Korea’ or ‘China’) correspond to 
different subspaces. This is a key departure from traditional 
geometric models of representation and similarity, in which 
different elements are individual points. An important 
construct in QP theory is that of a projector (or projection 
operator), which is a linear operator taking a vector and 
projecting it onto a particular subspace. For example, 
suppose that )*+,-. is the projector to the Korea subspace. 
Then, )*+,-. ∙ " corresponds to the part of the vector " 
which is contained in the Korea subspace and |)*+,-. ∙ "|/ 
(the squared magnitude of the projection of vector " onto 
the Korea subspace) corresponds to the probability that " is 
about Korea (this is one of the fundamental axioms of QP 
theory and a key result differentiating QP theory from linear 
algebra).This probability reflects the extent to which the 
vector and the subspace are consistent with each other and 
so is a measure of similarity (cf. Tenenbaum & Griffiths, 
2001). 

Evaluating a conjunction of probabilities in QP theory is 
not as straightforward as in classic probability theory, 
because it is typically the case that in QP theory two 
observables cannot be evaluated concurrently (such 
observables are called incompatible ones). Thus, following 
Busemeyer et al. (in press), we suggest that |)0123. ∙ )*+,-. ∙
"|/ is the joint probability that vector " is consistent with 
the Korea subspace and that the projection of " to the Korea 
subspace is consistent with the China subspace. In fact, 
|)0123. ∙ )*+,-. ∙ "|/ = |)0123. ∙ "*+,-.|/|)*+,-. ∙ "|/, 

where "*+,-. = 456789∙:
|456789∙:|

.  

The above concerns basic assumptions of QP theory, not 
specific to psychology. The link with psychological process 
is made if we assume that the conjunction of probabilities 
corresponds to similarity, so that, for example, |)0123. ∙
)*+,-. ∙ "|/, would correspond to the similarity between 
Korea (the projection which is evaluated first) and China. 
Note that this proposal can, in fact, be seen as a 
generalization of Sloman’s (1993) proposal that the 
similarity between two categories, A and B, can be 

computed as ��	��, �� = ;���∙;���
|;���| |;���|

, where F(A) and F(B) 

are the vectors representing the categories, the numerator is 
a dot product, and |<���| = '�|�(=//. If one employs 
normalized vectors and in the special case where the 
considered subspaces are unidimensional, Sloman’s 
similarity measure and ours are identical. However, if we 

only use unidimensional subspaces then the similarity 
measure is symmetric, and so multidimensional subspaces 
(e.g., planes or hyper-planes) are necessary. This is one key 
advance made by using quantum theory. It is impressive that 
Sloman, using mostly intuitive arguments, was basically led 
to measures very similar to those in QP theory.  

In examining how to compute |)0123. ∙ )*+,-. ∙ "|/, we 
make the assumption that when asked to evaluate the 
similarity between two entities, A and B, the initial vector is 
set so that  |)� ∙ "|/ = |)� ∙ "|/. The intuition for this 
assumption is that prior to assessing the similarity between 
A and B, the initial vector is set in a way that is biased 
neither towards A nor B. The implication of this assumption 
is that the assessment of the similarity between two 
elements A and B depends only on the geometric relation 
between the two, corresponding subspaces, and not on 
whatever it is that the person may be thinking prior to the 
similarity assessment. Note that in this case it is possible to 
derive closed-form expressions for " so as to satisfy 
|)� ∙ "|/ = |)� ∙ "|/, whereby the A and B subspaces have 
arbitrary dimensionality, but it would be too much of a 
diversion to do this here. Finally, the fact that |)0123. ∙
)*+,-. ∙ "|/ depends only on the geometric relation between 
the two subspaces reveals that this is indeed a reasonable 
way to define similarity in QP theory.  

The most important implication of the definition 
?�	�� �!�, �ℎ���� = |)0123. ∙ )*+,-. ∙ "|/ is that the 
outcome of the similarity process is order dependent, so that 
?�	�� �!�, �ℎ���� may be different from 
?�	��ℎ���, � �!�� (as long as )0123. ∙ )*+,-. ≠ )*+,-. ∙
)0123., which will be generally the case, unless the two 
subspaces can be expressed with the same basis vectors, or 
the basis vectors of one subspace form a proper subset of the 
basis vectors of the other). Thus, the QP formalization of 
similarity judgments allows for the possibility that similarity 
judgments will not be symmetrical, as required to account 
for Tversky’s (1977) corresponding empirical finding. 
Specifically, the QP model would be consistent with 
empirical results if it predicts that ?�	�A �!�, Bℎ���� >
?�	�Bℎ���, A �!�� or, equivalently, |)0123. ∙ )*+,-. ∙
"|/ > |)*+,-. ∙ )0123. ∙ "|/. But, recall, that we have 
postulated that |)0123. ∙ "|/ = |)*+,-. ∙ "|/, i.e., the initial 
state vector is not biased towards Korea or China, so that, 
without loss of generality, the condition which satisfies 
empirical observation is |)0123. ∙ "*+,-.|/ > |)*+,-. ∙
"0123.|/, where "*+,-., "0123. are normalized vectors in 
the corresponding subspaces.  

The next challenge we face is to show how a violation of 
symmetry can be predicted in a lawful way, from the 
specification of Tversky’s similarity task. Our starting point 
is the same as Tversky’s, namely we assume that his 
participants had a more extensive knowledge of China than 
Korea. The way to formalize this in the QP similarity model 
is by assuming that the subspace corresponding to China has 
a higher dimensionality than the one corresponding to Korea 
(a subtlety arises in relation to the meaning of the 
dimensions in the subspace and the relation of different 
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dimensions to each other, however, it is not necessary to 
provide a full consideration of these issues for the 
development of the model). Of course, there is an infinite 
number of ways in which the dimensionality of one 
subspace can be greater than the dimensionality of another. 
In this work, we consider two particular examples of one 
subspace having a greater dimensionality than another. 
More importantly, we also discuss why the model is 
generally expected to be consistent with violations of 
symmetry in similarity judgments, under circumstances 
consistent with those in Tversky’s (1977) demonstration.  

Application of the QP similarity model 
In our first example, the dimensionality of the Korea 
subspace is just one and the dimensionality of the China 
subspace is two. In order to compute )*+,-. and )0123. we 
need to identify the basis vectors for each subspace (that is, 
the vectors which span all other vectors in the subspace). 
Note that all the vectors we consider are normalized. We 
assumed that both the Korea and the China subspace would 
be subspaces of the same three-dimensional space (this 
three-dimensional space is, in turn, assumed to be a 
subspace of our overall knowledge space). Given this, the 
basis for the Korea subspace was just a random three-
dimensional vector. Two basis vectors are required to span 
the China subspace, since this is a two-dimensional 
subspace. The first basis vector for China was another 
random three-dimensional vector, call it China1. Then, we 
created another random vector, call it Random. Computing 
�D − #|�ℎ���1%&�ℎ���1#|� ∙ E��� 	 (where I is the three-
dimensional identify matrix) and normalizing gives us a 
vector which is orthogonal to China1 (in general, the 
projector to the orthogonal complement of a subspace W is 

given by )F⊥ = D − )F). It was verified that the two basis 
vectors for the China subspace in each iteration of the model 
were orthogonal to each other (very occasionally, this is was 
not the case due to rounding error).  
    Overall, each iteration of the computation involved the 
specification of projectors for a random one-dimensional 
subspace (corresponding to Korea) and a random two-
dimensional one (corresponding to China). The initial state 
vector was computed so that |)0123. ∙ "|/ = |)*+,-. ∙ "|/. 
Then, in each iteration we compared |)0123. ∙ )*+,-. ∙ "|/ 
and |)*+,-. ∙ )0123. ∙ "|/. It turned out that in 100,000 
iterations of this scheme it was always the case that 
|)0123. ∙ )*+,-. ∙ "|/ was always greater than |)*+,-. ∙
)0123. ∙ "|/, meaning that ��	�� �!�, �ℎ���� was always 
predicted to be larger than similarity ��	��ℎ���, � �!��, 
as required for a demonstration of Tversky’s (1977) 
empirical observation regarding violations of symmetry in 
similarity judgments.  
    In an alternative demonstration, we employed an overall 
five-dimensional subspace, with China corresponding to a 
four dimensional subspace and Korea to a random place. If 

we let H= =

I
J
J
J
K
1
0
0
0
0L

M
M
M
N
, H/ =

I
J
J
J
K
0
1
0
0
0L

M
M
M
N
, etc., then the projector to the 

China subspace was defined to be 
)0123. = #|H=%&H= #|+#|H/%&H/ #| + #|HP%&HP #|+#|HQ%&HQ #|. The 
projector to the Korea two-dimensional subspace was 
computed as before. In this larger dimensionality case, it is a 
little more involved to compute an initial state vector which 
is neutral, but, as noted above, it is still possible to do so 
analytically. In 100,000 iterations of this scheme it was, 
again, the case that the  ��	�� �!�, �ℎ���� was always 
predicted to be larger than similarity ��	��ℎ���, � �!��.  
Note that empirical results for such a task may deviate from 
the 100% prediction because, e.g., it would not be the case 
that for all participants the knowledge of China would be 
greater than the knowledge of Korea. Also, we assume that 
the requirement of making a similarity judgment sets the 
initial state vector to be neutral between the two subspaces, 
but in practice this would not be entirely true. 
    As a final check of the model, we examined a situation in 
which both China and Korea corresponded to one-
dimensional subspaces (the corresponding basis vectors 
were computed as random vectors in a three-dimensional 
subspace), to find ��	�Bℎ���, A �!��< ��	�A �!�, Bℎ���� 
in 35.8% of all times in 100,000 repetitions of the scheme, 
with 28.2% of all cases being to exact equalities. Thus, in a 
case where there is no reason to expect a violation of 
symmetry, the model correctly predicts symmetrical 
similarity judgments.  
    We can explore in more abstract terms why the QP 
similarity model works. Consider a vector |#A% and a 
projector ) = |#H%&H#| + |#�%&�#| and suppose that we are 
interested in examining how much of |#A% is reflected in the 
subspace corresponding to P. In other words, we need to 
compute the projection )|#A% = |#H%&H#|#A% + |#�%&�#|#A% (recall 
that &H#|#A%, &�#|#A% indicate the dot products between vector 
|#A% and each of the basis vectors of the P subspace; these 
basis vectors are |#H% and |#�%). Clearly the amplitude of the 
projection depends on the absolute magnitude of both #&H#|A% 
and #&�#|A%. By contrast, the projection to the one-
dimensional subspace defined by |#H% would be |#H%&H#|#A% and 
its amplitude would depend on just the absolute magnitude 
of #&H#|A%. In other words, the larger the subspace, the more 
likely it is that the resulting projection will be large; at the 
extreme, if the subspace considered is the entire knowledge 
space, then in projecting a vector to this subspace we obtain 
the original vector. It is exactly in this way that the QP 
similarity model can account for violations of symmetry in 
similarity judgments, that is, in situation where the entities 
compared correspond to subspaces of different 
dimensionality. This prediction closely resonates with 
Tversky’s (1977) intuition of when violations of symmetry 
in similarity judgments are expected, which is when we 
have more knowledge about one of the compared entities, 
relative to the other. But, the QP similarity model could 
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reach the right prediction without manipulating any 
parameters. This contrasts with Tversky’s (1977) proposal, 
which requires a specific parameter setting, before it can 
predict violations of symmetry in the right direction.  

Extensions 
Tversky’s (1977) paper has had a profound influence in the 
development of similarity research, because it presented a 
series of (seemingly) puzzling empirical phenomena, which 
set boundary conditions for any aspiring model of 
similarity. In this work we have considered violations of 
symmetry. Other key empirical demonstrations in Tversky’s 
paper concern the violation of minimality, the violation of 
triangle inequality, and his so-called diagnosticity principle. 
We consider each of these findings in turn and discuss how 
the QP model could be extended to account for them.  
    Minimality, the triangle inequality, and symmetry are 
together known as the metric axioms, that is, a set of 
properties which any distance measure in a metric space 
must obey. According to minimality, the distance between a 
point and itself is zero and, therefore, the similarity between 
an entity and itself should be maximal. Tversky (1977) 
showed that, in some cases, naïve observers would not 
assign the maximum similarity rating for an identical pair of 
stimuli, thus violating minimality. However, from a 
theoretical point of view, the violation of minimality is 
perhaps less interesting. This is because minimality could be 
violated by, e.g., noise in the system (so that the same 
stimulus presented twice would lead to slightly different 
representations). Therefore, violations of minimality do not 
lead to strong constraints on a similarity model.  
    According to the triangle inequality, the distance between 
two points A and B will always be shorter than the distance 
between A and C plus the distance between C and B. In 
other words, the triangle inequality is a statement that the 
shortest distance between two points is a straight line. In 
terms of similarities, the triangle inequality states that the 
Dissimilarity (A,B) would always be less than Dissimilarity 
(A,C) plus the Dissimilarity (C,B) or the Similarity (A, B) 
would always be greater than the Similarity (A, C) plus the 
Similarity (C, B). Tversky (1977) reported an example 
where the triangle inequality is violated. Consider A=Russia 
and B=Jamaica, so that Similarity (A, B) is very low. 
Consider also C=Cuba. But, Similarity (A, C) = Similarity 
(Russia, Cuba) is high (because of political affiliation) and 
Similarity (C, B) = Similarity (Cuba, Jamaica) is also high 
(in this case because of geographical proximity). Thus, 
Tversky’s example suggests a violation of the triangle 
inequality. Such a finding goes against any measure of 
similarity according to which similarity is a linear 
transformation of distances. But, if one employs a non-
linear function of distance as a similarity measure, then 
violations of the triangle inequality can occur. For example, 
consider similarity as an exponentially decaying function of 
distance in a metric space, as is commonly assumed in 
models of categorization (Nosofsky, 1984; Shepard, 1987). 
Such a model of similarity can violate the triangle 

inequality. For example, consider Distance (A,B)=5 units, 
Distance (A,C)=4 units, and Distance (C,B)=4 units; these 
distances clearly obey the triangle inequality. For the 
similarities to still obey the triangle inequality we would 
need that Similarity(A,B)>Similarity(A,C)+Similarity(C,B). 
However, it follows immediately that !RS < !RQ + !RQ ⟺
0.0067 < 0.018 + 0.018, thus violating the triangle 
inequality. Thus, a violation of the triangle inequality does 
not present a challenge for standard approaches to 
similarity, even those based on a coordinate representation. 
However, it is still important to confirm that the QP 
similarity model is consistent with violations of the triangle 
inequality. In this paper we provide an outline for how this 
comes about.  
    Tversky (1977) explained the violation of the triangle 
inequality in terms of different similarity judgments 
eliciting a different context of comparison, so to say, for the 
compared quantities. For example, when comparing Russia 
and Cuba, the context of the comparison is one of political 
alignment. The basis for predicting violations of the triangle 
inequality with the QP similarity model is analogous. 
Imagine a geometrical space where different countries and 
their properties are represented. In one region of the space, 
we would have the property ‘communism’ and both Russia 
and Cuba would be placed in that region. In another region 
of that space, the property ‘in the Caribbean’ would be 
present, as well as Cuba and Jamaica. In fact, Cuba, would 
have to be in-between the regions corresponding to 
‘communism’ and ‘in the Caribbean’. Figure 1 shows a two-
dimensional example for how to specify vectors consistent 
with these intuitions (all three countries are assumed to 
correspond to one-dimensional subspaces, there is no basis 
either in Tversky’s original work or in terms of general 
intuition for assuming otherwise). In such a case, specifying 
directly a neutral initial state vector introduces considerable 
unnecessary complexity to the model. Thus, we simply 
assumed that, for example, ��	�EZ����, �Z[�� =
|)\]^.)_]``2."|/ = |)\]^."_]``2.|/, whereby "_]``2. =
#|EZ����% and likewise for the other similarity terms. Based 
on the representation in Figure 1, one readily obtains that 
|)\]^."_]``2.|/+|)a.b.20."\]^.|/>|)a.b.20."_]``2.|/, 
with |)\]^."_]``2.|/ = 0.79, |)a.b.20."\]^.|/ = 0.79, and 
|)a.b.20."_]``2.|/ = 0.33. In other words, this computation 
reveals that the similarity between Jamaica and Russia is 
less than the sum of the similarities for Cuba, Russia and 
Jamaica, Cuba, as required for demonstrating a violation of 
the triangle inequality in similarity judgment. This provides 
an existence proof that the QP similarity model can 
accommodate violations of the triangle inequality, when 
there is an intuition that this can happen empirically.  
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Figure 1: A representation of the countries in Tversky’s 
(1977) demonstration regarding the triangle inequality.  

 
    Perhaps the most significant finding in Tversky’s 

(1977) paper concerns his so-called demonstration of the 
diagnosticity principle. Tversky asked participants to pick a 
country most similar to Austria amongst a set of countries 
including Sweden, Hungary, and Poland. In such a case, 
participants tended to prefer Sweden. In another condition, 
participants were asked to decide which country was most 
similar to Austria amongst the set of countries Sweden, 
Norway, and Hungary. In such a case, participants favored 
Hungary. This is an intriguing phenomenon: how is it 
possible that the presence of irrelevant (unselected) options 
affects the similarity between the target item and the 
preferred item (cf. Roe, Busemeyer, & Townsend, 2001)? 
Tversky (1977) suggested that the range of available options 
establish a context for the similarity judgment and this 
context, in turn, determines the features along which the 
similarity judgment takes place (see also Goldstone, Medin, 
& Halberstadt, 1997). For example, in the case when 
Austria is compared to Sweden, Hungary, and Poland, 
‘Eastern Europe’ emerges as a diagnostic feature, which 
then makes Austria and Sweden very similar. Tversky’s 
finding is significant for the study of similarity because it 
shows that pairwise similarity judgments cannot be modeled 
in isolation, rather the context of the similarity judgment can 
have a profound influence on the outcome of the judgment.  

The QP similarity model can be extended to cover the 
empirical findings in relation to the diagnosticity principle, 
though in this paper we only provide an outline of how this 
can be done. In brief, a key aspect of the QP similarity 
model is that in a series of projection operations the 
penultimate projection effectively establishes a context for 
the final projection. In the case of assessing the similarity 
between an isolated pair of items, A and B, we measured 
similarity as ?�	��, �� = |)� ∙ )� ∙ "|/. An alternative 
interpretation of this computation is that it reflects how 
much of B can be understood in the context of A (Sloman, 
1993). Such a scheme could be extended so that where the 
similarity between A and B is assessed in the context of 
other elements, these other elements correspond to 
projection operations prior to those for A and B. That such a 
scheme introduces context dependence is evident in that the 

projection from one subspace to another depends on the 
angle between the two subspaces. Specifically, we suggest 
that such a scheme is appropriate for predicting the outcome 
of forced-choice similarity tasks, whereby all the entities 
involved are fairly similar to each other—this is the 
structure of Tversky’s (1977) experiments in relation to the 
diagnosticity principle. Our preliminary computations 
indicate the QP similarity model, if extended in this way, is 
consistent with the diagnosticity principle.  

Conclusions 
 We have presented the QP similarity model and some 

promising analyses in support. One key conclusion is that if 
we associate different entities with subspaces in a 
multidimensional space, instead of individual points, then a 
suitably defined similarity measure becomes naturally (in a 
parameter-free way) asymmetric. Also, we have seen how a 
notion of similarity as projection between subspaces makes 
similarity judgments context dependent. This is most 
evident in considering diagnosticity. More generally, our 
work shows that similarity judgments can be understood in 
a formal geometric framework, a conclusion contrasting 
with both Tversky’s (1977) arguments and more heuristic 
approaches to understanding similarity.  

Is the QP similarity approach falsifiable? No general 
framework is directly falsifiable, as particular models can 
always be augmented with post hoc parameters to 
accommodate data. The strength of the QP approach lies in 
the reasonableness of the assumptions which guide the 
specification of the model and corresponding testable 
qualitative properties (such as order dependence). No doubt, 
much additional work will be required before the QP 
similarity model can be established as a model of human 
similarity judgments. We are optimistic for a number of 
reasons.  

First, the idea of using dot products and projections in 
modeling similarity judgments has already been a research 
focus by psychologists (e.g., Sloman, 1993). The advantage 
of the QP similarity model is that it draws from QP theory, a 
theory for assigning probabilities to observables which has 
been at the forefront of scientific discovery for over 100 
years and has been key to some of the most impressive 
achievements of human science (for example, the transistor, 
and so the microchip, and the laser). Note that the distance 
between two vectors, X, Y, is a function of their dot product. 
The distance between two vectors X, Y (both unit length, in 
a real space) is given by |e − f|2 = |e|2 + |f|2 −
2'e|f( = 2 − 2'e|f(. Thus, if X and Y are one-
dimensional subspaces, a computation like |)h"i|/ depends 
on the distance between the corresponding points in the 
knowledge space, so that our proposal can be seen as a 
generalization of older approaches equating dissimilarity 
with distance. A key difference between such older 
approaches and the present proposal for similarity is that the 
latter is not constrained to equate concepts (or exemplars) 
with single points in psychological space. Rather, concepts 
can be subspaces of any dimensionality and, as we have 
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seen, this allows the prediction of important results (such as 
the violation of symmetry in similarity judgments).  

Second, probabilistic approaches to cognition appear to 
work. Cognitive models based on QP theory are closely 
related to models based on Bayesian, classical, probability 
theory. In the last couple of years, the scientific community 
has welcomed the emergence of several sophisticated 
cognitive models based on classical probability theory (e.g., 
Tenenbaum, Griffiths, & Kemp, 2006). The success of these 
models attests to the promise of formal probabilistic 
approaches to cognition in general. Indeed, the predictions 
from QP theory and classical probability theory often 
converge. However, there is a difference between the two 
theories: probability assessment in QP theory is order-
dependent, so that, for example, sometimes )��⋀�� ≠
)��⋀��. By contrast, in classic probability theory it has to 
be that )��⋀�� = )��⋀��. Some kinds of cognitive 
processing (such as similarity judgments) display strong 
order effects. Classical probability theory could be 
augmented to produce order-dependent predictions if, for 
example, one postulates that  )��⋀�|k=� ≠ )��⋀�|k/�, 
where, basically, k= and k/ are two different orders. 
However, we contend that where order effects do exist in 
cognitive processes, then QP theory provides a more natural 
framework for modeling.  

Third, the QP theory is a linear theory. In QP models, it is 
often possible to derive closed-form expressions for major 
components. Moreover, the key elements of QP theory (in 
this paper we have seen projection; also, rotation, which has 
a more natural application in decision making problems and 
can capture dynamical aspects of such problems; e.g., 
Pothos & Busemeyer, 2009) can be expressed in basic and 
intuitive terms. This, we hope, endows QP theory with a 
transparency and explanatory penetrability which ultimately 
make corresponding models easier to apply and test.  

Overall, it is true that QP theory sometimes looks 
counterintuitive (and, indeed, physicists applying QP theory 
for the measurement of physical observables are still 
puzzled by certain aspects of QP theory models or 
predictions). Nonetheless, QP theory has been widely 
adopted in physics because it does provide a very powerful 
coverage of physical phenomena. Likewise, we hope to 
have demonstrated in this paper that the QP similarity 
model (and QP theory more generally) has many promising 
elements in relation to the description of relevant 
psychological processes.  
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