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Abstract

Invention activities are structured tasks in which students
create mathematical methods that attempt to capture deep
properties of data (e.g., variability), prior to receiving
instruction on canonical methods (e.g., mean deviation).
While experiments have demonstrated the learning benefits of
invention activities, the mechanisms of transfer remain
unknown. We address this question by evaluating the role of
design in invention activities, identifying what knowledge is
acquired during invention activities, and how it is applied in
transfer tasks. A classroom experiment with 92 students
compared the full invention process to one in which students
evaluate predesigned methods. Results show that students in
the full invention condition acquired more adaptive
knowledge, yet not necessarily better procedural knowledge
or invention skills. We suggest a mechanism that explains
what knowledge invention attempts produce, how that
knowledge is productively modified in subsequent instruction,
and how it improves performance on some measures of
transfer but not others.

Keywords: Invention activities, transfer, intelligent tutoring
systems, modular knowledge, generation.

Introduction

Invention activities ask students to design and
evaluate mathematical methods that capture deep
properties of given examples. For instance, the
task in Figure 1 asks students to invent a general
method for calculating variability. Invention
activities are designed to augment and precede
traditional teacher-led instruction (Roll, Aleven,
& Koedinger, 2009; Schwartz & Martin, 2004).
Following the invention attempt, whether
successful or not, students receive instruction on
canonical methods for the same problem
(“show”), and apply these methods to different
problems (“practice”). For example, after
inventing measures of variability, students receive
show-and-practice instruction on Mean Deviation

(MD), that is, the mean absolute difference from
the mean. One key aspect of invention activities is
the use of contrasting cases (Chase, Shemwell, &
Schwartz, 2010). Contrasting cases are carefully
designed examples that emphasize target features
by changing just those and no other features. For
example, the contrasting cases shown in Figure 1
(middle) emphasize distribution while fixing
sample size, range, average, etc.

The Invention Lab facilitates invention activities
in three steps (Roll, Aleven, & Koedinger, 2010).
Students are first asked to rank the contrasting
cases according to the target property (e.g, the
variability of the left graph is lower than that of
the right graph, see Figure 1). Students then
design a mathematical method and calculate the
target property for the given data (e.g., design
“range / N” and apply it to both data sets). Last,
students evaluate their method by comparing its
inferred ranking to the initial qualitative ranking.
Once the invented method ranks the contrasting
cases successfully, students are given new data to
work with. Students often make progress during
the invention process, yet they rarely invent a
valid general method (Schwartz & Martin, 2004).

Classroom  evaluations found that the
combination of invention activities and show-and-
practice instruction improves performance on
transfer measures, compared with show-and-
practice alone, controlling for overall time on task
(Schwartz & Martin 2004; Roll et al., 2009;
Kapur, 2008). However, while the positive effect
of invention activities is well documented, not
enough is known about how this effect is
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achieved. In this paper we investigate the
cognitive processes and knowledge outcomes that
are associated with invention activities, and the
manner in which invention activities foster
performance on measures of transfer.

Invention vs. Evaluation

Our first goal is to evaluate the role of a key
process within the invention activity — the design
of methods. Hypothesis 1(a) suggests that the
design of methods is a key process in achieving
the results of invention activities, akin to the
generation effect (Richland et al.,, 2005).
However, the worked example effect suggests that
novice learners may benefit from analyzing given
solutions more than from engaging in problem
solving (Sweller, 2006). In addition, evaluating
given methods may take less time than designing
and evaluating methods. Therefore, Hypothesis
1(b) suggests that evaluation of given (imperfect)
methods, using contrasting cases, 1s more
beneficial than designing methods.

Knowledge Outcomes and Mechanisms of Transfer

Our second goal is to identify the knowledge that
is acquired during invention activities and enables

Part 1: Prediction

Which trampoline is less spread out (the values are closer together)?

Trampoline A

transfer. This is especially interesting given that
students usually fail to generate successful
methods. Hypothesis 2(a) suggests that students
acquire domain-specific knowledge that prepares
them to better encode the subsequent instruction
(Schwartz & Bransford, 1998; Schwartz, Sears, &
Chang, 2007). Hypothesis 2(b), on the other hand,
suggests that students acquire domain-
independent habits or skills that help them
approach transfer items. For example, Taylor et
al. (2010) found that invention activities help
students come up with more ideas during open-
ended transfer problems (yet the quality of each
idea was not affected by the invention process).
Last, we propose a mechanism that explains
how knowledge that is acquired during invention
activities  interacts with  show-and-practice
instruction to improve ability to transfer.

Method

Design

We address these questions by comparing two
versions of invention activities. Students in the
Design and Evaluate condition were instructed to
design methods and evaluate them, while students

4]

Part 2: Design

Create a method for determining which trampoline's data points are closer to a single point. You should use
the same method to evaluate both trampolines. Your method should give a single value for each trampoline.

Write your method in steps so that other people can apply it.

Calculation (number, operator, number) Result Calculation (number, operator, number) Result
stepl | 10 [ - B2 = 8.0 15 15 Stepl | 10 [ - % = 8.0
Step2 10 | 8 =20 14 14 Step2 10 =~ 8.0
Step3 Step1 Step2 = 10.0 13 13 Step3 Step1 = 16.0
12 12
1" 1
g 10—9 é’ 0W—000
g o g o
® 80 2 8
= 7 = 7
9 s
= 600 & 6—
= g5 | = 5
4— 0 4
3 3
2 2
Add step Delete step Delete all 1 ° 1 coo Add step Delete step Delete all
Add function 0 0 Add function
= [ oo | - kad | e 1.
=, ] choose... g ] Use Trampoline A Trampoline B = ] choose... I§ , Use
( Submit Results ) € Advice )
Part 3: Evaluation
According to your method, which trampoline is less spread out (the values are closer together)? | ? 24

Did your method (part 2) give the same answer you expected in your intuition (part 1)?

[ ‘:] ( Help\ (" Done )

Figure 1: The Invention Lab. Students invent methods for calculating variability by qualitatively ranking the contrasting
cases, inventing a mathematical procedure, and comparing their initial ranking with their invented procedure. The cover story
compares the consistency of two trampolines. The contrasting cases target students’ demonstrated knowledge gaps.

2825



in the Evaluate Only condition were asked
evaluate predesigned methods. These predesigned
methods were taken from a previous study in the
same school with the same age group of students
(Roll, et al., 2009). Each of the chosen methods
failed to incorporate one or more critical features
of the target domain, variability. For example, one
method that was given to students was “range /
N”. This method fails to use all data points in each
of the contrasting cases, and thus fails to generate
a correct ranking for the cases shown in Figure 1.
Students were instructed to test each method
against multiple sets of data. As soon as a method
was found not to work, students were asked to
move to the next method.'

Participants.

Ninety-two 7" grade students from a public
middle school participated in the study. 33
students were randomly assigned to the Design
and Evaluate condition and 59 students were
assigned to the Evaluate Only condition. Students
were enrolled in two levels of math classes
(regular and advanced), split evenly between
conditions.

Procedure

The study spanned four class periods over two
days. The first day began with a pre-test, followed
by an Invention Lab tutorial. Students then moved
on to the first invention activity, which was
limited to 25 minutes. Instruction for the
invention activity differed based on condition.
Design and Evaluate students were asked to
design and evaluate methods, while Evaluate Only
students were asked to implement and evaluate
methods from a given booklet. Students invented
in pairs and chose their partners. With few
exceptions, the pairs did not change throughout
the study. The invention activity concluded with a
short whole-class discussion in which students
(from both conditions) shared the successes and
limitations of their methods. The discussion was
used to motivate students to try their best during

' Half of the Evaluate Only students were also prompted to
explain why each method failed or succeeded. We collapse these
groups because it was evident that students ignored these prompts
and we found no other associated differences in learning.

the invention process. The second invention
activity followed a similar structure and duration,
and was divided across two days. Following the
summary discussion of the second activity,
students received about 7 minutes of instruction
on MD. Students then worked individually with a
designated intelligent tutoring system for MD. All
students finished all practice problems within 25
minutes. The study concluded with a post-test.

Materials

Students in both conditions used the Invention
Lab (Roll et al., 2010), an intelligent tutoring
system created using the Cognitive Tutor
Authoring Tools (Aleven et al, 2009). The first
invention activity asked students to evaluate
which of two trampolines is more consistent,
given data from multiple bounces for each
trampoline (see Figure 1). The first set of
contrasting cases emphasized the range of the data

\Procedural fluency:
What is the MD of 2, 4, 7, and 3? (1)

Conceptual knowledge:
The average temperature in Montreal and Vancouver is
similar, but the MD is much higher in Montreal. What
does it mean?
a. Montreal is always warmer.
b. Vancouver is always warmer.
(c). The temperatures in Montreal are more extreme.
d. The temperatures in Vancouver are more extreme.

\Debugging items:
Marlene invented the following method:
Step 1: Find the average.
Step 2: Find the distances from the average.
Step 3: Add up all the distances.
What do you think about this method?
a. It works.
(b). Tt does not work because there is different number
of numbers in each set.
c. It does not work because the method does not use
all the numbers.

\PFL items:

Sonly is testing a new distance detector. The device is

not accurate and small errors are permitted. Sonly

measured the same distance several times and received

3,5, 6, and 10 feet. What is the MD of the new device,

if errors of 1 foot or less should be ignored? (1.75)
Figure 2: MD assessment items. Correct answers appear
in parentheses. All items but procedural fluency items

were given in the context of story problems.
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(1,3,5,7,9 vs. 3,4,5,6,7). Subsequent contrasting
cases were created by the Invention Lab in real
time based on the weaknesses of students'
methods. The second invention activity asked
students to evaluate the consistency of machines
that pack candies into bags in a candy factory.

Instruction on how to apply MD was delivered
by the first author and included graphical and
mathematical explanations of the structure of the
formula and a few examples. In subsequent
practice students applied MD to 20 different data
sets and interpreted results.

Measures and Analysis

The pre- and post-tests included assessments of
procedural and conceptual knowledge. The post-
test also included two types of transfer items that
required students to construct or analyze modified
versions of the taught procedure: Preparation for
Future Learning (PFL) items asked students to
apply a modified version of the taught procedure
(Bransford & Schwartz, 2001). For example, after
learning to calculate variability by averaging the
errors (MD), students were asked to apply MD
while ignoring certain types of errors (e.g.,
include only large errors, see Figure 2).
Debugging items asked students whether a
modified version of the taught procedure still
achieves its goal, and if it fails, to identify the
source of failure (Roll, 2009).

The effect of condition on students’ learning
was evaluated using ANCOVAs with condition,
class level, and their interaction as factors, and
pre-test score as a covariate. Five separate
ANCOVAs were calculated, one for each type of
items. Bonferroni correction was applied to
account for multiple comparisons.

Results

There was a large, yet insignificant, difference
between conditions at pre-test: Design and
Evaluate: 15%; Evaluate Only: 27%; F(2,88)=10,
p = .19. On identical items in the pre- and post-
tests, students improved from 23% to 58% across
conditions and class levels; #(90) = 7.0, p < .0005.

Table 1 summarizes the results of the posttest.
There was no effect for condition on procedural
fluency items (p = .21). There was a significant

main effect for condition on performance on
conceptual items; Design and Evaluate = .52,
Evaluate Only = 49, F(4,87) = 18, p < .0005.
There was also a main effect for condition on
debugging items; Design and Evaluate: .44,
Evaluate Only: .34. F(4,87) = 42, p = .002. Both
effects remain significant after applying
Bonferroni correction. There was no effect for
condition on PFL items with or without resource
(p = .2 and .3 respectively).

Table 1: Performance on post-test by type of item, M(SD)

Design and Evaluate
Evaluate Only
Procedural Fluency .64 (.44) .62 (.45)
Conceptual understanding .52 (.25)*** 49 (.24)
Debugging 44 (30)** 34 (.34)
PFL W/o resource .09 (.20) .06 (.16)
With resource .46 (.45) 40 (.45)
**_p<.01; ¥** - p<.001
Discussion

Overall, students who designed their methods
outperformed students who received predesigned
methods on measures of debugging ability and
conceptual understanding. There was no effect of
condition on procedural fluency or PFL items.

Invention vs. Evaluation

The results presented above show the importance
of students designing their own methods, and thus
support Hypothesis 1(a). This effect is especially
interesting given that all students failed to design
valid methods.

There are several possible explanations for the
benefits of design. First, students who design their
methods have greater agency. Second, students
may learn better from failures of methods they
designed since they understand the intended
function of each component in their methods.
Third, students who work with pre-designed
methods might have an overly specific goal — to
test given methods using given data. Students who
design methods may have a more scientific goal
to understand the features of the domain and
create a method that captures them. More studies
are required to evaluate these explanations.
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Knowledge Outcomes and Mechanisms of Transfer

Performance on conceptual items shows that
students who design their methods acquire better
domain knowledge, in support of Hypothesis 2(a).
Their improved performance on debugging items
might suggest that students who design also
acquired better domain-independent debugging
skills, as suggested by Hypothesis 2(b). However,
students in both conditions practiced the relevant
debugging skills during invention. In fact,
Evaluate Only students had more time to practice
debugging on tasks isomorphic to the assessment
items. Therefore, a more likely interpretation is
that the improved conceptual understanding, and
not improved debugging skills, helped students
who designed their methods perform better on
debugging items.

Accumulated evidence from this and previous
studies shows that invention activities do not help
students apply the canonical methods (in
procedural items), yet they help students modify
the learned methods (in PFL items) and diagnose
variants of these methods (in debugging items;
Roll, 2009; Roll, et al., 2009; Schwartz & Martin,
2004). A main question to ask, therefore, is how
the experience of failing to invent prepares
students to modify and adapt their acquired
knowledge following instruction.

As described above, students in invention
activities invent using contrasting cases. The
contrasting cases are designed to direct students’
attention to deep features of the domain, often one
feature at a time. In order for their methods to
work, students need to find mathematical ways to
represent the target features in their methods. For
example, the contrasting cases shown in Figure 1
help students realize that their methods should use
all available data, since relying only on extreme
points may give the wrong answer. Thus, one
explanation for the benefits of failed invention
attempts is that the invention process is essentially
a process in which students acquire requirements
for a valid method (see Figure 3.a). Within the
domain of variability, by using contrasting cases,
students may realize that a valid method should
measure distances, use all given data, account for
sample size, and use positive values. Students
may find mathematical operations that satisfy

some, but not all, of these requirements. For
example, few methods included division by N. In
fact, most requirements are left unsatisfied.

The invention process helps students identify
concrete, and possibly explicit, requirements, and
examples of successful and unsuccessful ways to
achieve them. Later, during show-and-practice,
students can complete the puzzle by noticing how
the canonical method satisfies these requirements.
Comprehension of instruction involves a mapping
process in which students can identify how each
component of the canonical method fills a certain
function. In the case of MD, division by N
accounts for sample size; the minus operator

a. Invention activities
Students identify requirements
from a general method.

Find distances 7

Take positive values

?
Use all relevant data ?

Account for # of points ?

b. Show-and-practice ) -
Students identify functional 2|1 i~ X |
components that satisfythe —
requirements N

Find distances Subtraction

Take positive values Absolute value

Use all relevant data Sum all points

Account for # of points Division by N

Instruction

Assessment
2|x =X |

Subtraction

c. Debugging items
Students evaluate the
method by mapping it onto
the identified components

Find distances

Take positive values Absolute value

Use all relevant data Sum all points

Account for # of points %

d. Future learning items
Students reuse relevant
functional components
and update others

Find variability if
errors of 1 or below
should be ignored

Find distances Subtraction

re--- " ST |
1 Sum all points

_____________

Take positive values Absolute value

Use all relevant data

Account for # of points Division by N | Sum distances > 1

Figure 3: A possible explanation for learning and transfer
from invention activities. While inventing, students can
identify requirements from valid solutions (a). During show-
and-practice students realize how the taught formalism
addresses these requirements (b). Such functional encoding
helps students adapt their knowledge (c, d)
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calculates distances; the sum function uses all the
points; and absolute value makes sure that
distances do not cancel each other out. The
outcome is knowledge that is more elaborated and
is composed of critical functional components,
each of which are backed up by the relevant
rationale and supporting experiences.

Students in the Evaluate Only condition have
some of these experiences, but these are not
customized to their own preconceptions. More
importantly, these students focus on evaluating
methods, and not on identifying requirements.

The modular encoding of functional
components (i.e., relating each component in the
method to its specific function) allows students to
adapt their knowledge to the task. For example, in
debugging items, students can map the debugged
procedures onto the set of requirements they have

come to understand and identify which
requirement is not met.
Summary

We present a study that compares invention
activities that include design and evaluation of
methods to evaluation of predesigned methods,
prior to receiving instruction. Our results show
that the design of methods enhances the effect of
invention activities. The results also show that
students who design their methods acquire better
domain knowledge, and not necessarily better
invention skills. Further analysis suggests that the
invention process helps students set requirements
from the general method. Students later identify
functional components that satisfy these
requirements within the canonical method,
resulting in more differentiated and modular
knowledge. The acquired knowledge can be
applied flexibly by reusing and recombining the
functional components.

The study makes contributions by identifying
the cognitive benefits of invention activities and
by explaining how these benefits interact with the
taught material to improve the ability to transfer
the target knowledge. Students who invent gain
the knowledge of key requirements of formalisms,
of reasons for these requirements, and of
mathematical tools that satisfy (and fail to satisfy)
these requirements.
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