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Abstract

It is commonly stated that reinforcement learning (RL) algo-
rithms require more samples to learn than humans. In this
work, we investigate this claim using two standard problems
from the RL literature. We compare the performance of human
subjects to RL techniques. We find that context—the meaning-
fulness of the observations—plays a significant role in the rate
of human RL. Moreover, without contextual information, hu-
mans often fare much worse than classic algorithms. Compar-
ing the detailed responses of humans and RL algorithms, we
also find that humans appear to employ rather different strate-
gies from standard algorithms, even in cases where they had
indistinguishable performance to them.
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for decision making under uncertainty than the simplegful
observable) Markov decision processes, since they assume
that the state of the world is known, but inferred from noisy
observations. In this setting, we show that, surprisinghgen

put in an identical setup on standard decision making prob-
lems, RL methods often learn faster and achieve better solu-
tions than humans. Even more surprisingly, while human per-
formance does improve when subjects are given contextual
information about the problem, their average performarfice o
ten still does not match RL methods. Our work has inter-
esting implications for our understanding of both human and
machine decision making. Without contextual information,
humans may require more experience than RL algorithms to

perform well even on simple problems. However, making use

The ability of humans to make sequential decisions undepf context is one of the important open problems for machine
uncertainty has been widely studied in psychology and NeUparning.

roscience. The field ofeinforcement learningRL) studies

the theoretical formulation and algorithmic implemerdati Experiment

of artificial agents that make sequential decisions to maxiye tested two hypotheses: first, that human subjects would
mize their expected reward (Sutton & Barto, 1998). While RL perform significantly better if given contextual obsergas,
algorithms often provide theoretical guarantees on thé-quagngq second, that human subjects would outperform RL algo-
ity of the agent's long-term behaviour, the common lore inyjthms. Performance was evaluated as the sum of rewards ob-
the RL community (Singh, 2009; Peters, Bagnell, & Schaaliajined during the last tenth of a learning trial. We also exam

2006; Morimoto & Doya, 2005) is these approaches ar@neq which RL algorithms’ behaviour most closely matched
painfully slow, requiring thousands of trials to learn td ac pyman behaviour.

in, what seem to humans, relatively simple domains. o

While RL has been applied as a theoretical tool for un-Task Descriptions
derstanding human decision making behaviour (Samejima &he tasks consisted of two common problems in the RL lit-
Doya, 2007; Daw, O’Doherty, Dayan, Seymour, & Dolan, erature, both formulated as POMDPs. Playing the role of
2006; Kakade & Dayan, 2002; Daw, Courville, & Tourtezky, the agent, the human subject—who had no initial knowledge
2006; Yoshida & Ishii, 2003; Adiia & Schrater, 2008; Dayan about the structure of the problem—selected actions to take.
& Daw, 2008), the supposed “slowness” of RL methods hasThe problem returned an observation, displayed on a com-
not been experimentally tested against human learning peputer screen, which depended on the underlying state of the
formance. Are these RL algorithms actually slower to learnenvironment, and an immediate reward. The subject’s goal
than humans? To what extent is this lore biased by the faatias to maximize their cumulative rewards.
that humans bring structural knowledge from previous expe- Each task could be presented to the subject in two differ-
riences to new problems? For example, when entering a neent versions. In thevith-contextversionC+, the domain’s
building, a human will probably assume that he cannot wallobservations had meaning in the context of the task. In the
through its walls, whereas RL problems would typically havecontext-freeversionC—, observations had no meaning; the
to relearn this fact for each new location. Humans also tend tC— version of the problem was meant to simulate what a RL
assume near-deterministic worlds, whereas RL algorithims a algorithm might “see,” as a computer system cannot ateibut
ofteninitialized as believing all possible outcomes angsdly ~ meaning or significance to particular observations.
likely. In the first problem, the tigerworld task (Kaelbling,

In this paper, we focus on the approaches humans take drittman, & Cassandra, 1995), players were confronted with
problems where aspects of the environment cannot be fullytwo doors (see figur@? for an illustration). Behind one door
observed (formally partially observable Markov decisioo-p was a tiger (reward =100); behind the other was a prize
cesses (POMDPs)). POMDPs offer a more realistic scenarifreward =410). At every iteration, players had three options:
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they could open one of the two doors, or they could “listen”
for more information. Each listen attempt had an 85% chance
of being accurate and an associated reward bf In theC+ +10
version, the observations were images of a tiger on the left _100 ‘_'
or the right of the image. In the without-context versiore th

image of a tiger on the right was replaced with an image of

an apple, and the image of a tiger on the left was replaced by, |jjystration of the(h) SampleC+ Ob-(c) SampleC— Ob-

an image of a banana. The text on the actions (“listen,” “openGridworld Problem servation servation

left,” “open right”) was also replaced by numbers (“1,” “2,”

“3”). Opening either door reset the tiger and the prize te ran Figure 2: The gridworld task rewarded players for reaching the top-
dom pgsitions‘k Understanding that listening provided useful ;:ﬂ%goggtetgr%f_ﬁgﬁ){%o%ﬂgr. The right images show the observation
but noisy information was the key learning challenge in the

tigerworld task.

Methods
value | | value Procedure To test the first hypothesis, each subject played
=? =? &%ﬁ. every task-version pair (tigerworld, with and without con-
o o S ’ text; gridworld, with and without context). Subjects wene i

R formed they were learning four different tasks. Each subjec

played 500 iterations in tigerworld and 750 iterations ia th

(a) llustration of the(b) SampleC+ Ob-(c) Sample C— gridworld. The simpler tigerworld problem was always pre-
Tigerworld Problem servation Observation sented before gridworld. The length of the experiment and

) _ _ the decision to present the simpler problem first were decide
Figure 1: The tigerworld problem consisted of two doors. One dookqm an initial pilot test.

had a tiger behind it, the other a prize. Players could open a door . .
or “listen” for the tiger's location. The right two images show a  1he ordering of the two versions was counterbalanced be-

possible result of the “listen” action in the+ andC— versions,  tween the subjects: half the subjects receivedGhetasks
respectively. first; half received th€— tasks first. Subjects playing tkia-
) versions first had slightly better overall performance thiao-

The second problem, the gridworld task, players had tq,.is playing the€— version first{(31) = 2.32, p < 0.05). To

navigate from a random starting place on a 4x3 grid (Russellyqcy if subjects were using learned effects of actions from
& Norvig, 2010) to reach the prize in the top-right COr- ne a5k version to the next, the labels associated withethe a
ner (see figure 2 for the map). Reaching either the prizgjong in thec— tasks were either ordered identically as the
(reward = 10) or the penalty (reward = -100) square rese¢, yersions or permuted. For example, if tBe- version

the player to an arbitrary position on the board. Unlike iny,54 puttons ‘left, ‘right,’ ‘listen, then the numbers ‘01,
the tigerworld task, the observations in the gridworld tasky: ~,1d either map to ‘left; ‘right,’ ‘listen’ (same ord@ or

were deterministic—players always saw the walls 'mmed"‘right,' ‘isten, ‘left’ (permuted order). Subjects wersplit

ately around. them. Hovyever, actions had stochastic effect%vemy between these two versions; we found that changing
80% of the time the action would execute as expected; 20%,q action mapping had no significant effect on performance
of the time the player would find themselves moved in a per-(t(gl) —0.88,p > 0.10).

pendicular direction. Reaching the prize square while-navi After signing a consent form, subjects were shown the in-

gating around the penalty square was the key leamning chafgt;ces and given a chance to familiarise themselves with |
lenge in the gridworld task. In the contextual version of theThey were also told the following information:

problem, the subjects saw gridcells with walls and arrows as .

observations (figure 2(b)) for normal cells and a happy or sad Eagh task was unigue and un_related to the other tasks.

emoticon for the two reward cells. Action buttons were la-® Actions could have stochastic effects, but there were no

beled with the compass directions; subjects reported no tro ~ adversarial effects.

ble making the association between the compass directions @ Past (especially recent) observations could be important.

the action buttons and the arrows indicating free direstion e They could take notes or use a calculator if they wished.

move in the observations. In ti- version, each unique ob- e There was no time limit.

servation was mapped to a specific fruit. The action button§ The trials would be long enough that they should feel free

were also numbered instead of labeled with compass direc- to spend time exploring.

tions. Rewards in both tasks were deterministic functidns o

the underlying hidden state. After all trials were complete, subjects were interviewed o
how they approached the problem. They were encouraged

*Opening a door in the original version of tigerworld results in to explain any sketches or computations they had made. Fi-
a random observation. In pilot trials, subjects found this version I bi ked if thev had lised that th K
very hard to learn; therefore, we augmented tigerworld with a third"@lly, Subjects were asked If they had realised that thestas

“reset” observation that always followed an open-door action. were paired (3 of 16 subjects did). Each version took subject
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15-20 minutes to complete; the entire set of tasks took modtual observations, but only one inferred the map when fruit
subjects 60-90 minutes. Subjects were allowed to take breakmages were substituted for the wall images.
between tasks.

To test our second hypothesis, we collected a fresh group ¢ o Performance on Tiger 0 Performance on Gridworld
subjects. Each subject played one version (with/withouat co ; }
text) of tigerworld for 3000 iterations and one version délgr N
world for 2000 iterations. The trial lengths were choserebas *
on pilots showing that human subjects varied greatly inrthei
of learning rates and “inspiration” moments. Half the satge }
played theC+ tigerworld scenario and th@— gridworld sce-
nario; the other half played the— tigerworld scenario and ) — o
theC+ gridworld. Subjects were given the same instructions == % % = o 5 5 = = w0 %
as in the first experiment. These longer trials lasted 90-15u e e
minutes; subjects were encouraged to take breaks Whenevlgi[;]ure 3: Reward in each phase of the trial. Blocks consisted of 50

they wished to avoid fatigue. iterations for both problems. Shaded regions show the standard error

i i ; . fth .
Aparatus The subjects participated in the study by using g0 e mean

mouse to click buttons displayed on a computer screen. The
display had three elements. A large central pane showed tHeéomparison to Reinforcement L earning Algorithms

current o_bservation (updated after each action)_. Above_ t_hWe next compared human performance to three approaches
obse_rvatlon pane was a panel _that showed_subjects their ifom RL: RMAX (Brafman & Tennenholtz, 2002), u-
mediate rewar(_j after each actloq (cumulat_lve rewards wWergaq (McCallum, 1995), and iPOMDP (Doshi-Velez, 2009).
not shown). Finally, a set_of aqtlon—selectlon buttons wererpqo first, RMAX, builds a model of the world’s dynamics,
Iocateq below the observation vymdqw _ _ choosing optimistic rewards for parts of the world it has not
S_ubjects could not access prior histories qf actions, ebserseen, and then uses the model to make decisions. RMAX
vations, or rewards; however, they were provided pen and pas gesigned for fully-observable problems, that is, protde
per. Subjects could also use of a calculator (none did). with no hidden information. To apply RMAX to our domains,
Participants To test the first hypothesis, that context hadWe use a history of recent observations as a proxy for the,stat
a significant effect in human learning, 16 subjects (13 male@ technique often used for tackling partially-observaltp
3 female) were recruited from the University of Cambridgelems (Breslow, 1996; Lin & Mitchell, 1992).
Engineering Department. To test the second hypothesis, Specifying how much past history to consider adds an ad-
eight additional subjects were recruited from the Uniwgrsi ditional parameter to RMAX; the u-tree algorithm tries to dy
of Cambridge Engineering Department. Finally, three addinamically learn the window size: it uses a series of statbti
tional subjects (2 male, 1 female) participated in a pra-tri tests to increase the number of past observations condidere

pilot. Participants were compensated for their partitipgta  if it enables the agent to improve its overall rewards. Like

-15

Reward
Reward

-25

prize was also offered for the highest score. RMAX, u-tree builds a model using each of these (now vari-
able length) past histories as states and solves the model to
Results select actions. Finally, iPOMDP also builds a model of the

Eff f world first, but it does not assume that the world is fully-
ect of Context observable; indeed, it assumes that the number of hidden
We had hypothesized that subjects would perform better istates could be potentially unbounded. While iPOMDP cor-
C+ versions of each problem. Performance was evaluaterectly models the true partially-observable nature of ttubp
based on the sum of all immediate rewards received duringems, it must search over a much larger class of models.
a trial. Subjects performed significantly better with comte ~ We had hypothesized that subjects would perform better
than without, paired(31) = 2.99, p < 0.005, with a mean than the RL algorithms when given context and worse when
benefit of 1243 points in the final cumulative reward. not given context. We tested both performance on the last
The total reward gained over time is shown in Fig. 3. Thetenth of the data as well as compared the performance of
trials are broken into blocks of 50 iterations, and the sHadethe subjects and the algorithms for each block of 50 inter-
regions show the standard error of the mean. The upwardctions during the trial. On the tigerworld problem, the al-
trends in all curves indicates learning occurred during thegorithms outperform the subjects without context both & th
course of the task. In the tigerworld problem, e case lasttenth of the trial;(1602 = —4.82, p < 0.005 and in each
started with a low initial reward, but by the end, the humanblock of the learning proces$(59) = —12.79,p < 0.005.
subjects were performing as well with context as without (al More surprisingly, the algorithms also outperformed sub-
though still suboptimally). In contrast, the human sulgext  jects when they had contexttoth in the last tenth of the
the C— version of gridworld never matched tiet+ perfor-  trial, t(3003 = —5.76, p < 0.005 and throughout the learning
mance: many subjects inferred the grid when given contexprocesst(59) = —10.92 p < 0.005. These results directly
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contradict conventional wisdom that while an RL algorithm are shown in Fig. 5. In the tigerworld problem, the small
might eventually produce a superior solution than a humarnwindow sizes yield similar (suboptimal) performance level
they generally learn more slowly. as the human subjects, but much more quickly. The longer
The left pane of Fig. 4 compares the performance of thevindow sizes result in slower learning, but they eventually
three RL algorithms to human subjects without context orout-perform the human subjectegardless of whether the
the tigerworld problem. As before, the shaded regions showubjects had contextRMAX’s learning rate is even more
the standard error of the mean, and averages are computed f&fiking in the gridworld problem (right panel of Fig. 5).
blocks of 50 iterations; the expected optimal performance—T he longer window sizes, with a large number of parame-
computed by applying value iteration to each domain—forters O(S?), whereSis the number of states), are very slow
an agent that knew the domain is given by the dashed lin& learn, but building a model reduces the need for long win-
(note that the expected optimal performance is the averaggows: the small-window learners quickly surpass human per-
performance an optimal agent would gain over many runsformance. In post-experiment interviews, most human sub-
individual runs can exceed this value). What is striking isjects also showed maps that they had built as they played.
how quickly RMAX and iPOMDP algorithms achieve near- What then distinguished RMAX? We hypothesize the crucial
optimal performance; u-tree, testing variable window theg  difference was RMAX’s optimistic approach to filling in un-
learns slower but also ultimately bests the human subjects. known parts of the model, which lead it to explore all aspects
Recall that the key challenge in the tigerworld problem wasf the problem. In contrast, humans in post-experiment in-
learning that the observations of where the tiger was lacateterviews claimed they behaved much more cautiously after
were noisy: repeated measurements were needed to ascéiscovering a-100 penalty.
tain the tiger’s location to a reasonable degree of accuracv
The gridworld problem tested a different challenge: buidi
a map of a domain where actions sometimes “slipped” or ha
unexpected results. As seen in the right pane of Fig. 4, th
difference in performance in the gridworld problem is much
less clear. We found no significant difference between the RI
algorithms and the human subjects: still, it is interestimg
note that even when given the context of the walls and corri
dors, the human subjects did not outperform the algorithms
which did not have access to this information. The diffeeenc
in the RMAX algorithm’s performance through the learning R I I T
process (again measured as the performance in each blo_ teraton teraton
of 50 interactions) was significantly greater than the human _ ) ) ) )
Subjects' performance(39) = ~38L.p < 0.005. Finaly, it 945 Comparison wit RMAX aver severuindow szcs. The,
is interesting to note that the iPOMDP algorithm perfornes th subject’s performance.
most poorly in this domain. The extra complexity of having to

Tiger: RMAX Comparison Gridworld: RMAX Comparison
2

WA \/M%v.

.,
{

Blocked Reward
Blocked Reward

explicitly consider the partial observability in theseatately The previous analysis found that the RL algorithms of-
simple domains results in a much slower learner. ten outperform average human performance, both with and
without context. When compared to the best human subject
Tiger: Human, RL Comparison _ Gridworld: Human, RL Comparison (as measured by cumulative performance on the last tenth of

the trial), we find that the best subject outperformed the al-
gorithms on gridworld when given context: the best subject
scored 33 times more points in the last tenth of the trial than
RMAX, the best algorithm. However, the best human rolid

Blocked Reward
Blocked Reward

o rmen | 8 e ou'Fperform the best _algorithm in tigerworld—RMAX scored
{ Rancom | Randon 6 times as many points as the best human. The plots of the
w‘ —uTREE —6‘ uTREE best human subject’s performance are shown alongside the
I R T TR W best algorithms in Fig. 6. Interestingly, the best human sub

Iteration Iteration

ject appears to learn a (suboptimal) solution the tigemivorl
Figure 4: Reward for each trial block of 50 iterations. Shaded re{roblem slightly faster than the algorithms, but the gridao
gions show the standard error of the mean. For RMAX, the windowproblem takes longer to learn (though the performance is
size was 2. near-optimal in the end).

Recall that RMAX uses the most recent window of obser-Algorithms Matching Human Behaviour
vations as a proxy for the hidden state. We tested the algd-inally, we examined which RL methods most closely mod-
rithms with windows ranging from only the most recent ob- elled human behaviour. To evaluate how well these RL pro-
servation to the last four observations. The results for RMA cedures predicted human subjects’ behaviour, we playdd eac

2706



Tiger: Human, RL Comparison ,  Sfawond: Human, RL Comparison solutions instead of seeking better solutions. In contthst

A = WA A RL algorithms were more persistent; in general they not only
learned as quickly or quicker than human subjects, but they
also refined their solutions more than human subjects. Thus,
we find that contrary to conventional wisdom about these sim-
ple algorithms—that they learn slowly—these algorithms of-

Blocked Reward
Blocked Reward

= Human

---optmal | -~ - Optimal ten learn significantly faster than human subjects.

RMAX RMAX

—ureee) UmRES The quantitative performance curves matched post-
o T 220 w0 6w ho i it ot 1 o experiment interviews in which the Subject (||ke many oth-

ers) produced an accurate map of the gridworld—despite the
Figure 6: Performance of best human subject (with context). In botfiransition uncertainty and location ambiguity—but found it
domains, the subject learns a near-optimal solution. very difficult to reason about the observation uncertainty i
tigerworld. The algorithms treated both of these forms of
uncertainty equivalently; thus they learned in proportion
the overall level of uncertainty. We can conclude that eithe

RL agent. At each iteration, the RL algorithm updated its in- . .
) . . __,humans require more experience to learn than supposed, RL
ternal state given the current history of the human sulgect :
algorithms are faster learners, or both.

actions. Based on this history, the algorithm decided which
action it would select next. Similarity between the algo- Our work is consistent with studies showing humans have
rithm’s and the human subject’s behaviour was assesseg aloflifficulty planning under uncertainty, though none dirgctl
two criteria: (1) whether the agent's selected action medch compare human and algorithm performance in multi-state
the subject’s selected actidrand (2) the algorithm'segret ~ Partially-observable domains. For example, handling-oca
given the human subject’s action choice. Formally, regret i tion ambiguity was found to be the primary bottleneck for hu-
the value the agent thought the human subject lost by his dhans trying to perform spatial navigation tasks (Stanlgewi
her choice of action (as computed from the algorithm’s inter McCabe, & Legge, 2004). Gureckis and Love (2009) found
nal value function). Lower regrets imply a greater simtiari  Slightly noisy rewards encouraged exploration, but humans
between the algorithms’ and the human subjects’ choices. are generally poor at handling randomness, even in fully-
The results in Fig. 7 show that none of the algorithmsobservable settings. Finally, Aa and Schrater (2008)
matched human behaviour very often, regardless of whethdtypothesised that humans may learn slowly on bandit-type
the subjects had context. The algorithms matched the sufiroblems because they consider a wider set of underlying
jects slightly better in the tigerworld domain than the grid Structures, even when they are told that the problem has a
world; the low-match rates—almost always below 50%—particular form. They showed that human learning rates on
suggest that the humans and the algorithms were employing 1-state partially-observable problem are slower tharpan a
rather different strategies, even when they had indistatgu  Proach that leverages the structure of the problem (alsmgiv
able performance (as in gridworld). As expected, the RMAXt0 the human subjects) but similar to an approach that makes
learner had the highest regrets; its optimistic initisima  fewer structural assumptions. Their results are similar to
made it believe that humans often under-explored problemghe differences we observed between the RMAX algorithm—
The u-tree algorithm had the lowest regrets, in part beciause Which learned quickly due to its simple model assumptions—
tended to be less certain about the correct action at any timeédnd the iPOMDP or u-tree—which learned more slowly.
Finally, we note that the stochasticity of the problemsifsee  The findings in this work are based on two standard prob-
in the individual problem traces in Fig. 6) resulted in high lems in RL, with relatively small state spaces. We conjeztur
reward variances and that different under-exploring pedic  that without context, the advantage of RL methods over hu-
could also result in large reward variations (seen in thé hig mans will persist for larger state spaces. For examplengive
standard errors in Fig. 4. The analysis in this section showgo context, a larger gridworld is even more baffling for the
that there are differences in how humans and RL agents exuman subject who was already—on average—confused by

subject’s history of actions and observations forward ® th

plore given these high variances. a 4x 3 grid. However, in largemore structuredstate spaces,
. . the human subject’s ability to generalise and make use 6f con
Discussion text would probably give them significant advantages. For

A significant advantage that RL algorithms have over humangxample, human subjects may infer that “stacking” actions
is that they do not get bored, fatigued, or disheartened. In put one object on top of another, while a simple agent may
long series of experiments in which subjects may accruelarghave to learn the result of a “stack” for each pair of objects.
costs before ultimately learning a good strategy, thederfsc ~ Similarly, humans may use patterns of grammar to analyse
often caused humans to settle for sub-optimal or reasonabliialogues, whereas an agent might have to learn each part
o . . ) f nversation rately. It remains an interestin
2The results evaluating action-selection similarity based on ao a C.O © Satﬁ seEa late y. trema fS: te est:_ gloped
softmax action-selection criterion were nearly identical to action-dUestion as to how the learning rates of human subjects an
matching and are omitted for brevity. RL agents compare on these more structured and hierarchi-
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Figure 7: Proportion of same actions and perceived regret of thedyldarners. A higher proportion of same actions indicates a greater
similarity between the human’s and agent’s decisions; likewise lowerteedicate that the agent valued actions similarly to the human
subjects. Means are shown with 95% confidence intervals.

cal learning domains. The importance of context in human ing of object categoriesattern Analysis and Machine In-
learning also suggests that for work trying to build moreadat  telligence, IEEE Transactions p88(4), 594—611.

efficient artificial agents (Fei-Fei, Fergus, & Perona, 2006 Gureckis, T. M., & Love, B. C. (2009). Learning in noise:
learning and leveraging contextual information may be key Dynamic decision-making in a variable environmeldur-
factor to achieving better learning performance. An ergiti nal of Mathematical Psycholog$3(3), 180—193.

avenue for future work would be to better understand howKaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1995).
humans leverage context when learning a task, rather than fo Planning and acting in partially observable stochastic do-
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