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Abstract

Intuitively, it seems plausible that in real-world scenes,
attention is disproportionately attracted by texts. The present
study tested this hypothesis and examined some of the
underlying factors. Texts in real-world scenes were compared
with paired control regions of similar size, eccentricity, and
low-level visual saliency. The greater fixation probability and
shorter minimum fixation distance of texts showed their
higher attractiveness. These results might be caused by the
prominent locations or special visual features of text. In
another experiment, texts were removed from the scenes, and
the results indicated that the locations that used to contain
texts did draw more attention than controls. Finally, texts
were placed in unexpected positions in front of homogeneous
and inhomogeneous backgrounds. These unconstrained texts
were found more attractive than controls, with background
noise reducing this difference, which indicates that the
attraction by specific visual features of text was superior to
typical saliency.
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Introduction

When inspecting real-world scenes, human observers
continually shift their gaze to retrieve information.
Important pieces of information could be, for instance,
depictions of objects (e.g., cars, monitors, or printers) or
texts, which could be shown on depictions of signs, banners,
license plates, and other objects. Observers’ attention has
been found to be biased toward visually salient locations,
e.g., high-contrast areas, during scene viewing or search (Itti
& Koch, 2001). Torralba, Oliva, Castelhano, and Henderson
(2006) suggested that scene context, i.e., the combination of
objects that have been associated over time and are capable
of priming each other to facilitate object and scene
categorization, predicts the image regions likely to be
fixated. V6 and Henderson (2009) claimed that scene
syntax, i.e., the position of objects within the specific
structure of scene elements, influences eye movement
behavior during real-world scene viewing.

It is still an open question whether texts in real-world
scenes attract more attention than comparable regions and
why this would be the case. It is possible that low-level
visual saliency attracts attention, i.e., that texts are more
attractive because they typically carry higher saliency — as
computed along the lines of Itti and Koch (2001) - or
luminance contrast. Moreover, it is also possible that the
positions of texts are more predictable in the scene context
to contain important information, for example, texts on
street signs. Such an effect would be in line with the model
by Torralba et al. (2006), which predicts the image regions

likely to be fixated in a natural search task based on the
expected location of the target.

The goal of the present study was to investigate the
contribution of low-level visual saliency and high-level
features to the ability of texts to attract attention in real-
world scene viewing. To test if texts are more attractive than
other scene objects, an eye-tracking database of scene
viewing by Judd, Ehinger, Durand, and Torralba (2009) was
re-analyzed in Experiment 1.

Experiment 1: Reanalysis of Previous Data
Method

Participants. Judd and colleagues (2009) collected eye
tracking data of 15 viewers. These viewers were males and
females between the ages of 18 and 35. Two of the viewers
were researchers on their project and the others were naive
viewers.

Apparatus. All viewers sat at a distance of
approximately two feet from a 19-inch computer screen of
resolution 1280x1024 in a dark room and used a chin rest to
stabilize their head. An eye tracker with the sampling rate of
240 Hz recorded their eye movements on a separate
computer.

Procedure. All participants freely viewed each image for
3 seconds, separated by 1 second of viewing a gray screen.
To ensure high-quality tracking results, camera calibration
was checked every 50 images. All images were divided into
two sessions of 500 randomly ordered images. Each session
was done on average at one week apart. After every 100
images being presented, participants were asked to indicate
which images they had seen before to motivate them to pay
attention to the images

Stimuli. There were 1003 images in the database by Judd
et al. (2009), and these images included both outdoor and
indoor scenes. Some of these images were selected from the
LabelMe database (see below).

Analysis. To identify and localize text in real-world
scene stimuli, we used the freely available LabelMe image
dataset (Russell, Torralba, Murphy & Freeman, 2008)
containing a large number of scene images that were
manually segmented into annotated objects. The locations of
objects are provided as coordinates of polygon corners and
are labeled by English words or phrases. Out of the 1003
images we selected 57 images containing 240 text-related
labels and 93 images containing non-text objects. The text-
related labels included terms such as ‘text’, ‘banner’, or
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‘license plate’. For the non-text objects, we excluded objects
with text-related labels or background labels, e.g., “floor’,
‘ceiling’, “‘wall’, ‘sky’, ‘crosswalk’, ‘ground’, ‘road’, ‘sea’,
‘sidewalk’, ‘building’, or ‘tree’. The label 'face’ was also
excluded since faces have been shown to be particularly
attractive (see Judd et al., 2009, for a review). There were
1620 non-text objects in the final selection. The resolution
of these images was adjusted to 1024x768 pixels, and the
coordinates of all objects were updated accordingly.

The raw eye movement data was smoothed using a
computer program developed by Judd et al. (2009) that
calculates the running average over the last 8 data points
(i.e., over a 33.3 ms window). A velocity threshold of 6
degrees per second was used for saccade detection.
Fixations shorter than 50 ms were discarded (see Judd et al.,
2009).

It is known that eccentricity (the distance between the
center of an object to the center of the screen) and size
(number of pixels) of an object might influence eye
movement measures. Observers show a tendency to fixate
near the center of the screen when viewing scenes on
computer monitors (Tatler, 2007). Larger objects tend to be
fixated more frequently since the landing probability
increases with larger area. Low-level visual features such as
saliency and luminance contrast were computed. Saliency
was calculated by the freely available computer software
“Saliency Map Algorithm” using the standard Itti, Koch,
and Niebur (1998) saliency map based on color, intensity,
orientation, and contrast. The average saliency value of
pixels inside an object boundary was used to represent
object saliency. Luminance contrast was defined as the
gray-level standard deviation of pixels enclosed in an
object. On average, text objects occupied 1.43% of the area
in a 1024x768 pixel display.

To derive compatible control objects, non-text objects
were binned by eccentricity (smaller than 200, between 200
and 300, and greater than 300) and size (smaller than 1650,
between 1650 and 5600, and greater than 5600). These
ranges of eccentricity and size were selected to roughly
include the same number of objects in each interval. Each
text object was paired with one non-text object within the
same size and eccentricity interval and matched in terms of
saliency and luminance contrast as closely as possible. A
text object and its non-text match were typically selected
from different images.

Additionally, for each text object a control region in the
same scene was set up that matched its counterpart exactly
in its shape and size and had similar eccentricity (Ecc.),
saliency (Sal.), and luminance contrast (LumC.) (see Figure
1). The control regions could enclose non-text objects or
backgrounds but did not intersect with any text objects. The
characteristics of text objects, non-text objects, and control
regions (Con. Region) are summarized in Table 1.

Fiéurt—f 1. Texts (yellow polygons) and their paired control
regions (green polygons) in one of the scene stimuli.

Table 1: Average characteristics of text objects, non-text
objects, and control regions.

Size Ecc. Sal. LumC.

Experiment 1

Text 2631 283 0.41 40
Non-Text 2828 292 0.41 40
Con. Region 2631 283 0.37 46

Experiment 2

Erased Text 2631 283 0.43 21

Non-Text 2676 293 0.41 24
Con. Region 2631 283 0.37 36
Experiment 3
UncText H B 2351 288 0.20 10
UncText INH B 2723 281 0.39 55
UncText H 2351 288 0.24 34
UncText INH 2723 281 0.40 57
Non-Text H 2670 301 0.27 34
Non-Text INH 2746 284 0.41 57
Con. Region H 2351 287 0.28 40

Con. Region INH 2723 281 0.41 55

In order to measure the attraction of visual attention, two
object-based eye movement measures were taken: fixation
probability (the probability of a fixation to land inside a text
or non-text object or a control region during a trial) and
minimum fixation distance (the shortest Euclidean distance
from the center of the object to any fixation during a trial).
If an object had higher fixation probability or shorter
minimum fixation distance, the object was considered more
attractive. If there was no fixation landing inside an object
boundary, its fixation probability was 0 regardless of how
close a fixation approached the object. Minimum fixation
distance was measured to overcome this drawback and
provide convergent evidence for any attractiveness results.
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Results and Discussion

Fixation probability and minimum fixation distance of texts,
non-texts and control regions are shown in Figure 2. The
fixation probability of texts was significantly higher than the
one of non-text objects and control regions, both Fs(1; 14) >
76.85, ps < 0.001. Minimum fixation distance of texts was
shorter than the one of non-text objects and control regions,
both Fs(1; 14) > 46.53, ps < 0.001. Both results were
consistent and suggested that texts were more attractive than
both non-text objects and control regions. In addition, non-
text objects had higher fixation probability and shorter
minimum fixation distance than control regions, both Fs(1;
14) > 45.15, ps < 0.001. The results might be caused by
control regions not having an obvious boundary like texts
and non-text objects.
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Figure 2. Fixation probability and minimum fixation
distance of texts, non-texts, and control regions. In this chart
and all following ones, error bars are based on 95%
confidence intervals.

The observed effect might be caused by low-level visual
saliency as computed by the Saliency Map Model (Itti &
Koch, 1998), high-level features (expected locations), or
maybe unique visual features of texts. Texts, like faces,
might have their unique visual features that are unrelated to
typical low-level visual saliency so that human observers
develop "text detectors” during everyday scene viewing.
The selected controls ruled out the first hypothesis of low-
level visual saliency. We will test how expected locations
affect eye movements in Experiment 2, and the influence of
unique visual features of texts on attention will be examined
in Experiment 3.

Experiment 2: Erased Text

To test whether the locations of text placement contribute to
the attractiveness of texts, in Experiment 2 we “erased” the
text parts from text objects and examined whether the
observers’ attention was still biased toward these objects.
The text removal sometimes causes strong oddness, e.g., for
a stop sign, but sometimes does not, such as for a billboard.
This oddness is due to viewers expecting text in that
location, which might possibly attract more attention.

Method

Participants. Fifteen participants performed this
experiment. All were students at the University of
Massachusetts Boston, aged between 19 to 40 years old, and
had normal or corrected-to-normal vision. Each participant
received 10 dollars for participation in a half-hour session.

Apparatus. Eye movements were recorded using an SR
Research EyeLink-Il system with a sampling frequency of
500 Hz. After calibration, the average error of visual angle
in this system is 0.5°. Stimuli were presented on a 19-inch
Dell P992 monitor with a refresh rate of 85 Hz and a screen
resolution of 1024x768 pixels. Participants’ responses were
entered using a game-pad.

Procedure. After participants read the instructions, a
standard 9-point grid calibration (and validation) was
completed. Following two practice trials, participants
viewed 130 stimuli in random order. They were instructed
to freely inspect the scene. At the start of each trial, a drift
calibration screen appeared, and participants were instructed
to look at the calibration dot that appeared in the center of
the screen. After subjects had passed the drift correction, the
stimuli were presented. Following a ten-second presentation
of each scene, the stimulus disappeared and the calibration
dot appeared again. In some cases, calibration and
validation were performed once again to increase eye-
tracking accuracy.

Stimuli. The same 57 images and 240 text regions used
in Experiment 1 were employed in Experiment 2. However,
in Experiment 2, the “text parts” in text objects were
removed manually by replacing them with the background
color of the texts as shown in Figure 3. This removal led to
a reduction in average luminance contrast from 40 to 21 (see
Table 1). Nonetheless, the average saliency was not affected
by this text removal, due to the computation of saliency
being based on center-surround differences in color,
intensity, and orientation. Note that luminance contrast was
computed exclusively within an object, but saliency was
calculated according to the whole image, and the neighbor
regions of an object were taken into account. Therefore, a
stop sign might still be salient without the text “stop”
because of the color difference between the sign and its
surroundings but its luminance contrast is reduced since
there is no contrast inside the sign.
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Figure 3. Erased texts and their paired control regions in a
scene.

Analysis. The raw eye movement data were parsed using
the standard EyeLink algorithm. Eye fixation data were
analyzed separately for the first 3 seconds and for the entire
10-second viewing duration. Since this study did not
involve any post-presentation questions, the first 3 seconds
of viewing should be comparable with the total 3 seconds of
viewing in Experiment 1. As described in Experiment 1,
non-text objects and control regions were chosen based on
similar size, eccentricity, saliency, and luminance contrast
(see Table 1). Since saliency and luminance contrast were
positively correlated, r = 0.34, luminance contrast of control
regions (36) was higher than that of removed-text regions
(22).

Results and Discussion

As shown in Figure 4, for 3-second viewing in Experiment
2, fixation probability for erased texts dropped compared to
text objects in Experiment 1, F(1; 28) = 35.82, p < 0.001,
for between-subject ANOVA. Minimum fixation distance
for erased texts was significantly longer in Experiment 2
than for texts in Experiment 1, F(1; 28) = 10.53, p < 0.01
(see Figure 5). These results might be caused by the
reduction of saliency and luminance contrast that
accompanied the erasure of text.

During 3- and 10-second viewing, erased texts had
slightly higher fixation probability than non-text objects, but
this difference was not statistically significant, all Fs < 1, ps
> (0.33. However, minimum fixation distance for missing
texts was shorter than for non-text objects during 3-second
viewing, F(1; 14) = 25,57, p < 0.001, and 10-second
viewing, F(1; 14) = 14.43, p < 0.01, showing that the typical
locations of text still matter even when they do not contain
any text. This result indicates that part of the attractiveness
of texts derives from their prominent, expected locations in
typical real-world images. To test how the unique visual
features of texts attract attention without the effects of
expected locations, Experiment 3 dissociated texts from
their typical locations and placed them in front of
homogeneous or inhomogeneous background. The purpose
of using inhomogeneous backgrounds was to reduce the

unique visual features of text by adding visual noise, and we
expected to find less attraction of attention by texts in front
of such inhomogeneous background.
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Figure 4. Fixation probability of texts in experiment 1,
erased texts in Experiment 2, and non-texts and control
regions in both experiments.
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Figure 5. Minimum fixation distance of texts in Experiment
1, erased texts in Experiment 2, and non-texts and control
regions in both experiments.
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Experiment 3: Unconstrained Text

Experiment 3 “moved” the text parts to unexpected
locations and placed them on high or low luminance
contrast backgrounds. This design eliminated the influence
of expected locations and tested how the unique visual
features of text affected eye movements.

Method

Participants. An additional 15 students from the
University of Massachusetts at Boston participated in this
experiment. None of them had participated in Experiment 2.

Apparatus. Eye movements were recorded using an SR
Research EyeLink Remote system. Other settings were the
same as in Experiment 2.

Procedure. The procedure was identical to Experiment 2.

Stimuli. To extract the “text part” of a text object, the
difference in each of the RGB color components of every
pixel in each text object between Experiments 1 and 2 were
calculated. These patterns of color differences were
recreated in other, randomly chosen scenes and placed in
positions where the original size and eccentricity were
maintained (see Figure 6). These unconstrained texts were
prevented from overlapping with regions currently or
previously occupied by texts. There were a total of 240
unconstrained text objects. Half of them were placed on
homogeneous background, i.e., regions with the lowest
luminance contrast of all possible locations before placing
the text parts, while the others were placed on
inhomogeneous background, i.e., those areas with the
highest luminance contrast. To prevent an unconstrained
text from being placed on a computationally inhomogeneous
but visually homogeneous background, e.g., half black and
half white, the luminance contrast of a candidate region was
calculated using 10x10 pixels windows covering the
candidate region.

As discussed above, inhomogeneous backgrounds might
cause visual noise that interferes with the unique visual
features of texts and thereby reduces the attraction of the
viewers’ attention by such features. Table 1 shows the
characteristics of the unconstrained text in front of
homogeneous background before (UncText H B) and after
(UncText H) the text parts were placed as well as the
unconstrained texts in front of inhomogeneous background
before (UncText INH B) and after (UncText INH) the text
parts were placed.

Analysis. The analyses were identical to Experiment 2.
Both 3- and 10-second viewing durations were analyzed for
unconstrained texts in front of homogeneous and
inhomogeneous backgrounds. Each unconstrained text was
paired with a non-text object and a control region using the
same methods applied in Experiments 1 and 2. Table 1 lists
the characteristics of paired non-text objects and control
regions.

PALAZZO

Figure 6. Unconstrained texts (yellow polygons) in front of
homogeneous (right) and inhomogeneous backgrounds (left)
and their paired control regions (green polygons) in one of
the scene stimuli.

Results and Discussion

As shown in Figure 7, the fixation probability of
unconstrained texts in front of homogeneous background
was higher than for non-texts and control regions during 3-
second viewing, both Fs(1; 14) > 34.98, ps < 0.001. The
unconstrained texts in front of homogeneous background
(mean fixation probability: 0.18) were as attractive as texts
in Experiment 1 (mean fixation probability: 0.18) located in
expected positions, F = 0.01, p > 0.9. For unconstrained
texts in front of inhomogeneous background, the fixation
probability was still significantly higher than for non-texts
and control regions, both Fs(1; 14) > 14.76, ps < 0.01, but
the difference was not as large as for unconstrained texts in
front of homogeneous background. Although saliency (0.40)
and luminance contrast (57) of inhomogeneous background
were higher than the ones of homogeneous background
(0.24 and 34, respectively), this result suggests that
inhomogeneous background caused noise that interfered
with identifying the distinctive visual features of texts. For
10-second viewing, the fixation probability for
unconstrained texts in front of both homogeneous and
inhomogeneous background as well as for their control
regions increased. These results were identical to 3-second
viewing.

For minimum fixation distance, the trends were similar to
fixation probability; unconstrained texts in front of
homogeneous and inhomogeneous background received
shorter distances and can therefore be considered more
attractive (see Figure 8). Minimum fixation distance of
unconstrained texts in front of homogeneous background
was significantly higher than that of their associated non-
text objects and control regions, both Fs(1; 14) > 7.66, ps <
0.05. However, the corresponding comparisons for
inhomogeneous background failed to reach significance. For
10-second viewing, minimum fixation distances of all
categories were reduced and the results were similar to what
was found during 3-second viewing.
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Figure 7. Fixation probability of unconstrained texts in front

of homogeneous (H) and inhomogeneous (INH) background,

and the corresponding non-text objects and control regions.
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Figure 8. Minimum fixation distance of unconstrained texts
in front of homogeneous (H) and inhomogeneous (INH)
background, non-text objects, and control regions.

General Discussion

In Experiment 1, we found that text objects were more
attractive than non-text objects and control regions of
similar size, eccentricity, saliency, and luminance contrast.
Since we controlled for the typical saliency computed by
color, intensity, orientation, and contrast, the results might
be caused by high-level features (expected locations),
special visual features of text, or both. Experiment 2 further
investigated the attraction of attention by high-level features,
and the results suggested that eye fixations were influenced
by expected locations that might possibly be more
informative. This finding has important implications for our
understanding of attention in real-world scenes. First, it
supports the concept of “contextual guidance” found by

Torralba et al. (2006). Second, and most importantly, it
demonstrates that this factor does not only apply to search
tasks but that expected locations play a role even in a free
viewing task. By presenting the unique visual features of
text in unexpected locations and in both fully visible and
degraded variants, the results of Experiment 3 indicated that
the specific visual features of texts were superior to typical
saliency, and their influence on attention was reduced by the
noise caused by inhomogeneous background. We conclude
that both low- and high-level features contribute to the
ability of texts to attract a disproportionate amount of visual
attention in real-world scenes. However, the results obtained
in Experiment 3 might also be caused by the replacement of
texts inducing semantic or syntactic violation. To further
investigate the special visual features of texts, the next step
in this line of research could be an experiment that places
non-text objects in unexpected locations. In addition, it is
important to investigate the contribution of informativeness
to the ability of texts to attract attention. Such experiments
could present, for instance, non-English texts, such as
Chinese characters, to native English speakers as subjects.
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