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Abstract

We present evidence from three quasi-experimental studies on
productive failure. In Experiment 1, students experienced either
direct instruction (DI) or productive failure (PF), wherein they
were first asked to generate a quantitative index for variance before
receiving direct instruction on the concept. Experiment 2 examined
if it was necessary for students to generate solutions or can these
solutions be simply given to the students to study and evaluate.
Experiment 3 examined if it was necessary for students to generate
solutions before receiving the critical features of the targeted
concept, or would simply telling the critical features without any
such generation work just as well. In Experiment 1, PF students
performed on par with DI students on procedural fluency, and
significantly outperformed them on data analysis and conceptual
insight items. In Experiment 2, only the effects on conceptual
insight and near transfer were significant. In Experiment 3, only
the effect on conceptual insight remained significant. Overall,
these results challenge the claim that that direct instruction alone is
the most effective approach for teaching novel concepts to
learners.

Introduction

Proponents of direct instruction bring to bear substantive
empirical evidence against un-guided or minimally-guided
instruction to claim that there is little efficacy in having
learners solve problems that target novel concepts, and that
learners should receive direct instruction on the concepts
before any problem solving (Kirschner, Sweller, & Clark,
2006). Kirschner et al. (2006) argued that “Controlled
experiments almost uniformly indicate that when dealing
with novel information, learners should be explicitly shown
what to do and how to do it” (p. 79). Based on cognitive
load theory, commonly-cited problems with un-guided or
minimally-guided instruction include increased working
memory load that interferes with schema formation
(Tuovinen & Sweller, 1999; Sweller, 1988), encoding of
errors and misconceptions (Brown & Campione, 1994), lack
of adequate practice and elaboration (Klahr & Nigam,
2004), as well as affective problems of frustration and de-
motivation (Hardiman et al., 1986).

Klahr & Nigam’s (2004) often-cited study compared the
relative effectiveness of discovery learning and direct
instruction approaches on learning the control of variable
strategy (CVS) in scientific experimentation. On the
acquisition of basic CVS skill as well as ability to transfer
the skill to evaluate the design of science experiments, their
findings suggested that students in the direct instruction
condition who were explicitly taught how to design un-
confounded experiments outperformed their counterparts in
the discovery learning condition who were simply left alone
to design experiments without any instructional structure or
feedback from the instructor. Further experiments by Klahr
and colleagues (e.g., Strand-Cary & Klahr, 2008), and
others as well have largely bolstered the ineffectiveness of

discovery learning compared with direct instruction (for
reviews, see Kirschner et al., 2006).

However, we question whether there is little efficacy in
having learners solve problems that target concepts they
have not learnt yet. To determine if there such an efficacy, a
stricter comparison for direct instruction would be to
compare it with an approach where students first generate
representations and methods on their own followed by direct
instruction. As it can be expected, the generation process
will invariably lead to failure, that is, students are rarely
able to solve the problems and discover the canonical
solutions by themselves. Yet, this very process can be
productive for learning provided direct instruction on the
targeted concepts is subsequently provided (Schwartz &
Martin, 2004). As a case in point, we present evidence from
our research program on productive failure (Kapur, 2008).

Designing for Productive Failure

Productive failure focuses on engaging students in processes
that serve two critical cognitive functions, which in turn,
prepare students for subsequent direct instruction: a)
activating and differentiating prior knowledge in relation to
the targeted concepts, and b) affording attention to critical
features of the targeted concepts. PF comprises two
phases—a generation and exploration phase followed by a
direct instruction phase. In the generation and exploration
phase, the focus is on affording students the opportunity to
leverage their formal as well as intuitive prior knowledge
and resources to generate a diversity of solutions for a
complex problem; a problem that targets concepts that they
have not yet learnt. Research suggests that students do have
rich constructive resources (diSessa & Sherin, 2000) to
generate a variety of solutions for novel problems. At the
same time, research also suggests that one cannot expect
students, who are novices to the target content, to somehow
generate or discover the canonical representations and
domain-specific methods for solving the problem (Kirschner
et al., 2000).

However, the expectation for the generation and
exploration phase is not for students to be able to solve the
problem successfully. Instead, it is to generate and explore
the affordances and constraints of a diversity of solutions for
solving the problem. Our hypothesis is that this process both
activates and differentiates prior knowledge (as evidenced in
the diversity of student-generated solutions). Furthermore, a
comparison and contrast between the various solutions
affords opportunities to attend to critical features of the
targeted concept. Consequently, the generation and
exploration phase provides the necessary foundation for
developing deeper understanding of the canonical concept
during direct instruction (Kapur, 2009, 2010a/b; Schwartz &
Martin, 2004).
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Purpose

The purpose of this paper is to report three quasi-
experimental studies that help unpack the efficacy of the
productive failure (PF) effect. In Experiment 1, we compare
PF with direct instruction (DI) to show that PF engenders
better prior knowledge differentiation (as evidenced in
student-generated solutions), and affords opportunities for
students to attend to critical features of the targeted concept.
Experiment 2 tests whether prior knowledge differentiation
can be engendered by simply giving student-generated
solutions to the students to study and evaluate. Finally,
Experiment 3 examines the extent to which attention to and
understanding of critical features is contingent upon having
students go through the generation and exploration phase, or
could these critical features simply be told to students as
part of direct instruction.

Experiment 1: PF vs. DI

Participants

Participants were 74, ninth-grade mathematics students (14-
15 year olds) from two intact classes in an all-boys public
school in Singapore. In all three experiments reported in this
paper, students were almost all of Chinese ethnicity.

Research Design

A quasi-experimental, pre-post design was used with one
class (n = 39) assigned to the ‘Productive Failure’ (PF)
condition, and the other class (n = 35) to the ‘Direct
Instruction’ (DI) condition. Both classes were taught by the
same teacher.

Pretest First, all students took a five-item paper and
pencil pretest (¢ =.75) on the concept of variance.

Intervention Next, all classes participated in four, 55-
minute periods of instruction on the concept as appropriate
to their assigned condition.

In the DI condition, the teacher first explained the concept
of variance, and its canonical formulation as the square of

the standard deviation (g2 _ i( %, _;)2 /n) using a data
1
analysis problem. Next, the teacher modeled the application
of the concept by working through several data analysis
problems, highlighting common errors and misconceptions,
and drawing attention to critical features of the concept in
the process. The data analysis problems required students to
compare the variability in 2-3 given data sets, for example,
comparing the variability in rainfall in two different months
of a year, or comparing the consistency of performance of
three soccer players, and so on. To ensure students were
engaged and motivated throughout, they were told that they
will be asked to solve isomorphic problems after the teacher
had worked through the examples with the class. Thereafter,
students worked face-to-face in triads on more data analysis
problems so that they could benefit from the processes of
explanation and elaboration afforded by collaboration. The
teacher then discussed the solutions with the class. After
each period, students were given isomorphic data analysis

problems for homework, which the teacher marked and
returned to the students, usually by the following period.

The PF condition differed from the DI condition in one
important aspect. Instead of receiving direct instruction
upfront, students spent two periods working face-to-face in
triads to solve one of the data analysis problems on their
own. The data analysis problem presented a distribution of
goals scored each year by three soccer players over a
twenty-year period. Students were asked to design a
quantitative index to determine the most consistent player.
During this generation phase, no instructional support or
scaffolds were provided. Following this, two periods were
spent on direct instruction where the teacher first
consolidated by comparing and contrasting student-
generated solutions with each other, and then explained the
canonical solution just like in the DI condition. Note that
because students in the PF condition spent the first two
periods generating an index for variance, they solved fewer
data analysis problems overall than their counterparts in the
DI condition. To make this contrast even sharper, PF
students did not receive any homework.

After the second and fourth periods, students from all
classes took a five-item, five-point (1=low to 5=high) Likert
scale engagement survey (o = .79).

Posttest All students took a five-item, paper and pencil
posttest (o = .74) comprising:

i. one item on procedural fluency (calculating SD for a
given dataset),

ii. two items on data analysis (comparing means and SDs of

two samples; these items were isomorphic with the data

analysis problems covered during instruction), and

.two items on conceptual insight (required students to

evaluate sub-optimal solutions; one item dealing with

sensitivity to ordering of data points, and another with

outliers)

Maximum score for each of the three types of items was

10; two raters independently scored the items using a rubric

with an inter-rater reliability of .92.

jored

il

Results

Process PF groups generated on average 7 solutions (M =

6.98, SD = 2.48) to the problem. Four categories emerged:

a. Central tendencies (e.g., using mean, median, mode);

b. Qualitative methods (e.g., organizing data using dot
diagrams, frequency polygons, line graphs to examine
clustering and fluctuations patterns);

c. Frequency methods (e.g., counting the frequency with
which a player scored above, below, and at the mean to
argue that the greater the frequency at the mean relative
to away from the mean, the better the consistency); and

d. Deviation methods (e.g., range; calculating the sum of
year-on-year deviations to argue that the greater the
sum, the lower the consistency; calculating absolute
deviations to avoid deviations of opposite signs
cancelling each other; calculating the average instead of
the sum of the deviations).

Elsewhere, we have described these student-generated
solutions in greater detail (Kapur, 2010b). Note that none of
the groups were able to generate the canonical formulation
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of SD. In contrast, analysis of DI students’ classroom work
revealed that students relied only on the canonical
formulation to solve data analysis problems. This was not
surprising given that had been taught the canonical
formulation of SD, which is also easy to compute and apply.
All students were accurately able to apply the concept of SD
to solve the very problem that the PF students tried to
generate a solution to. Finally, on the mean of the two self-
reported engagement ratings, there was no difference
between the PF condition, M = 3.84, SD = .51, and the DI
condition, M = 3.82, SD = 43,

These process findings serve as a manipulation check
demonstrating that students in the PF condition experienced
“failure,” at least in the conventional sense of not being able
to generate the canonical solutions. In contrast, DI students
were not only just as engaged as PF students but also
demonstrated successful application of the canonical
formulation to solve data analysis problems, including the
one that the PF students solved during the generation phase.
The high engagement ratings and performance results also
suggest that the DI condition was not simply a case of poor
instruction.

Outcome On the pretest, no student demonstrated
canonical knowledge of SD, and there was no significant
difference between the conditions, F(1, 72) =2.56, p = .114.

Posttest performance on the three types of items formed
the three dependent variables. Controlling for the effect of
prior knowledge as measured by the pretest, F(4, 134) =
1.89, p = .112, a MANCOVA revealed a significant
multivariate effect of condition, F(4, 134) = 16.802, p <
.001, partial n* = .33. Interaction between prior knowledge
and experimental condition was not significant.

Table 1: Experiment 1 posttest performance by item type

Experiment 1 PF DI P/
M (SD) M (SD)
ProceduralFluency 8.70 (2.07) 8.69 (2.19) ns
Data Analysis 7.39 (1.94) 597(2.48) .013*.09
Conceptual Insight  6.12 (2.38) 3.01 (1.93) .001%*/.31
PF students significantly outperformed their DI

counterparts on data analysis and conceptual insight
problems without compromising on procedural fluency.

Discussion

As hypothesized, the PF design invoked learning processes
that not only activated but also differentiated students’ prior
knowledge (as evidenced by the diversity of student-
generated solutions). Whereas PF students worked with the
solutions that they generated and the canonical solutions
(that they received during direct instruction), DI students
worked with only the canonical ones. Hence, DI students
worked with a smaller diversity of solutions, and
consequently, their prior knowledge was arguably not as
differentiated as their PF counterparts. This was a
significant difference between the conditions by design.
Proponents of DI have repeatedly questioned the utility of
getting students to solve novel problems on their own.
Instead, they argue that students should be given the

canonical solutions (either through worked examples or

direct instruction) before getting them to apply these to

solve problems on their own (Sweller, 2010).

Experiment 1’s findings suggest that there is in fact a
utility in having students solve novel problems first. What
prior knowledge differentiation affords in part is a
comparison and contrast between the various solutions—
among the student-generated solutions as well as between
the student-generated and canonical solutions. Specifically,
these contrasts afford opportunities to attend to the
following critical features of the targeted concept that are
necessary to develop a deep understanding of the concept:

1. What is the difference between the mean and the
distribution around the mean?

2. What is the difference between a qualitative description
of the data (e.g., dot diagram, line graphs) and a
quantitative description (e.g., range, SD)?

3.  What is the difference between the frequency of a point

and its position relative to a fixed reference point?

Why must we take deviations from a fixed point?

Why is the mean usually the fixed point; why can’t it be

the maximum or the minimum point, or even the

median or the mode?

6. Why must we take deviations from the mean for all the
points; why not just choose the maximum and the
minimum point, or simply the range?

7.  Why must deviations from the mean be made positive?

8. Why must we divide the sum of the squared deviations
by n; why not simply work with their or sum?

9. Why must we take the square root of the average of the
squared deviations?

10. How do outliers affect SD?

However, Experiment 1 raises two further questions:

1. If exposure to both student-generated and canonical
solutions is what is essential, then instead of getting
students to generate solutions, why not simply let
students study the student-generated solutions first
(e.g., in the form of well-designed worked examples)
and then give them the canonical solutions through
direct instruction? Simply put, is it really necessary for
students to generate the solutions or can these be given
to them? Experiment 2 addresses this question.

2. If what is essential is that students attend to the ten
critical features, then why not simply tell students these
critical features? Why bother having them generate, and
compare and contrast the solutions? Simply put, do
students really need to generate before receiving the
critical features, or would telling the critical features
without any generation work just as well? Experiment 3
addresses this question.

v ok

Experiment 2: PF vs. Evaluation

The purpose of Experiment 2 was to examine the difference
between: a) having students generate solutions to solve a
novel problem, and b) having them study and evaluate
student-generated solutions (also see Roll, 2009).
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Participants

Participants were 54, ninth-grade mathematics students (14-
15 year olds) from two intact classes in an all-boys public
school in Singapore.

Research Design

One class (n = 31) was assigned to the PF condition, and the
other class (n = 23) to the ‘Evaluation’ (EV) condition. Both
classes were taught by the same teacher. The PF condition
was exactly the same as in Experiment 1. The EV condition
differed from the PF condition in one important aspect: The
generation phase was replaced with an evaluation phase; the
subsequent direct instruction phase was the same as in the
PF condition.

Whereas PF students had to collaboratively generate
solutions to solve the complex problem during the first two
periods, EV students took the same two periods to
collaboratively study and evaluate the peer-generated
solutions (available from Experiment 1). To ensure that
students were motivated to understand the given solutions,
students were asked to evaluate and rank order the solutions
so that they would indirectly be forced to compare and
contrast the solutions. Each solution was presented on an A4
sheet of paper with the prompt: “Evaluate whether this
solution is a good measure of consistency. Explain and give
reasons to support your evaluation.”

The number of solutions given was pegged to the average
number of solutions produced by the PF groups, that is,
seven. The most frequently-generated solutions by the PF
students were chosen for EV condition, and none of the
chosen solutions contained misconceptions. The seven
solutions included one on central tendencies, two on
qualitative methods (dot diagram and line graph), two on
frequency methods (frequency of the mean and frequency of
the mean relative to away from the mean), and two on
deviation methods (sum of year-on-year deviation with
signs, and average year-on-year deviations without signs).

Because student-generated solutions sometimes lack
conceptual clarity in their presentation that may make it
difficult for other students to understand and evaluate them,
they were converted into well-designed worked examples.
EV students received these solutions in the form of worked
examples one-by-one (counterbalanced for order), and were
given approximately 10-12 minutes for each. The remaining
time (approximately 30 minutes) was spent on rank ordering
the solutions. Finally, to ensure that EV groups understood
the student-generated solutions, the teacher and a research
assistant conducted an in-situ check for understanding with
the EV groups by asking them to explain their
understanding of the solutions. Where students needed help
in understanding the solutions, it was readily provided
because we did not want students’ lack of understanding to
adversely affect the fidelity of the EV condition.

Results

Process PF groups produced on average just under 7
solutions (M = 6.78, SD = 2.03) to the problem. As
expected, these solutions fell into the four broad categories
identified earlier. As in Experiment 1, the mean self-

reported engagement ratings were, on average, high, and
there was no difference between the PF condition, M = 4.07,
SD = .61, and the EV condition, M =4.12, SD = .53.

Outcome On the pretest, no student demonstrated
canonical knowledge of SD, and there was no significant
difference between the conditions, F(1, 63)=1.16, p = .285.

On the posttest (¢ = .78), an item on near transfer was
added to increase the discriminatory power of the posttest.
The near transfer item required students to add data points
to a given dataset without changing its mean and SD. Two
raters independently scored the items using the same rubric
as in Experiment 1 with an inter-rater reliability of .95.
Performance on the four types of items formed the four
dependent variables. Controlling for the effect of prior
knowledge as measured by the pretest, F(4, 48) = 1.04, p =
398, a MANCOVA revealed a significant multivariate
effect of condition, F(4, 48) = 3.34, p = .017, partial 1> =
.22. Interaction between prior knowledge and experimental
condition was not significant.

Table 2: Experiment 2 posttest performance by item type

Experiment 2 PF EV P/
M (SD) M (SD)
Procedural Fluency 9.60 (0.98) 9.43(1.73) ns
Data Analysis 9.83(0.90) 9.34(2.28) ns
Conceptual Insight  4.77 (1.02) 3.44 (1.67) .001*/.19
Near Transfer 7.50(3.35) 5.08(4.73) .039%/.08
PF students significantly outperformed their EV

counterparts on conceptual insight and near transfer
problems without compromising on procedural fluency and
data analysis. Consistent with Roll (2009), exposing
students to and having them evaluate student-generated
solutions does not seem to be as efficacious as having them
generate those solutions before direct instruction.

Experiment 3: PF vs. Strong-DI

The purpose of Experiment 3 was to compare PF condition
with a strong DI condition, in which the teacher explicitly
explains the 10 critical features.

Participants

Participants were 57, ninth-grade mathematics students (14-
15 year olds) from two intact classes in an all-boys public
school in Singapore.

Research Design

One class (n = 31) was assigned to the PF condition, and the
other class (n = 26) to the ‘Strong-DI’ condition. Both
classes were taught by the same teacher. The PF condition
was exactly the same as in Experiment 1. The Strong-DI
condition was the same as in Experiment 1 except that the
teacher drew attention to the ten critical features during
instruction. While explaining each step of formulating and
calculating SD, the teacher explained the appropriate critical
features relevant for that step. For example, when
explaining the concept of “deviation of a point from the
mean”, the teacher discussed why deviations need to be
from a fixed point, why the fixed point should be the mean,
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and why deviations must be positive. During subsequent
problem solving and feedback, the teacher repeatedly
reinforced these critical features throughout the lessons.

Results

Process PF groups produced on average just over 7
solutions (M = 7.24, SD = 2.56). These solutions fell into
the four broad categories identified earlier. DI students
relied only on the canonical formulation to solve data
analysis problems, and all were accurately able to apply the
concept to solve the very problem that the PF students tried
to generate solutions to. As in Experiments 1 and 2, the
engagement ratings were on average high, and there was no
difference between the PF condition, M = 4.15, SD = .44,
and the Strong-DI condition, M =4.22, SD = .32.

Outcome On the pretest, no student demonstrated
canonical knowledge of SD, and there was no significant
difference between the conditions, F(1, 55) = .25, p = .618.

The posttest (o= .79) was the same as in Experiment 2.
Two raters independently scored the items using the same
rubric as in Experiment 2 with an inter-rater reliability of
.98. Controlling for the effect of prior knowledge as
measured by the pretest, F(4, 51) = .25, p = 907, a
MANCOVA revealed a significant multivariate effect of
condition, F(4, 51) = 2.65, p =.044, partial n° = .17.
Interaction between prior knowledge and experimental
condition was not significant.

Table 3: Experiment 3 posttest performance by item type

Experiment 3 PF Strong-DI P/
M (SD) M (SD)

Procedural Fluency 9.50 (1.01) 9.69 (1.00) ns

Data Analysis 9.84(0.90) 9.81(0.98) ns

Conceptual Insight ~ 4.44 (1.24) 3.55(1.13) .007*/.13

Near Transfer 7.89(2.52) 7.06(2.73) ns

PF students significantly outperformed their Strong-DI
counterparts on conceptual insight without compromising
on procedural fluency. Effect on data analysis, which was
significant in Experiment 1, was no longer significant in
Experiment 3. Effect on near transfer, which was significant
in Experiment 2, was no longer significant in Experiment 3.
It can be concluded that direct instruction on the critical
features appears to be helpful indeed. However, PF students
still maintained an edge in terms of conceptual insight.
Perhaps one could argue that exposure to sub-optimal
solutions in the PF condition can alone explain their better
performance on conceptual insight items on the posttest.
While this explanation cannot be fully ruled out, Experiment
2 helps mitigate this concern because students in the
Evaluation condition were also exposed to the sub-optimal
solutions but they still did not perform as well as PF
students on conceptual insight.

General Discussion

We reported on three quasi-experimental studies that helped
unpack the productive failure (PF) effect. Experiment 1
showed that compared to DI, PF a) engendered better prior
knowledge differentiation, and b) afforded opportunities to

attend to critical features of the concept of variance, which
in turn helped PF students better understand the concept
when presented by the teacher during direct instruction
subsequently (Schwartz & Martin, 2004). Consequently, PF
students performed on par with DI students on procedural
fluency, but significantly outperformed them on data
analysis and conceptual insight. Although the limitations
inherent in quasi-experimental studies with intact
classrooms cannot be completely mitigated, note that both
the conditions were taught by the same teacher for the same
amount of time, exposed students to the same materials
(except that DI students were exposed to more data analysis
problems), and afforded students the opportunity to benefit
from collaborative problem solving.

Experiment 2 further examined prior knowledge
differentiation by testing whether it was necessary for
students to generate solutions themselves (to engender prior
knowledge differentiation), or can these solutions be simply
given to the students to study and evaluate. Findings
suggested that PF students performed significantly better on
conceptual insight and near transfer without compromising
on procedural fluency and data analysis.

Because Experiment 1 showed that students do not
necessarily attend to or notice deep critical features on their
own during direct instruction, Experiment 3 examined
whether these features could simply be told to students as
part of direct instruction, or if it was more effective for
students to generate solutions before receiving these critical
features. Findings suggested that although direct instruction
on the critical features was effective, having students
generate solutions first was still better for developing deep
conceptual insight.

In sum, therefore, all three experiments suggested that
there is indeed an efficacy in having learners generate and
explore representations and methods for solving problems
on their own even if they do not formally know the
underlying concepts needed to solve the problems, and even
if such un-supported problem solving leads to failure
initially. By failure, we mean that students were unable to
generate the canonical solutions by themselves. Of course,
one could argue that PF students were not really failing
because they were engaged in processes that were germane
for learning (Schmidt & Bjork, 1992). However, when we
situate the PF design in the argument made by the
proponents of DI, the generation process is invariably seen
as failure because the proponents of DI question the utility
students generating solutions to novel problems. They argue
that students should be given the canonical solutions (either
through worked examples or direct instruction) before
getting them to apply these to solve problems on their own
(Sweller, 2010).

Implications of the above findings pose an interesting
dilemma for the limits of working memory (WM) capacity
as argued by cognitive load theorists: How is it that students
who had not learnt the concept of variance were able to
generate multiple representations and solutions to a novel,
complex problem targeting that concept in the first place?
After all, a complex problem should in and of itself impose
a heavy cognitive load on a limited WM capacity, let alone
one that targets a novel concept.
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To resolve this dilemma, one only need realize that the
limits of WM only apply to new or yet-to-be learned
information not in the long-term memory (LTM) (Sweller,
2010). However, when dealing with previously stored
information in the LTM, these limits tend to be mitigated.
Indeed, as Kirschner et al. (2006) argued, “Any instructional
theory that ignores the limits of working memory when
dealing with novel information or ignores the disappearance
of those limits when dealing with familiar information is
unlikely to be effective” (p. 77).

If the constraints of WM are contingent upon the novelty
of information, and novelty is a function of how what a
learner already knows (stored in the LTM) is brought to
bear on the new concept being learnt, then it follows that
activating relevant prior knowledge in the LTM can help
mitigate the constraints of WM. This precisely what PF is
designed to do: by designing to activate prior knowledge,
PF works to mitigate the WM constraints. This may explain
why PF students were able to generate a several solutions to
the novel problem. Furthermore, it can be argued that once a
particular solution is generated, it forms a resource in the
LTM for further generation, that is, generated solutions
stored in the LTM can potentially interact with the WM to
aid more generation. Finally, these generated structures also
become a powerful resource in the LTM that can interact
with WM and reduce the cognitive load during subsequent
direct instruction, thereby resulting in better learning of
conceptual features during direct instruction. Both DI and
Strong-DI students did not have these LTM resources that
they could leverage to learn better from direct instruction.
Thus conceived, one can see why the process of evaluating
student-generated solutions can impose a higher WM load
than actually generating those very solutions, and
consequently interfere with learning.

In sum, if what a learner already knows about a concept is
a critical determinant of either limiting or expanding the
WM capacity, then does not a commitment to cognitive load
theory entail a commitment to understanding whether and to
what extent the targeted concept is novel to the learner?
However, in our reading, this is rarely taken up by the
proponents of DI. Their conception of prior knowledge
remains limited to canonical domain-specific knowledge,
which in turn, constrains one to work within the limiting
aspects of the working memory (e.g., Sweller & Cooper,
1985; Paas, 1992). However, if we allow for the possibility
that learners may have some prior knowledge and resources
about a concept they have yet to learn, could we not design
tasks and activity structures to elicit this knowledge, and by
activating and working with these priors in the long-term
memory, leverage the expandable aspects of working
memory capacity? At the very least, this is a theoretical
possibility that the cognitive load theory allows for, and one
that should be explored.
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