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Abstract

We present a model in which visual search behavior is
assumed to result from a combination of controlled, serial
search and automatic attraction of attention to target stimuli.
The model provides a quantitative framework for how these
different processes are combined, and despite a large number
of constraints, it is highly successful in accounting for human
search behavior at the level of full response time distributions
and choice probabilities.
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Visual search tasks usually require an observer to determine
whether or not a pre-defined target object is present within a
display of objects (the display size, D, is the number of
objects in the display, and displays either contain all foils, or
instead one target with the rest foils). Performance in such
tasks is usually measured by response time, because
accuracy tends to be quite high. The results have been used
to understand the processes of visual search, the factors that
determine attention allocation, and the use of automatic and
parallel vs. controlled and serial processes of comparison.
The last of these is the focus of this research.

Various factors contribute to whether search is automatic
or controlled. Low-level perceptual differences between
targets and foils, for instance a green target amidst red foils,
facilitate automatic search behavior, produce response times
that do not vary (much) with display size, and are often
termed to ‘popout’ in line with subjective impressions
(Triesman & Gelade, 1980). Even when targets do not
‘popout’ perceptually, consistent training (in which targets
remain targets, and foils remain foils) in most cases
gradually causes the targets to attract attention
automatically, measured by the fact that the dependence on
display size drops (Shiffrin & Schneider, 1977). However,
the amount of such learning is dependent on the relation of
the target shapes to foil shapes: For example, when a
conjunction of features is needed to define targets, search
generally appears more controlled (slower search rates) and
automatic attraction of attention to targets is slower to
develop.

When the plot of mean response time, RT, to D has a
slope near zero, search is considered parallel and automatic;
when it has a large slope (usually roughly linear) search is
often assumed to be serial (one item in the display at a
time), or controlled. If the slope of target absent responses is
about twice that for target present responses search is

usually assumed to terminate once a target is found in the
serial set of comparisons.

Townsend and colleagues have argued convincingly,
however, that analyses based on mean response times in
standard visual search are relatively uninformative
regarding the processes underlying search (e.g. Townsend &
Nozawa, 1995). For example the function relating mean RT
to D is insufficient for distinguishing serial from parallel
search without strong additional assumptions. As we shall
see, much more can be learned about visual search through
analysis of full response time distributions.

Complementing research identifying conditions in which
search might be either automatic or serial (Thornton &
Gilden, 2007), is research developing a unified model which
can account for all search behavior (e.g., Wolfe’s guided
search model, 2007). Our aim, in what follows, is to build
upon these efforts and develop and implement a framework
for how automatic and controlled search processes combine
to produce the various types of observed visual search
behavior. The model is fit to results partially reported in
Cousineau and Shiffrin (2004), in which three participants
received up to 80 sessions of training. It is similar to
Wolfe’s Guided Search theory in a number of respects,
including a serial search process that is guided to target
items by an automatic parallel process.

Model

When a display appears a set of consecutive serial
comparisons without replacement is initiated. The order of
comparisons is chosen by the observer, and is random with
respect to the actual target position. The order of
comparisons can be interrupted, however, when search is
guided by a separate parallel process that forces the next
comparison to a target position. Search terminates when a
comparison to a target occurs with a positive (i.e. target
present) response, or with a negative response (i.e. target
absent) when all display positions are compared
unsuccessfully. As we will discuss later, however, a
separate decision is sometimes made to terminate before all
comparisons are finished (i.e. early termination of search).

The Serial Comparison Process

Each comparison involves a decision as to whether an
item in the display is either a target or a foil. We model this
decision using a relatively simple evidence accumulation
model, based on the Linear Ballistic Accumulator (LBA)
model (Brown & Heathcote, 2008). Figure 1 contains a
graphical depiction of the comparison process. We assume
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that evidence is accumulated for “target” or “foil” responses
in separate, independent, accumulators. When a target is
being compared evidence tends to accumulate quickly in the
target accumulator and slowly in the foil accumulator.
When a foil is being compared, the tendency reverses. Each
accumulator has a threshold and the output of the
comparison and its time is determined by the accumulator
that reaches its threshold first (each comparison is therefore
a race). It should be noted that this LBA model of a
comparison closely mimics predictions of common
alternative models for a comparison, such as the diffusion
model of Ratcliff (1978). We use the LBA for reasons of
computational convenience.

According to the LBA, evidence accumulates ballistically
in each accumulator (i.e., without noise) at a linear rate until
either threshold is reached. However, the rate at which each
accumulator proceeds is chosen from a normal distribution,
independently for the two accumulators. The winner of the
race, and the time of the comparison, is therefore
determined by the rate choices for that comparison (which
depend on whether the comparison is of a target or foil) and
the thresholds for each accumulator.

For simplicity we use only two Gaussians to determine
the rates, each with a to-be-estimated variance, s. The target
accumulator when a target is being compared, and the foil
accumulator when a foil is being compared (i.e. the
accumulators that would produce a correct response) have
rates chosen from separate Gaussians with to-be-estimated
means, vr and vg respectively; the two remaining
accumulators (those that would produce an incorrect
response) have rates chosen from a Gaussian with fixed
means, 1 — vy and 1 — vg, for target and foil comparisons
respectively. We assume that the threshold for the target and
foil accumulators can be different, and thus estimate two
threshold parameters, b7 and by.

Threshold (bT) =] = = = = = = = = = = = = = = = —

Threshold (bF)
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Figure 1 An LBA comparison process when a target is being
compared (so the mean drift rate is higher for the target
accumulator). The target accumulator and its threshold are given
by the dashed lines, and the foil accumulator and its threshold are
given by the solid lines. The drift rates shown are samples from

normal distributions with the indicated means and common
variance s. These sampled rates will cause the target accumulator
to reach threshold first, so a correct result of the comparison will
occur.

This gives a total of five parameters for the LBA
comparison process. Looking ahead, let us note that in our
application to the empirical data reported in Cousineau and
Shiffrin (2004) all five are chosen to provide a best fit to the
response time distributions and accuracy when display size
is one, for each of the three participants. We are assuming,
therefore, that comparisons are equivalent, and driven by the
same parameters, regardless of the number of items in the
display size.

If the target accumulator wins the race then the search
ends and a positive response is initiated. If the foil
accumulator wins the race, then if all display items have
been compared a negative response if initiated. If there are
more display items to be compared, then there are three
possibilities: 1) Another comparison is initiated; the item to
be compared is chosen by the participant, and is a random
choice from the items that have not yet been compared. 2)
Another comparison is initiated; the item to be compared is
determined by an automatic parallel process, whose details
will be given shortly. 3) The search is terminated early with
a negative response, according to a process whose details
will be given shortly. Note that even the selection of the first
item to be compared can be driven by the parallel guiding
process.

The total response time is a sum of the time occupied by
the above serial comparison process, plus a taken for non-
decision elements of making a response, such as the time
taken to encode the stimuli and execute the motor response.
The non decision time assumptions are given below.

The Parallel Guidance Process

There is considerable evidence in the literature to suggest
that a purely serial model will often fail to account for
visual search performance. For example, the model fails to
predict that the time to find the target does not depend on
display size when there is perceptual pop-out (e.g.,
Treisman & Gelade, 1980). Even when perceptual popout
does not occur, a purely serial process can fail. This is the
case for the data reported in Cousineau and Shiffrin (2004),
where the purely serial model failed in several respects;
most notably, participants responded much more quickly
than would be expected from a purely serial self-terminating
search. We note that positive responses exhibited multi-
modal response time distributions, with the modes roughly
corresponding to the serial position in which the target
happened to be compared. However, the positions of the
modes showed that the participants were comparing the
target earlier in the serial search than would have been the
case had each comparison been chosen randomly.
Furthermore, these fast responses were clearly not guesses
because their accuracy was essentially perfect.

To explain these faster than expected and accurate target
present responses the model includes an automatic parallel
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process that guides search to the target position in a display,
and is learned as training proceeds. In line with the research
and model of Shiffrin and Schneider (1977), and given the
fact that the Cousineau and Shiffrin (2004) study used
consistent mapping in which targets remained targets and
foils remained foils throughout training, we assume that
targets come to attract attention automatically, and that this
process operates in parallel across the entire display.

There are several plausible ways to operationalize a
parallel process. For example, it could be allowed to race
with the serial comparison process, with a target decision
made when either process discovers a target. We decided
instead to let the parallel process guide the next comparison
of the serial process. The parallel process is initially weak
and gradually strengthens over training. We thus think of it
as unreliable from trial to trial, so that its tentative location
of a target needs to be checked by a direct comparison. For
simplicity this parallel guiding process is implemented as a
single accumulator, which gathers evidence in parallel from
the entire display concerning the presence and location of a
target. If a target is present then the rate of evidence
collected (which is again assumed to be linear and without
noise) is selected from a normal distribution with mean vp
and standard deviation sp4z. The accumulator is assumed to
collect evidence for some time fpyr before the first item is
selected for comparison. If evidence is already at threshold
bpsr at this time, then the first comparison is guided,
otherwise search continues as per usual and an item is
selected at random (according to the observer’s plan). When
evidence in the parallel process does reach threshold, then
the current serial comparison is allowed to finish, but if that
comparison does not lead to a response, then the next
comparison is guided to the position identified (correctly)
by the parallel process.

The rate of accumulation in the parallel process should of
course increase as training proceeds and automatic attention
attraction to targets is learned. Also, although the Cousineau
and Shiffrin (2004) study did not vary the target and foil
stimulus properties, we note that the rate of accumulation
parameter in the parallel guiding process should in principle
vary with factors such as the perceptual similarity between
targets and lures. Indeed, we find this is true when we fit
response time distribution data reported by Wolfe, Horiwitz
& Palmer (2010), in which the perceptual features of stimuli
were manipulated. Unfortunately, we are unable to present
these results here, but they will be available in a larger
manuscript currently in preparation for submission.

Processes that Produce Rapid Negative Responses

We found that the model as described thus far could
predict very well the distributions and accuracy levels for
positive responses. However this model failed badly when
applied to the negative response distributions (we note that
the negative response times have proved a problem for other
investigators, e.g., Thornton & Gilden, 2007; Wolfe, 2007).
The main problem is its prediction of too large a proportion
of very slow negative responses because these only occur

when all comparisons fail. We believe it reasonable that the
search process can be terminated with a negative response
before all comparisons are completed. To take an extreme
example, suppose there is a very large display (as in ‘Find
Waldo’). If say, 967 comparisons out of 1000 have been
completed without finding a target, it would be reasonable
to stop searching and respond negatively, because such a
response would likely be correct. This reasoning is
especially enhanced if a parallel guiding process is
operating: the fact that this process has not yet reached
threshold provides additional evidence that a target is not
present. Cutting search short is also likely for participants
who are motivated to finish the experimental session as
rapidly as possible. With these factors in mind, we explored
two possibilities for the way in which participants may
terminate their search early — collapsing thresholds and
early terminations.

Collapsing Thresholds

The first possibility is based on Thorton and Gilden’s
(2007) implementation of early terminations in a purely
serial search model; that observers do search exhaustively
through all items in the display (until a target is located) but
that the threshold for responding negatively decreases as the
number of items compared increases. In other words, we
allow br to get smaller as comparisons continue: The
response threshold for the target absent accumulator for the
jth item compared, where j>1, was br— (4byax — Abrer (D —
7). Such an assumption has two effects: 1) It reduces the
average amount of time required to respond negatively
especially by decreasing the longest response times. 2) It
decreases the variability in the predicted response time
distributions, again because the longest response times tend
to be eliminated.

Early Terminations

The second possibility is an early termination decision not
tied to a particular evidence collection process, but instead
to the display size and the number of comparisons or time
taken searching without success. We implemented this idea
by assuming a probability of terminating search with a
negative decision that increases with the proportion of
display items thus far compared unsuccessfully. This
assumption will decrease the average response times, of
course, but unlike collapsing thresholds, will increase the
variance (because terminations that do not depend directly
on the evidence being collected adds additional variability).

In line with the thought that participants will become
increasingly likely to terminate with the increasing passage
of time and unsuccessful comparisons, we set the
probability of terminating early to be a logistic
transformation of the proportion of the display items
compared unsuccessfully thus far: pyo = (1-e¥*)°)!, where
4 and o are the location and scale parameters of the
transform, and p is the proportion of the display thus far
compared. This sigmoid function gets especially large as the
search nears completion, thus making the probability of
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terminating early very large as the proportion of items
searched increases. Note that we chose to set o to be fixed
across participants, allowing only u to vary between
participants.

Non-Decision Times and Switch Times

Fits of the model as described thus far revealed two small
but systematic mispredictions that we fix by adding
assumptions about non-decision time variation and switch
times between comparisons.

First, the data show that the very fastest responses (the
leading edge of the distributions) slowed as a function of
display size. We therefore assumed that non-decision time
varies from trial-to-trial according to a uniform distribution
with mean Tz and range sr., but allowed Tgr to increase
linearly with display size, with a parameter A Tgp.

Second, the modes of the observed response time
distributions were farther apart than predicted by the model
as described thus far. We therefore assumed that there is an
extra time required to switch from one comparison to the
next, fswircy-

Fits to the Cousineau and Shiffrin (2004) Data

Cousineau and Shiffrin (2004) reported the results of a set
of standard visual search conditions that were part of a
much larger study. We have fit the model to many other
conditions but will show here only fits of the model to
response time distributions from each of the three
participants for the standard conditions in training sessions
34 to 44. We show the detailed predictions for sessions 34
to 44 because inspection showed that learning had slowed
enough to allow collapsing of the data across sessions to
take place without undue distortions.

Methods

More details can be found in Cousineau and Shiffrin
(2004). There were four target and four foil stimuli, all
composed of a circle with short line segments (spokes)
pointing outwards at eight different positions around the
circle. Items maintained their role as targets and lures
throughout the entire study. Target items were defined by a
conjunction of features (i.e., the spokes on the circles), such
that at least one foil item shared at least one feature with all
target items. Targets were defined by a conjunction of
features so as to inhibit perceptual pop-out. The extended
and consistent training should have produced what Shiffrin
and Schneider (1977) termed automatic categorization by
which the set of four targets comes to act as a single
category that can be compared in one step (analogous to
searching for a letter among numbers without checking each
possible letter). Thus in applying the model we assume that
there is a single target rather than four.

Each trial began with a fixation star presented in the
center of the display for 1000ms. The participants were then
shown, for 500ms, a set of featureless stimuli (i.e., circles
without spokes) where the stimuli for that trial were to be

presented, after which time the features arrived (i.e., spokes
were added to the empty circles) and remained until a
response was made. Display size, D, was either one, two or
four, with each display size occurring equally often within a
block of trials. Stimuli were presented in the four corners of
an imaginary square so that the entire display viewed at
50cm was within 2° vertically and 3° horizontally. For
display sizes less than four, positions in the square were
chosen randomly. One of the four target items was present
on 50% of the trials in a block, with the order of target
present and target absent trials chosen randomly, and with
the target location being chosen randomly. Feedback on the
speed and the accuracy of the response was given after each
trial. Each block consisted of 108 trials, and each session
had 6 blocks.

Table 1 Parameter estimates for each participant. Dashes (-)
indicate parameters not used. ¢ Indicates parameters whose units
are seconds. ° Indicates parameters whose units are per second.
Other parameters have arbitrary units.

Participant

A B C
ve 1 0.9 0.85
Vi 0.95 0.92 0.82
s’ 0.25 0.26 0.23
br 0.21 0.1 0.11
br 0.17 0.135 0.12
Ter" 0.2 0.25 0.205
ATgr" 0.02 0.025 0.03
st 0.05 0.1 0.075

VPARb - 4 7
tswirce 0.045 - 0.025
u - 0.57 0.46

Abyax 0.075 - -

Ab ey 0.0325 - -

Results and Model Fits
Figure 2 contains histograms of response time

distributions for correct and incorrect responses (black and
grey, respectively) for display sizes one, two and four (top,
middle and bottom rows, respectively), for target present
and target absent trials (left and right columns, respectively)
for each of the three participants (A-C). The model
predictions are given by the triangles

Probably most striking in the observed data are the
distinct modes observed for target present trials when
display size was greater than one, modes arguing strongly
that search does include a serial comparison process. The
procedure of identifying stimulus locations before each trial
is atypical, but has the advantage of allowing the participant
to plan an order of successive serial comparisons, thereby
reducing some of the ‘noise’ that is found in typical search
tasks. We believe that this method is what allowed us to see
multiple modes in the target present response time
distributions.
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Participants B and C do not show modes as clearly as
does A, and these participants appear to have been reliably
guided to the correct location more often and sooner than
was the case for A.

Fitting the Model

There are at most eleven freely estimated parameters per
participant used to fit sessions 34-44, seven of which are
associated with the comparisons to one display item in the
serial process (a few other other parameters were fixed
rather than estimated, as described below). The seven
comparison parameters, vr, vy, S, br, by, Tgr, and sz, were
estimated from the data for display size of one (i.e., the top
row of Figures 2A-2C). Fitting this way aligns with the
assumption that the serial comparison process is identical
for all items, regardless of the progress of the ongoing
search. It also provides a great deal of constraint on the
predictions of the model.

With these parameter values fixed, we next estimated the
values of the residual time and switch time parameters,
tswircy and ATgg. Finally we estimated parameters for the
parallel guidance process. To minimize the number of free
parameters required for this parallel process, we freely
estimate only one parameter, vpyg, used for all display sizes,
while the other parameters were fixed at values of bpyr = .1,
tpar = .12 seconds and sp r = 1.5 per second, for all three
participants.

Finally, we fit three different versions of the model to
each participant — a version with only collapsing thresholds,
a version with only our early termination process, and a
version that included both of these processes. We found that
the early termination process alone worked reasonably well
for participants B and C, and that the collapsing thresholds
process was required for participant A, and show predictions
for these models.

The fits of the model are shown by the connected
triangles in Figure 2. Model predictions were generated by
simulating 20,000 trials per display size per target presence
condition (i.e., present or absent). The parameters of the
model were estimated by hand, in the order previously
outlined, and were chosen to produce visual agreement
between histograms of model predictions and observed data.
Table 1 contains the parameter values that produced the
predictions in the figures.

The parameter values show what is evident from
inspection of the data: Participants B and C had much
stronger parallel guidance processes than participant A. The
rate of accumulation in the parallel guidance process was
large for participant C, 7u/s, smaller for B, 4u/s, and very
small for A (in fact we set it to 0 for A).

The choice to use just one early termination process for B
and C leads to what is probably the only serious
misprediction, the multi-modality predicted for their target
absent responses. We found that adding a collapsing
thresholds assumption in addition to early termination fixed
this problem, but decided to show predictions of the simpler
model.

Participant A

Present Absent
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Figure 2 Response time distributions for correct responses in each
of the display size conditions (rows) and target present or absent
conditions (columns) in the simultaneous presentation (i.e.,
control) conditions for each of the three participants A-C.
Observed data are represented by histograms and model
predictions by joined triangles. The proportion of correct
responses, both observed and predicted are shown by P and ﬁ,
respectively.

Discussion

The model has at its heart a parallel process that guides
the order of serial comparisons. However, to fit the exact
shape of each participant’s full response time distributions
requires auxiliary assumptions that do add complexity to the
model. The extra complexity is in our view justified because
this is essentially the first time that a model has been fit to
complete distributions of visual search data, and because the
assumptions are plausible and applied in reasonable ways
across participants and display size conditions. Another and
perhaps even stronger justification lies outside of the present
article, because this model has been applied successfully to
many more conditions with response time distributions
collected by Cousineau and Shiffrin (2004) and to many
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additional conditions with response time distributions
reported in Wolfe et al. (2010). A much longer article is
being prepared reporting those applications.

Aside from the general success of this model combining
parallel and serial processes in the form of a guided search,
the model provides noteworthy insights into individual
differences in the way the participants carry out visual
search: Even though they carried out identical tasks, they
varied enormously in the extent to which they allowed the
parallel process to guide serial comparisons. Participants B
and C enjoyed strong parallel guidance, suggesting that they
had developed a form of perceptual attraction to the target
stimuli, and allowed that attraction to guide comparisons.
Participant A, on the other hand, appeared not to use such
guidance, either because targets did not come to attract
attention or because such learning was overwritten and
ignored.

In a recent study of stereotype threat on learning in visual
search Rydell et al. (in press) showed that women under
stereotype threat did not show improvement over training in
rates of search, although such improvement was seen for
control groups of women. The authors hypothesized that the
women under threat may have tried very hard to search
without error and in a chosen order of comparison. Since
guidance would have interfered with the chosen order, the
learning of automatic attention attraction may have been
inhibited. That learning had not occurred (as opposed to
being ignored) was demonstrated in an incidental transfer
task in which trained targets produced interference for the
control women but none for the women under threat. It is
possible that participant A inhibited learning for related
reasons. The idea that participant A may have been ‘trying
too hard’ is consistent with another finding suggested by the
modeling, that A chose not to terminate search early. That
is, instead of an arbitrary early termination late in search, A
instead moved thresholds closer to the start point, so that the
search did end with some specified resolution. Participants
B and C terminated their search with a target absent
response on almost every trial in which they had not found a
target after two items had been scanned. One could argue
that this behavior was appropriate for these participants
because when the target was present they were reliably
guided to the target before having to scan more than two
items.

It is probably obvious both that the model development
reported here was constrained and guided by the data and
that a number of alternative assumptions are plausible and
need to be tested. Such testing could and should be carried
out on the present data sets, on the additional data sets to
which the model has been applied but not reported in this
paper, and on response time distributions collected in new
studies designed to test particular assumptions. Nonetheless,
the application to the fitting of full response time
distributions is an excellent starting point, and has provided
new insights into the nature of visual search and its
component processes.
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