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Abstract

Kotovsky and Gentner (1996) showed that presenting
progressively aligned examples helped children discover
relational similarities: Comparisons based on initially
concrete and highly similar, but progressively more abstract
exemplars helped the discovery of higher-order relational
similarities. We investigated whether progressive alignment
can aid learning of relational categories with either a
deterministic (in which one relation reliably predicts category
membership) or a probabilistic structure (in which each
relation predicts category membership with 75% reliability).
Progressive alignment helped participants learn relational
categories with the deterministic structure. However,
progressive alignment did not help participants learn the
probabilistic relational categories. The results show that
learning relational categories with a deterministic structure
can be improved by progressive alignment, consistent with
previous findings (e.g., Kotovsky & Gentner, 1996), but also
support previous findings suggesting that relational categories
are represented as a schemas, which are learned by a process
of intersection discovery that fails catastrophically with
probabilistic category structures (Jung & Hummel, 2009;
Kittur et al., 2004, 2006).
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One of the most generally accepted assumptions in the study
of concepts, categories and category learning is that we
represent categories in terms of their exemplars’ features
and that the process of category learning is a process of
learning which features are diagnostic of category
membership. Likewise, the process of assigning an
exemplar to a category is a process of comparing the
exemplars’ features to those of the category (represented
either in terms of a prototype or as a collection of known
exemplars). This account of category learning provides a
natural basis for understanding the family resemblance
structure of our concepts and categories: The idea, first
proposed by Wittgenstein (1956) and subsequently
supported by numerous experiments in cognitive
psychology (for a review see Murphy, 2002), that, like the
members of a family, the various members of a category
tend to have many features in common with one another, but
that there need not be any necessary or sufficient features
for category membership. Feature-based theories of

categorization also provide a natural account of the well-
known prototype effects in categorization (e.g., the fact that
an exemplar is judged to be a “good” member of a category
to the extent that it shares many features with the prototype
of the category; see Murphy, 2002).

Another widely held view is that this feature-based
account of concepts and categories, for all its successes as
an account of prototype effects, fails to provide a complete
account of the richness and power of our conceptual
structures. As pointed out by Gentner (1983), Barsalou
(1993), Murphy and Medin (1985) and others, our
knowledge of the interrelations among an object’s
“features” (e.g., that birds tend to fly and tend to nest in
trees, but that not all do, and that only those that fly also
nest in trees) and our ability to reason flexibly with our
concepts (e.g., inferring that a man who jumps fully-clothed
into a pool at a party is probably drunk; Murphy & Medin,
1985) seem to demand explanation in terms of more
sophisticated conceptual structures, such as schemas and
theories. The primary factor distinguishing schemas and
theories from lists of features is that the former, but not the
latter, represent relations explicitly: Whereas a feature list
can specify that a bird “can fly” or “lives in trees”, relational
representations are required to specify that the ability to fly
enables a bird to nest in trees. More generally, the
schema/theory based view of concepts fares better as an
account of the relations between our concepts and the larger
theoretical structures in which they are embedded: We
understand the relations, not just between the properties of
various objects (e.g., the fact that a bird flies is what allows
it to nest in trees), but between concepts and other concepts
(e.g., that an interaction is when the effect of one variable
depends on the value of another).

Moreover, some concepts and categories appear to be
largely if not entirely relational in nature. For example, the
category conduit is defined by a relation between the
conduit and the thing it carries; barrier is defined by the
relation between the barrier, the thing to which it blocks
access and the thing deprived of that access; and even the
category mother is defined by a relation between the mother
and her child. Relational categories may be more the rule
than the exception: As reported by Asmuth and Gentner
(2005), informal ratings of the 100 highest-frequency nouns
in the British National Corpus revealed that about half refer

2643



to relational concepts. The distinction between relational
and feature-based categories need not pose a problem for the
study of category learning and concept acquisition as long
as relational and featural categories are learned in similar
ways. But if they are learned in different ways, then little or
nothing we know about the acquisition of feature-based
categories necessarily need apply to the case of relational
concepts and categories.

For example, Kittur, Hummel and Holyoak (2004;
Kittur, Holyoak & Hummel, 2006) noticed that prototype
effects had always been reported in experiments using
categories defined by their exemplars’ features. (For
example, in an experiment using fictional “bugs” as stimuli,
categories might be distinguished by features such as the
shapes of a bug’s head, wings, body and tail.) Kittur and
colleagues wondered whether such effects would also be
observed in categories defined, not by the exemplars’
features, but by the relations among those features. To their
surprise, they found that, rather than demonstrating
prototype effects, people have great difficulty even learning
relational categories with a probabilistic (i.e., family
resemblance) structure in the first place.

They interpreted their findings in terms of people
attempting to learn relational categories using a process akin
to schema induction (e.g., Hummel & Holyoak, 2003).
Specifically, Kittur et al. (2004) reasoned that if a relational
category is represented as a schema, as has been proposed
by others (e.g., Barsalous, 1993; Gentner, 1983; Holland,
Holyoak, Nisbett, & Thagard, 1986; Keil, 1989; Murphy &
Medin, 1985; Ross & Spalding, 1994), and if schemas are
learned by a process of intersection discovery, in which a
schema is learned from examples by keeping what the
examples have in common and disregarding details on
which they differ (as proposed by Hummel and Holyoak,
2003; see also Doumas, Hummel, and Sandhofer, 2008),
then learning probabilistic relational categories ought to be
extremely difficult because the intersection of the examples
is the empty set (i.e., there is no single relation shared by all
category members). More recently, Jung and Hummel
(2009) replicated and extended the findings of Kittur et al.,
providing additional evidence that relational categories are
indeed learned by a process of schema induction, and that
this algorithm makes it very difficult for people to learn
relational categories with a probabilistic (i.e., family
resemblance) structure.

One potential alternative explanation for the findings of
Kittur et al. (2004, 2006) and Jung and Hummel (2009) is
that probabilistic relational categories are simply harder to
learn than other kinds of categories, not that they rely on a
qualitatively different learning algorithm than, say, feature-
based category learning (e.g., schema induction in the
relational case vs. simple associative learning in the feature-
based case): That is, perhaps relational categories are simply
harder to learn than feature-based categories, probabilistic
categories are harder to learn than deterministic categories
and these two sources of difficulty interact to push
probabilistic relational categories over some kind of internal

threshold, rendering them very hard for some to learn and
impossible for others.

Various aspects of the Kittur et al. and Jung and
Hummel findings are inconsistent with this interpretation.
For example, in the data of Kittur et al. (2004), deterministic
relational categories were not reliably more difficult to learn
than feature-based categories. Indeed, Tomlinson and Love
(2010) showed that, under some circumstances, relational
categories can be much easier to learn than featural ones. In
addition, Kittur et al. (2006) performed an ideal observer
analysis on their category learning tasks and showed that
human efficiency (i.e., human performance divided by ideal
performance) is markedly lower in the probabilistic
relational condition than in all three other conditions,
suggesting that the performance difference in this condition
is a function of human cognition, not the relational category
learning task itself. Finally, Jung and Hummel (2009) were
able to find a condition under which probabilistic relational
category learning is not especially difficult (i.e., the “who’s
winning” task), suggesting that there is likely something
“special” about the probabilistic relational category learning
task. Nonetheless, additional evidence that probabilistic
relational category learning is qualitatively different from
both deterministic relational category learning and
probabilistic feature-based category learning—especially
evidence from a qualitatively different learning paradigm—
would contribute both to our confidence that the difference
is real and to our understanding of the nature of that
difference.

If it turns out that probabilistic relational category
learning is quantitatively different (e.g., more difficult) but
qualitatively similar to deterministic relational category
learning (i.e., in the sense that the same learning algorithm
works for both), then interventions that aid deterministic
relational category learning ought also to aid probabilistic
relational category learning. By contrast if the learning
algorithm that leads to successful deterministic relational
category learning fails catastrophically in the case of
probabilistic relational categories (as predicted by the
schema induction-based account), then even interventions
that facilitate the acquisition of deterministic relational
concepts should be powerless to facilitate probabilistic
relational concept acquisition.

One intervention that has been shown to facilitate the
acquisition of deterministic relational concepts is
progressive alignment (Kotovsky & Gentner, 1996).
Progressive alignment is a training paradigm under which
easy examples of a relational concept are presented earlier
than harder examples of that concept, so that learning of the
easy examples can bootstrap the acquisition of the harder
ones. In the case of Kotovsky and Gentner, the learners
were children and the relational concepts to be acquired
were symmetry (e.g., little, big, little or light, dark, light)
and monotonic increase (e.g., little, big, bigger or light,
dark, darker). Kotovsky and Gentner trained children on
these concepts using a matching task in which a sample
stimulus was shown at the top of a display and two
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alternatives were shown at the bottom (see Figure 1). The
child’s task was to indicate which alternative matched the
sample. Some of the trials were “easy” in the sense that
featural information supported making the right relational
choice (e.g., matching little, big, little in the context of
squares onto little, big, little circles vs. little, big, bigger
circles) whereas others were more difficult, requiring
children to make a cross-dimensional match (e.g., matching
little, big, little squares onto light, dark, light circles vs.
light, dark, darker circles). When Kotovsky and Gentner
trained the children on this task with randomly-ordered
trials, the youngest children (4-year-olds) could not learn the
task. But when the trials were progressively aligned, so that
the easy trials came first and the more difficult cross-
dimensional trials came later, then the 4-year-olds were able
to master the task. Kotovsky and Gentner concluded that
this procedure facilitated the learning of relational concepts
by allowing the earlier trials to take advantage of featural
support of correct responding and later trials to take
advantage of generalization from the earlier trials.

Figure 1. Example of Kotovsky and Gentner (1996) stimuli

To the extent that probabilistic relational category
learning is simply harder than deterministic relational
category learning (rather than being fundamentally
incompatible with the learning algorithm that supports
relational concept acquisition), then progressive alignment
would be expected to facilitate both deterministic and
probabilistic relational category learning. But to the extent
that schema induction (or something akin to it) is invoked in
response to all relational learning tasks and succeeds with
deterministic concepts but fails catastrophically with
probabilistic ones, then progressive alignment would be
expected to facilitate deterministic relational concept
acquisition but fail to facilitate probabilistic relational
concept acquisition. It is this hypothesis that the current
experiment was designed to test.

An additional purpose of the current experiment is to
replicate the basic difficulty-of-probabilistic-relational-
category learning effect with new stimulus materials. Kittur
et al. (2004, 2006) used stimuli composed of octagons and
squares, and Jung and Hummel (2009) used stimuli
composed of circles and squares. The current experiment
used fictional “bugs” as stimuli (Figure 2). The prototype of
species A had a head that was wider and darker than its

body, wings that were longer than its body and antennae
longer than its tails. The prototypical B had the opposite
relations: a head narrower and lighter than its body, wings
shorter than its body and antennae shorter than its tails. In
the probabilistic condition, any exemplar of A or B shared
three relations with its own prototype and one with the
prototype of the opposite category. In other words, the
formal probabilistic category structures used are isomorphic
with those used by Kittur et al. and Jung and Hummel. In
the deterministic condition, one relation (counterbalanced)
was rendered deterministically diagnostic of category
membership simply by removing all exemplars containing
the exception value of that relation.

The general procedure of the experiment involved first
training subjects on the two bug species using a match-to-
sample task like (but not identical to) that of Kotovsky and
Gentner (1996): Three bugs were presented in a triangular
pattern on the screen (either two from category A and one
from B or vice versa) and the subject’s task was to choose
(with a mouse click) the odd man out (i.e., the B among As
or the A among Bs). As elaborated below, the exemplars of
a category could be more or less similar to members of their
own or the opposite category as a function of how many
relations they shared. “Easy” trials were those in which the
same-category exemplars shared many relations with one
another and few with the opposite-category member; “hard”
trials had fewer shared relations within-category and/or
more shared relations between categories. In the
progressively aligned condition, easier trials were presented
first, followed by progressively more difficult trials. In the
not progressively aligned condition, trials were presented in
a random order. The deterministic vs. probabilistic variable
was crossed orthogonally with aligned vs. nonaligned,
resulting in a two-by-two between subjects design. To the
extent that deterministic relational category learning is
categorically similar to probabilistic relational category
learning, progressive alignment should be expected to
facilitate both; but to the extent that they are qualitatively
different, progressive alignment is expected to facilitate the
former but not the latter.

Figure 2. Example stimuli (prototype A and B, respectively)

Method

Participants. A total of 49 subjects, randomly assigned to
conditions, participated in the study for course credit.
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Materials. Stimuli were line drawings of fictional bugs. The
bugs vary in the size and darkness of their heads, the length,
width and darkness of their bodies, and the lengths of their
wings, antennae and tails. The prototype of category A is
defined as [1,1,1,1] and the prototype of B is defined as
[0,0,0,0], where [1,1,1,1] represents head wider than body,
head darker than body, wings longer than body, and
antennae longer than tails, and [0,0,0,0] represents head
narrower than body, head lighter than body, wings shorter
than body, and antennae shorter than tails. Exemplars of
each category were made by switching the value of one
relation in the prototype (e.g., category A exemplar [1,0,1,1]
would have head larger body, head lighter body, wings
longer body, and antennae longer tails). Metric values of
head and body size and darkness, and of tail, antennae and
wing lengths were chosen randomly to conform to the
necessary relative values, rendering specific feature values
(e.g., exact head width or darkness) undiagnostic of
category membership (e.g., two instances of exemplar
[1,1,1,0] would both have heads wider than their bodies, but
would differ in their exact head and body widths).

Design. The experiment used a 2 (category structure:
probabilistic vs. deterministic)y X 2 (presentation order:
aligned vs. nonaligned) between-subjects design.

Procedure. All trials used a triads choice task in which the
subject was presented with two members of one category
along with one member of the other and their task was to
indicate which bug belonged to the odd category (i.e., the A
among Bs or the B among As). Participants responded by
mouse-clicking on the odd bug out and responses were
followed by feedback showing the correct response. Triads
differed in their difficulty, defined in terms of the number of
shared relations between the same- and different-category
exemplars. The easiest trials involved three within-category
shared relations and either zero or one between-category
shared relations. For example, the two within-category
exemplars might be [1,1,1,1] and [1,1,1,0] (both members of
A) and the remaining (category B) exemplar would be
[0,0,0,0] (which shares one relation with the second member
of A and zero with the first). We denote these trials as
difficulty 1 (where difficulty = 4 — (shared-within-category
— shared-between-category)). Difficulty 2 trials presented
three within-category shared relations and one or two
between-category shared relations (e.g., [1, 1, 1, 1], [1, 1, O,
1] and [0, O, 0, 1]). Difficulty 3 trials presented two within-
category shared relations one between-category shared
relations (e.g., [1, 1, 0, 1], [0, 1, 1, 1], and [0, O, O, 0]). The
most difficult trials, difficulty 4, presented two within-
category shared relations and two between-category shared
relations (e.g., [1, 1, 0, 1], [1, 1, 1, 0], and [0, O, O, 1]). Note
that in this most difficult case, within- and between-category
exemplars are equally similar.

Study phase—Participants in the probabilistic condition
were given 73 study trials (16 difficulty 1, 24 difficulty 2,

12 difficulty 3 and 21 difficulty 4). Those in the
deterministic condition received 42 study trials (12
difficulty 1, 12 difficulty 2, 6 difficulty 3 and 12 difficulty
4). The number of study trials differed between the
probabilistic and deterministic conditions because we made
the deterministic condition by removing one exemplar from
each category (counterbalanced across subjects), rendering
one relation deterministically-related to  category
membership. Study trials in the progressively aligned
condition were presented in order of difficulty, with
difficulty 1 trials presented first and difficulty 4 last. Study
trials in the nonaligned condition were presented in a
completely random order.

Transfer phase—Following training, participants in the
probabilistic condition were given 33 transfer trials (12 of
difficulty 3 and 21 of difficulty 4) in a random order.
Participants in the deterministic condition were given 18
transfer trials (6 of difficulty 3 and 12 of difficulty 4) in a
random order. No feedback was given during the transfer
phase.

Results

Accuracy. Our primary interest was accuracy on the
transfer trials. A 2 (probabilistic vs. deterministic) X 2
(aligned vs. nonaligned) X 2 (study vs. transfer) between-
subjects ANOVA revealed main effects of both progressive
alignment and category structure (Figure 3). There was a
significant difference between aligned and nonaligned [F (1,
90) = 12.641, MSE = 0.205, p < 0.01] such that participants
in the aligned condition (M = 0.741, SD = 0.233) showed
more accurate transfer than participants in the nonaligned
condition (M = 0.616, SD = 0.238). There was also a main
effect of category structure [F (1, 90) = 110.363, MSE =
1.79, p < 0.001]. Participants in the deterministic condition
(M = 0.844, SD = 0.219) transferred more accurately than
those in the probabilistic condition (M = 0.5, SD = 0.081).
In addition, there was a reliable interaction between
progressive alignment and category structure [F' (1, 90) =
8.571, MSE = 0.139, p < 0.01], indicating that progressive
alignment improved accuracy in the deterministic condition,
but not in the probabilistic condition. More interestingly,
there was a reliable interaction between category condition
and phase (i.e., study/transfer) [F (1, 90) = 6.451, MSE =
0.105, p < 0.05], indicating that for participants in the
deterministic/progressive condition performance on the
transfer trials (M = 0.937, SD = 0.102) was reliably more
accurate than mean performance on the study trials (M =
0.852, SD = 0.086), [#(13) = 2.570, std. err. mean = 0.033, p
< 0.05], whereas, for participants in the
deterministic/random condition, performance on the transfer
trials (M = 0.736, SD = 0.271) was no better than mean
performance on the study trials (M = 0.718, SD = 0.129),
[«(11) = 0.264, std. err. mean = 0.069, p = 0.797].
Progressive alignment did not improve participants’
learning in the probabilistic condition. Rather, participants
in the probabilistic condition performed reliably less
accurately during transfer than during training in both the
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aligned [training: M = 0.581, SD = 0.066, transfer: M =
0.514, SD = 0.079)], [#(10) = -3.173, std. err. mean = 0.029,
p < 0.05] and nonaligned conditions [training: M = 0.578,
SD = 0.069, transfer: M = 0.485, SD = 0.085), [«(11) = -
2.559, std. err. mean = 0.026, p < 0.05]. That is, as predicted
by the account that relational category structures are learned
by a process of intersection discovery, progressive
alignment was helpful for learning deterministic relational
structures but not for learning probabilistic relational
structures. That performance in the probabilistic condition
was above chance during study suggests that subjects were
learning something in this condition (e.g., it is possible to
perform at 75% accuracy by focusing on a single relation),
but the fact that this performance dropped back to chance
during transfer suggests in the least that this learning was
not very robust.

B Study
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08 | # Transfer
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Figure 3. Accuracy by condition

Discussion

Kittur at al. (2004, 2006) and Jung and Hummel (2009)
reported that subjects have great difficulty learning
relational categories with probabilistic (family resemblance)
structures in which no single relation predicts category
membership 100% of the time. They interpreted this result
in terms of subjects’ attempting to learn relational structures
through a process of intersection discovery, which retains
those features and relations exemplars have in common and
discards those on which the exemplars differ (Doumas et al.,
2008; Hummel & Holyoak, 2003). Such an approach to
learning relational categories will work as long as there is
one feature or relation shared by all category members, but
it will fail catastrophically if all features and relations are
related only probabilistically to category membership.

The current experiment provided additional support for
this intersection discovery hypothesis. Our findings
demonstrated that progressive alignment—a training regime
that presents easy examples of a relational concept early in
training, followed only later by more difficult examples
(Kotovsky & Gentner, 1996)—facilitates learning of
relational categories with a deterministic structure (in which
one relation reliably predicts category membership) but
does not facilitate learning relational categories with a
family resemblance structure. This result suggests that the
failure of intersection discovery in the face of probabilistic
category structures is too catastrophic even to be
ameliorated with a learning regime known to aid relational
learning.

These findings contribute to the growing literature
suggesting that feature- and relation-based categories may
be learned in qualitatively different ways. Whereas feature-
based categories can be learned in an associative manner
that simply tabulates the frequency with which features and
category labels co-occur—an algorithm that naturally
tolerates family resemblance category structures—relational
categories appear to demand learning in a qualitatively
different way (Hummel & Holyoak, 1997, 2003). Whatever
algorithm supports relational concept acquisition (whether
intersection discovery or something else) is more powerful
than association learning in the sense that (unlike
associative learning) it can operate on relational structures at
all (see Hummel, 2010, for a discussion of the differences
between associative and relational learning). But it is
weaker than associative learning in the sense that, unlike
associative learning, it is too "brittle" to tolerate family
resemblance structures.
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