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Abstract

We use the Exemplar-Based Random-Walk model (EBRW)
to extend the Varying Abstraction Model (VAM). Unlike the
VAM which is designed to account for categorization
proportions, this Varying Abstraction-Based Random-Walk
(VABRW) model is able to predict categorization response
times. The extension is especially useful in situations where
response accuracies are not very informative for
distinguishing between models. Application of the VABRW
to data previously gathered by Nosofsky and Palmeri (1997)
provides additional evidence for the view that people use
partial abstraction in category representations.
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Introduction

Because of its crucial role in almost every aspect of
cognitive processing, categorization has been studied
extensively in the past 35 years. Many different models
have been proposed to account for the categorization results
and tested using empirical data collected in category
learning tasks. The vast majority of these experiments and
models have focused on categorization decisions and on
typicality ratings, neglecting the corresponding processing
times. This is surprising, as response times are arguably the
most prominent dependent variable in the whole discipline
of cognitive psychology. Response times have been argued
to provide a window into understanding the nature of
cognitive representations and decision processes (Nosofsky
& Palmeri, 1997).

The few existing attempts of modeling categorization
response times all start from the exemplar view on category
representation (Smith & Medin, 1981). In this view, a
category is assumed to be represented by memory traces of
all the exemplars that were previously encountered as a
member of the category. For example, Lamberts (2000) has
extended Nosofsky’s (1986) Generalized Context Model
(GCM) to the Extended Generalized Context Model for
response times and Nosofsky and Palmeri’s (1997)
Exemplar Based Random Walk Model (EBRW) combines
elements of the GCM with Logan’s (1988) instance based
model of automaticity. Both approaches showed the

usefulness of extending models that only account for
categorization decisions to models that also predict response
times.

The exemplar view on category representation is not the
only view that has gained support. The most notable
alternative to the exemplar view in accounting for
categorization decisions is the prototype view, which holds
that a category is represented by a summary of its members.
Though the exemplar model seems to outperform the
prototype model in general (e.g., Nosofsky, 1992;
Vanpaemel & Storms, 2010), in some conditions the
prototype representation seems to be supported (Minda &
Smith, 2001; Smith & Minda, 1998). Moreover, models
have been proposed that leave room for partial abstraction in
category representation (Anderson, 1991; Griffiths, Canini,
Sanborn, & Navarro 2007; Love, Medin & Gureckis, 2004,
Rosseel, 2002; Vanpaemel & Storms, 2008). These models
provided a broader window on representational abstraction
suggesting that also levels of abstraction that are
intermediate between exemplar and prototype models are
viable representations that deserve consideration.

Despite more than three decades of research on
categorization, the question about the nature of category
representation still awaits conclusive evidence. Moreover,
the field seems to be converging to the view that human
conceptual structure is sufficiently flexible to adopt highly
abstract representations as well as exemplar representations,
shifting the focus from establishing the single representation
that always underlies categorization decisions, to identifying
the conditions in which one representation is more likely to
be used than another. In this paper, we contribute to this
debate by presenting a general framework to account for
decision times. More specifically, we generalize the EBRW
model to encompass a broad set of representations each
assuming different levels of abstraction, as implemented in
the Varying Abstraction Model (VAM; Vanpaemel &
Storms, 2008). In what follows, we first describe the way
the VAM and EBRW model are combined into the Varying
Abstraction-Based Random-Walk model (VABRW). Next
we apply the VABRW to data collected by Nosofsky and
Palmeri (1997).
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VABRW

The VABRW is most easily described in two steps: the
different representations it assumes, and the processes and
mechanisms that, when added to these representations, give
rise to the categorization behavior of interest.

VAM Representations

Following the GCM, the VAM starts with the assumption
that the members of a category can be represented as points
in a multidimensional psychological space. Category
representations are constructed by dividing these points in
clusters and averaging the coordinates of the points within
these clusters. The resulting coordinates define the set of
subprototypes that make up the category representation.

For example, if  cluster Q; contains n; stimuli, the
coordinate value pj, for subprototype j on dimension k can
then be calculated as follows:
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where X, is the coordinate value of stimulus i on dimension
k.

In general, there is no restriction on how the members of
a category should be divided in clusters. Thus, the VAM
encompasses all the representations that can be constructed
from a category, including the exemplar representation as
the least abstract and the prototype representation as the
most abstract representation. If, for example, a category
consists of four members, 15 different category
representations can be created (see Figure 1).

The fact that the VAM considers all the representations
that can be constructed from a category raises a problem
when a category contains a large number of exemplars. In
this case, the number of possible category representations
within the VAM becomes quite large and this will severely
complicate model fitting. A more constrained version of the
VAM therefore favors representations that are based on the
clustering of similar stimuli (Vanpaemel, 2011) while an
even more constrained version considers only one
representation at each level of abstraction (Verbeemen,
Vanpaemel, Pattyn, Storms & Verguts, 2007). This latter
version of VAM uses a K-means clustering procedure
(Hastie, Tibshirani, & Friedman, 2001) in order to reduce
the number of possible representations per category. The K-
means clustering procedure selects the most plausible
clustering of category members based on the similarity
between the category members, assigning similar members
to the same cluster and keeping dissimilar members
separate. The K-means clustering procedure would for
example select category representations A (exemplar
representation) ,E (out of the six representations with three
subprototypes), N (out of the seven representations with two
subprototypes) and O (prototype representation) from the
representations shown in Figure 1. Within this study we

used this latter version of the VAM to obtain the appropriate
category representations.

Predicting Classification Response Time

In order to derive response time predictions from the
intermediate category representations of the VAM, we
combined the VAM representations with the processing
assumptions of the EBRW model. The EBRW model
assumes a random walk process in which the categorizer
gathers evidence that a particular stimulus belongs to a
particular target category. More specifically, the EBRW
model assumes that when a to be categorized stimulus is
presented, the exemplars of the target categories race to be
retrieved, with rates proportional to the similarity of the
exemplar to the stimulus. The exemplar that is the first to be
retrieved provides evidence in favor of the category to
which it belongs. When enough evidence is gathered and a
category criterion is reached, the appropriate response is
executed.
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Figure 1: The 15 possible representations for a category
with four members. The subprototypes are represented by
the black circles and are connected by lines to the original
category members (the white circles). Panel A shows the
exemplar representation (no members are merged); Panel O
shows the prototype representations (all members are
merged together into a single subprototype); Panels B-G
show intermediate representations with three subprototypes;
and Panels H-N show intermediate representations with two
subprototypes.
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Although the EBRW model starts from the assumption
that a category is represented by an exemplar representation,
its mechanisms can be combined with other representational
assumptions (see, for example, Nosofsky & Stanton, 2005
for a prototype variant of the EBRW model). To combine
the EBRW processes with the representations of the VAM it
suffices to assume that upon the presentation of a target
stimulus, the subprototypes that constitute the category will
enter the race with rates related to the similarity of the
stimulus to the subprototype and that the subprototype that
is the first to be retrieved provides evidence in favor of the
category to which it belongs.

The expected duration of the random walk when stimulus
i is presented and thus the predicted response time for
stimulus i is given by:

E(T]i) = E(N|i) E(Tyep i),

in which E(N|i) represents the expected number of steps
and E(Tgp|i) the expected time needed to take each
individual step. The expected time to take each individual
step is computed by:

1
(Sia+Sip)’

E(Tsepli) = a +

in which « is a constant parameter that can be interpreted as
the time needed to find the category to which the retrieved
exemplar belongs. S;, and S;5 are the similarity of stimulus
i to category A and category B, respectively, and are
calculated by summing the similarities between the stimulus
and the subprototypes that constitute category A and

category B:
Sin = Z S(Xz'ﬂj)'

ujeSa
in which S, denotes the set of subprototypes representing A.
The similarities between the stimulus and the subprototypes
can be computed by first determining the distances between
the stimulus and the subprototypes that make up the
category in the multidimensional psychological space. The
distance between stimulus i and subprototype j is calculated

by:
b 2
2
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where x;, and uj, are the coordinate values of stimulus i
and subprototype j on dimension k and 0 < w;, < 1 is an
attentional weight associated with dimension k. These
distances are then converted to obtain a measure of the
similarity from each stimulus to every subprototype

(o) = 7,

where c is the sensitivity parameter.

The expected number of steps in the random walk is
calculated by:

EN|) = B A+B[ 1—(q;/p)"°
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if p; # q; and
E(N|i) = AB,

otherwise, where A and B are integers that represent the
criteria or the amount of evidence needed to execute an A or
B response, and p; can be computed by:

i = Sia/ (Sia + Sip),
and g; by:

q;=1-p;

The free parameters in the EBRW model are the sensitivity
parameter c, the attentional weight w,, the criteria A and B
that represent the amount of evidence needed before a
response is executed and the time constant a. Furthermore
two scaling parameters (slope k, intercept p) are added to
rescale the model predictions into realistic response times.
As VABRW shares its processing assumptions with EBRW,
it has identical parameters. The only difference is that while
EBRW assumes only a single representation (the exemplar
representation), VABRW  considers a range of
representations (including the exemplar and prototype
representation). These representations could be indexed by a
parameter, that unlike more traditional parameters is
discrete. The goal of applying VABRW to data, as we will
do in the next section, is to estimate the value of this
discrete parameter, thereby informing us about the level of
abstraction people rely upon.

Application of VABRW

Experimental Procedure In an effort to test the EBRW
model, Nosofsky and Palmeri (1997) administered an
experiment (their Experiment 1) in which three participants
were asked to perform a speeded classification task. The
stimuli in the task were 12 Munsell colors. Nosofsky and
Palmeri constructed two categories by dividing the stimuli
in two categories of six members each: category A,
represented by circles in Figure 2 and category B
represented by squares in the same figure.

The speeded classification task was administered in five
sessions of 30 blocks, each for a total of 150 blocks. Within
a block, each color was presented only once, in a
randomized order. Participants were asked to respond as
quickly and accurately as possible. Corrective feedback was
provided after each trial. After the speeded classification
task, participants completed a similarity scaling task in
which they were asked to rate the similarity of each pair of
colors on a 10-point scale. These similarity ratings were
then used to construct a multidimensional space for each
participant.
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Figure 2: The category structure used in Experiment 1 of
Nosofsky and Palmeri (1997). Category A is represented by
circles, category B by squares.

Data Nosofsky and Palmeri (1997) computed for each of
the three participants, response times for individual stimuli
averaged across blocks 31 to 150, yielding 12 data points,
and response times for groups of 5 blocks averaged across
individual stimuli, yielding 30 data points. Additionally, the
accuracies for the individual stimuli were computed, but
since these were close to ceiling they were not included in
their model analyses. The response times for the individual
stimuli showed a very regular pattern: stimuli lying far from
the category boundary were responded to faster than stimuli
lying close to the category boundary. The response times for
each group of 5 blocks showed, as expected, a decrease in
response times with practice. Nosofsky and Palmeri
showed that the individual participant data could be well
accounted for by the EBRW model.

We believed these data to be appropriate to apply the
VABRW model. As mentioned above, the main focus of
this application is investigating which category
representations is most supported by the data. Furthermore
fitting the model to the individual participant data allowed
us to check whether there were individual differences in the
participants category representations.

Fitting Procedure The most constrained version of the
VABRW contained 36 different representations, resulting
from the combination of 6 representations for each category
which were identified using K-means clustering. All 36
models were fit separately following the same procedure as
Nosofsky and Palmeri (1997). Each model was fitted to the
data by searching for a single set of parameters to
simultaneously predict both the mean response time for each
stimulus and the speed-up curves (i.e. the mean response
time as a function of grouped block), using the total sum of
squared errors (SSE) as a goodness of fit criterion. Like
Nosofsky and Palmeri, we further assumed that the amount
of evidence that needed to be gathered in order to execute a
categorization response was the same for the two target
categories (A=B). In order to predict the speed-up curves,

Nosofsky and Palmeri assumed that on each block an
additional token of the exemplar was stored in memory.
This assumption was implemented by multiplying the
similarity of the stimulus to the category with the number of
blocks. We instantiated the same multiplication, formalizing
the assumption that with each block the participants got
more confident about the category representation they used.
The only aspect in which our fitting procedure differed from
Nosofsky and Palmeri’s was that we restricted A to values
between 1 and 10, to make the model fitting more feasible.

Results Consistent with earlier findings, the exemplar
representation captured the data better than the prototype
representation. The optimal representations for Participants
1,2 and 3 are presented in Panels A, B and C of Figure 3.
As in Figure 1, the subprototypes that make up the category
representations are presented in black while the category
members that have been clustered together to obtain these
subprototypes are presented in white. When we consider the
best fitting representation, the three participants differ in the
type of representation that best accounted for their data.
Participant 3 seemed to rely on an exemplar representation,
a finding that fits well with the impressive fits that the
EBRW model provided to the data. Participants 1 and 2 in
contrast relied on less detailed representations. For
Participant 1 the best fitting model consists of 5
subprototypes in Category A and 4 subprototypes in
Category B and thus comes quite close to the fully detailed
exemplar representation. Participant 2, in contrast, relied on
a much more abstract representation consisting of 2
category A subprototypes and 2 category B subprototypes.

Table 1 shows the correlations between the observed and
predicted values, as well as the best fitting parameter values
for each participant. The relatively high correlations
between the observed and predicted values indicate that the
models did a fairly good job in accounting for the response
time data.

Table 1: Best-fitting parameters and correlations.

Participants
1 2 3
c 2.6831 0.6663 1.7910
A 10 9 4
a 0.1794 0.1964 0.0558
W, 0.2871 0.3127 0.7469
k 224.4538 45.0123 661.5330
n 293.7754 342.0962 447.1176
correlations
individual 0.9339 0.9936 0.9570
speed-up 0.9281 0.6297 0.9334

Note. c= sensitivity parameter, A= the criterion parameter, o= time
constant, w,= weight for dimension x, k = slope and p = intercept.
Correlations on the row “individual” are the correlations with the
individual mean response times and correlations on the row
“speed-up” are the correlations with the speed-up curves.
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Discussion

Generally, different computational models of category
learning are compared on their ability to account for the
choice proportion in a category learning task. Though useful
to discriminate among competing models, choice
proportions provide only a limited window on
categorization behavior. Also other variables like typicality
and classification response times are informative about the
underlying category representations and processes. Several
researchers attempted to extend categorization models to be
able to predict classification response times in category
learning tasks. (Ashby, Boynton & Lee, 1994; Lamberts,
2000; Nosofsky & Palmeri, 1997; Nosofsky & Stanton,
2005).

In this paper we extended the VAM, designed to predict
choice proportions, to enable it to account for response
times by combining the set of category representations
provided by the VAM with the process assumption of the
EBRW model. Based on response time data from Nosofsky
and Palmeri (1997), we showed that the best-fitting
representations of two of the three participants relied on
some amount of partial abstraction. This finding adds to the
growing body of evidence that categorization should not
always be exemplar based, but can rely on intermediate
representations as well (e.g., Griffiths et. al. 2007,
Vanpaemel & Storms, 2008).

Although response times are not the primary variable of
interest in categorization research, we believe that they can
provide additional information about the nature of category
representations and should be used more often in the
evaluation of computational models of category learning.
One problem, for example, with evaluating models using
choice proportions is that it becomes difficult to study
participants that have received extensive training. In long
learning tasks, like the one used by Nosofsky and Palmeri
(1997), participants will often reach expertise and have, by
the end of training, classification proportions that are close
to ceiling for the training examples. A clear advantage of
working with response times is that, even after extensive
training, they show variation that is likely to be linked to the
categorization processes and representations. Therefore,
response times can offer insights in the category
representation of the expert engaging in the task.

Being able to investigate abstraction after extensive
learning is of particular theoretical importance, since one
key factor that is thought to influence abstraction seems to
be the time point in learning (Smith and Minda, 1998).
Further, when models of category learning are applied
outside a lab context to semantic concepts, such as fruits or
vehicles, relying on choice proportions is very difficult,
since most people are experts for these categories. Models
such as VABRW escape this conundrum, because they can
account for response times. In this capacity, VABRW has
the promise to provide fruitful insights in the representation
of semantic concepts.
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Figure 3: The best category representations for the three
participants.
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