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Abstract 

Kotovsky and Gentner (1996) showed that presenting 
progressively aligned examples helped children discover 
relational similarities: Comparisons based on initially 
concrete and highly similar, but progressively more abstract 
exemplars helped the discovery of higher-order relational 
similarities. We investigated whether progressive alignment 
can aid learning of relational categories with either a 
deterministic (in which one relation reliably predicts category 
membership) or a probabilistic structure (in which each 
relation predicts category membership with 75% reliability). 
Progressive alignment helped participants learn relational 
categories with the deterministic structure. However, 
progressive alignment did not help participants learn the 
probabilistic relational categories. The results show that 
learning relational categories with a deterministic structure 
can be improved by progressive alignment, consistent with 
previous findings (e.g., Kotovsky & Gentner, 1996), but also 
support previous findings suggesting that relational categories 
are represented as a schemas, which are learned by a process 
of intersection discovery that fails catastrophically with 
probabilistic category structures (Jung & Hummel, 2009; 
Kittur et al., 2004, 2006). 
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One of the most generally accepted assumptions in the study 

of concepts, categories and category learning is that we 

represent categories in terms of their exemplars’ features 

and that the process of category learning is a process of 

learning which features are diagnostic of category 

membership. Likewise, the process of assigning an 

exemplar to a category is a process of comparing the 

exemplars’ features to those of the category (represented 

either in terms of a prototype or as a collection of known 

exemplars). This account of category learning provides a 

natural basis for understanding the family resemblance 

structure of our concepts and categories: The idea, first 

proposed by Wittgenstein (1956) and subsequently 

supported by numerous experiments in cognitive 

psychology (for a review see Murphy, 2002), that, like the 

members of a family, the various members of a category 

tend to have many features in common with one another, but 

that there need not be any necessary or sufficient features 

for category membership. Feature-based theories of 

categorization also provide a natural account of the well-

known prototype effects in categorization (e.g., the fact that 

an exemplar is judged to be a “good” member of a category 

to the extent that it shares many features with the prototype 

of the category; see Murphy, 2002). 

       Another widely held view is that this feature-based 

account of concepts and categories, for all its successes as 

an account of prototype effects, fails to provide a complete 

account of the richness and power of our conceptual 

structures. As pointed out by Gentner (1983), Barsalou 

(1993), Murphy and Medin (1985) and others, our 

knowledge of the interrelations among an object’s 

“features” (e.g., that birds tend to fly and tend to nest in 

trees, but that not all do, and that only those that fly also 

nest in trees) and our ability to reason flexibly with our 

concepts (e.g., inferring that a man who jumps fully-clothed 

into a pool at a party is probably drunk; Murphy & Medin, 

1985) seem to demand explanation in terms of more 

sophisticated conceptual structures, such as schemas and 

theories. The primary factor distinguishing schemas and 

theories from lists of features is that the former, but not the 

latter, represent relations explicitly: Whereas a feature list 

can specify that a bird “can fly” or “lives in trees”, relational 

representations are required to specify that the ability to fly 

enables a bird to nest in trees. More generally, the  

schema/theory based view of concepts fares better as an 

account of the relations between our concepts and the larger 

theoretical structures in which they are embedded: We 

understand the relations, not just between the properties of 

various objects (e.g., the fact that a bird flies is what allows 

it to nest in trees), but between concepts and other concepts 

(e.g., that an interaction is when the effect of one variable 

depends on the value of another). 

       Moreover, some concepts and categories appear to be 

largely if not entirely relational in nature. For example, the 

category conduit is defined by a relation between the 

conduit and the thing it carries; barrier is defined by the 

relation between the barrier, the thing to which it blocks 

access and the thing deprived of that access; and even the 

category mother is defined by a relation between the mother 

and her child. Relational categories may be more the rule 

than the exception: As reported by Asmuth and Gentner 

(2005), informal ratings of the 100 highest-frequency nouns 

in the British National Corpus revealed that about half refer 
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to relational concepts. The distinction between relational 

and feature-based categories need not pose a problem for the 

study of category learning and concept acquisition as long 

as relational and featural categories are learned in similar 

ways. But if they are learned in different ways, then little or 

nothing we know about the acquisition of feature-based 

categories necessarily need apply to the case of relational 

concepts and categories. 

       For example, Kittur, Hummel and Holyoak (2004; 

Kittur, Holyoak & Hummel, 2006) noticed that prototype 

effects had always been reported in experiments using 

categories defined by their exemplars’ features. (For 

example, in an experiment using fictional “bugs” as stimuli, 

categories might be distinguished by features such as the 

shapes of a bug’s head, wings, body and tail.) Kittur and 

colleagues wondered whether such effects would also be 

observed in categories defined, not by the exemplars’ 

features, but by the relations among those features. To their 

surprise, they found that, rather than demonstrating 

prototype effects, people have great difficulty even learning 

relational categories with a probabilistic (i.e., family 

resemblance) structure in the first place.  

They interpreted their findings in terms of people 

attempting to learn relational categories using a process akin 

to schema induction (e.g., Hummel & Holyoak, 2003). 

Specifically, Kittur et al. (2004) reasoned that if a relational 

category is represented as a schema, as has been proposed 

by others (e.g., Barsalous, 1993; Gentner, 1983; Holland, 

Holyoak, Nisbett, & Thagard, 1986; Keil, 1989; Murphy & 

Medin, 1985; Ross & Spalding, 1994), and if schemas are 

learned by a process of intersection discovery, in which a 

schema is learned from examples by keeping what the 

examples have in common and disregarding details on 

which they differ (as proposed by Hummel and Holyoak, 

2003; see also Doumas, Hummel, and Sandhofer, 2008), 

then learning probabilistic relational categories ought to be 

extremely difficult because the intersection of the examples 

is the empty set (i.e., there is no single relation shared by all 

category members). More recently, Jung and Hummel 

(2009) replicated and extended the findings of Kittur et al., 

providing additional evidence that relational categories are 

indeed learned by a process of schema induction, and that 

this algorithm makes it very difficult for people to learn 

relational categories with a probabilistic (i.e., family 

resemblance) structure. 

       One potential alternative explanation for the findings of 

Kittur et al. (2004, 2006) and Jung and Hummel (2009) is 

that probabilistic relational categories are simply harder to 

learn than other kinds of categories, not that they rely on a 

qualitatively different learning algorithm than, say, feature-

based category learning (e.g., schema induction in the 

relational case vs. simple associative learning in the feature-

based case): That is, perhaps relational categories are simply 

harder to learn than feature-based categories, probabilistic 

categories are harder to learn than deterministic categories 

and these two sources of difficulty interact to push 

probabilistic relational categories over some kind of internal 

threshold, rendering them very hard for some to learn and 

impossible for others.  

       Various aspects of the Kittur et al. and Jung and 

Hummel findings are inconsistent with this interpretation. 

For example, in the data of Kittur et al. (2004), deterministic 

relational categories were not reliably more difficult to learn 

than feature-based categories. Indeed, Tomlinson and Love 

(2010) showed that, under some circumstances, relational 

categories can be much easier to learn than featural ones. In 

addition, Kittur et al. (2006) performed an ideal observer 

analysis on their category learning tasks and showed that 

human efficiency (i.e., human performance divided by ideal 

performance) is markedly lower in the probabilistic 

relational condition than in all three other conditions, 

suggesting that the performance difference in this condition 

is a function of human cognition, not the relational category 

learning task itself. Finally, Jung and Hummel (2009) were 

able to find a condition under which probabilistic relational 

category learning is not especially difficult (i.e., the “who’s 

winning” task), suggesting that there is likely something 

“special” about the probabilistic relational category learning 

task. Nonetheless, additional evidence that probabilistic 

relational category learning is qualitatively different from 

both deterministic relational category learning and 

probabilistic feature-based category learning—especially 

evidence from a qualitatively different learning paradigm—

would contribute both to our confidence that the difference 

is real and to our understanding of the nature of that 

difference. 

       If it turns out that probabilistic relational category 

learning is quantitatively different (e.g., more difficult) but 

qualitatively similar to deterministic relational category 

learning (i.e., in the sense that the same learning algorithm 

works for both), then interventions that aid deterministic 

relational category learning ought also to aid probabilistic 

relational category learning. By contrast if the learning 

algorithm that leads to successful deterministic relational 

category learning fails catastrophically in the case of 

probabilistic relational categories (as predicted by the 

schema induction-based account), then even interventions 

that facilitate the acquisition of deterministic relational 

concepts should be powerless to facilitate probabilistic 

relational concept acquisition.  

       One intervention that has been shown to facilitate the 

acquisition of deterministic relational concepts is 

progressive alignment (Kotovsky & Gentner, 1996). 

Progressive alignment is a training paradigm under which 

easy examples of a relational concept are presented earlier 

than harder examples of that concept, so that learning of the 

easy examples can bootstrap the acquisition of the harder 

ones. In the case of Kotovsky and Gentner, the learners 

were children and the relational concepts to be acquired 

were symmetry (e.g., little, big, little or light, dark, light) 

and monotonic increase (e.g., little, big, bigger or light, 

dark, darker). Kotovsky and Gentner trained children on 

these concepts using a matching task in which a sample 

stimulus was shown at the top of a display and two 
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alternatives were shown at the bottom (see Figure 1). The 

child’s task was to indicate which alternative matched the 

sample. Some of the trials were “easy” in the sense that 

featural information supported making the right relational 

choice (e.g., matching little, big, little in the context of 

squares onto little, big, little circles vs. little, big, bigger 

circles) whereas others were more difficult, requiring 

children to make a cross-dimensional match (e.g., matching 

little, big, little squares onto light, dark, light circles vs. 

light, dark, darker circles). When Kotovsky and Gentner 

trained the children on this task with randomly-ordered 

trials, the youngest children (4-year-olds) could not learn the 

task. But when the trials were progressively aligned, so that 

the easy trials came first and the more difficult cross-

dimensional trials came later, then the 4-year-olds were able 

to master the task. Kotovsky and Gentner concluded that 

this procedure facilitated the learning of relational concepts 

by allowing the earlier trials to take advantage of featural 

support of correct responding and later trials to take 

advantage of generalization from the earlier trials.  

 

 

 

 

 

 

 

     

    

 

 

   

Figure 1. Example of Kotovsky and Gentner (1996) stimuli 

 

To the extent that probabilistic relational category 

learning is simply harder than deterministic relational 

category learning (rather than being fundamentally 

incompatible with the learning algorithm that supports 

relational concept acquisition), then progressive alignment 

would be expected to facilitate both deterministic and 

probabilistic relational category learning. But to the extent 

that schema induction (or something akin to it) is invoked in 

response to all relational learning tasks and succeeds with 

deterministic concepts but fails catastrophically with 

probabilistic ones, then progressive alignment would be 

expected to facilitate deterministic relational concept 

acquisition but fail to facilitate probabilistic relational 

concept acquisition. It is this hypothesis that the current 

experiment was designed to test.  

An additional purpose of the current experiment is to 

replicate the basic difficulty-of-probabilistic-relational-

category learning effect with new stimulus materials. Kittur 

et al. (2004, 2006) used stimuli composed of octagons and 

squares, and Jung and Hummel (2009) used stimuli 

composed of circles and squares. The current experiment 

used fictional “bugs” as stimuli (Figure 2). The prototype of 

species A had a head that was wider and darker than its 

body, wings that were longer than its body and antennae 

longer than its tails. The prototypical B had the opposite 

relations: a head narrower and lighter than its body, wings 

shorter than its body and antennae shorter than its tails. In 

the probabilistic condition, any exemplar of A or B shared 

three relations with its own prototype and one with the 

prototype of the opposite category. In other words, the 

formal probabilistic category structures used are isomorphic 

with those used by Kittur et al. and Jung and Hummel. In 

the deterministic condition, one relation (counterbalanced) 

was rendered deterministically diagnostic of category 

membership simply by removing all exemplars containing 

the exception value of that relation. 

The general procedure of the experiment involved first 

training subjects on the two bug species using a match-to-

sample task like (but not identical to) that of Kotovsky and 

Gentner (1996): Three bugs were presented in a triangular 

pattern on the screen (either two from category A and one 

from B or vice versa) and the subject’s task was to choose 

(with a mouse click) the odd man out (i.e., the B among As 

or the A among Bs). As elaborated below, the exemplars of 

a category could be more or less similar to members of their 

own or the opposite category as a function of how many 

relations they shared. “Easy” trials were those in which the 

same-category exemplars shared many relations with one 

another and few with the opposite-category member; “hard” 

trials had fewer shared relations within-category and/or 

more shared relations between categories. In the 

progressively aligned condition, easier trials were presented 

first, followed by progressively more difficult trials. In the 

not progressively aligned condition, trials were presented in 

a random order. The deterministic vs. probabilistic variable 

was crossed orthogonally with aligned vs. nonaligned, 

resulting in a two-by-two between subjects design. To the 

extent that deterministic relational category learning is 

categorically similar to probabilistic relational category 

learning, progressive alignment should be expected to 

facilitate both; but to the extent that they are qualitatively 

different, progressive alignment is expected to facilitate the 

former but not the latter. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Example stimuli (prototype A and B, respectively) 

Method 

Participants. A total of 49 subjects, randomly assigned to 

conditions, participated in the study for course credit.  
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Materials. Stimuli were line drawings of fictional bugs. The 

bugs vary in the size and darkness of their heads, the length, 

width and darkness of their bodies, and the lengths of their 

wings, antennae and tails. The prototype of category A is 

defined as [1,1,1,1] and the prototype of B is defined as 

[0,0,0,0], where [1,1,1,1] represents head wider than body, 

head darker than body, wings longer than body, and 

antennae longer than tails, and [0,0,0,0] represents head 

narrower than body, head lighter than body, wings shorter 

than body, and antennae shorter than tails. Exemplars of 

each category were made by switching the value of one 

relation in the prototype (e.g., category A exemplar [1,0,1,1] 

would have head larger body, head lighter body, wings 

longer body, and antennae longer tails). Metric values of 

head and body size and darkness, and of tail, antennae and 

wing lengths were chosen randomly to conform to the 

necessary relative values, rendering specific feature values 

(e.g., exact head width or darkness) undiagnostic of 

category membership (e.g., two instances of exemplar 

[1,1,1,0] would both have heads wider than their bodies, but 

would differ in their exact head and body widths). 

 

Design. The experiment used a 2 (category structure: 

probabilistic vs. deterministic) X 2 (presentation order: 

aligned vs. nonaligned) between-subjects design.     

       

Procedure. All trials used a triads choice task in which the 

subject was presented with two members of one category 

along with one member of the other and their task was to 

indicate which bug belonged to the odd category (i.e., the A 

among Bs or the B among As). Participants responded by 

mouse-clicking on the odd bug out and responses were 

followed by feedback showing the correct response. Triads 

differed in their difficulty, defined in terms of the number of 

shared relations between the same- and different-category 

exemplars. The easiest trials involved three within-category 

shared relations and either zero or one between-category 

shared relations. For example, the two within-category 

exemplars might be [1,1,1,1] and [1,1,1,0] (both members of 

A) and the remaining (category B) exemplar would be 

[0,0,0,0] (which shares one relation with the second member 

of A and zero with the first). We denote these trials as 

difficulty 1 (where difficulty = 4 – (shared-within-category 

– shared-between-category)). Difficulty 2 trials presented 

three within-category shared relations and one or two 

between-category shared relations (e.g., [1, 1, 1, 1], [1, 1, 0, 

1] and [0, 0, 0, 1]). Difficulty 3 trials presented two within-

category shared relations one between-category shared 

relations (e.g., [1, 1, 0, 1], [0, 1, 1, 1], and [0, 0, 0, 0]). The 

most difficult trials, difficulty 4, presented two within-

category shared relations and two between-category shared 

relations (e.g., [1, 1, 0, 1], [1, 1, 1, 0], and [0, 0, 0, 1]). Note 

that in this most difficult case, within- and between-category 

exemplars are equally similar. 

 

Study phase—Participants in the probabilistic condition 

were given 73 study trials (16 difficulty 1, 24 difficulty 2, 

12 difficulty 3 and 21 difficulty 4). Those in the 

deterministic condition received 42 study trials (12 

difficulty 1, 12 difficulty 2, 6 difficulty 3 and 12 difficulty 

4). The number of study trials differed between the 

probabilistic and deterministic conditions because we made 

the deterministic condition by removing one exemplar from 

each category (counterbalanced across subjects), rendering 

one relation deterministically-related to category 

membership. Study trials in the progressively aligned 

condition were presented in order of difficulty, with 

difficulty 1 trials presented first and difficulty 4 last. Study 

trials in the nonaligned condition were presented in a 

completely random order. 

Transfer phase—Following training, participants in the 

probabilistic condition were given 33 transfer trials (12 of 

difficulty 3 and 21 of difficulty 4) in a random order. 

Participants in the deterministic condition were given 18 

transfer trials (6 of difficulty 3 and 12 of difficulty 4) in a 

random order. No feedback was given during the transfer 

phase.  

Results 

Accuracy. Our primary interest was accuracy on the 

transfer trials. A 2 (probabilistic vs. deterministic) X 2 

(aligned vs. nonaligned) X 2 (study vs. transfer) between-

subjects ANOVA revealed main effects of both progressive 

alignment and category structure (Figure 3). There was a 

significant difference between aligned and nonaligned [F (1, 

90) = 12.641, MSE = 0.205, p < 0.01] such that participants 

in the aligned condition (M = 0.741, SD = 0.233) showed 

more accurate transfer than participants in the nonaligned 

condition (M = 0.616, SD = 0.238). There was also a main 

effect of category structure [F (1, 90) = 110.363, MSE = 

1.79, p < 0.001]. Participants in the deterministic condition 

(M = 0.844, SD = 0.219) transferred more accurately than 

those in the probabilistic condition (M = 0.5, SD = 0.081). 

In addition, there was a reliable interaction between 

progressive alignment and category structure [F (1, 90) = 

8.571, MSE = 0.139, p < 0.01], indicating that progressive 

alignment improved accuracy in the deterministic condition, 

but not in the probabilistic condition. More interestingly, 

there was a reliable interaction between category condition 

and phase (i.e., study/transfer) [F (1, 90) = 6.451, MSE = 

0.105, p < 0.05], indicating that for participants in the 

deterministic/progressive condition performance on the 

transfer trials (M = 0.937, SD = 0.102) was reliably more 

accurate than mean performance on the study trials (M = 

0.852, SD = 0.086), [t(13) = 2.570, std. err. mean =  0.033, p 

< 0.05], whereas, for participants in the 

deterministic/random condition, performance on the transfer 

trials (M = 0.736, SD = 0.271) was no better than mean 

performance on the study trials (M = 0.718, SD = 0.129), 

[t(11) = 0.264, std. err. mean = 0.069, p = 0.797]. 

Progressive alignment did not improve participants’ 

learning in the probabilistic condition. Rather, participants 

in the probabilistic condition performed reliably less 

accurately during transfer than during training in both the 
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aligned [training: M = 0.581, SD = 0.066, transfer: M = 

0.514, SD = 0.079)], [t(10) = -3.173, std. err. mean = 0.029, 

p < 0.05] and nonaligned conditions [training: M = 0.578, 

SD = 0.069, transfer: M = 0.485, SD = 0.085), [t(11) = -

2.559, std. err. mean = 0.026, p < 0.05]. That is, as predicted 

by the account that relational category structures are learned 

by a process of intersection discovery, progressive 

alignment was helpful for learning deterministic relational 

structures but not for learning probabilistic relational 

structures. That performance in the probabilistic condition 

was above chance during study suggests that subjects were 

learning something in this condition (e.g., it is possible to 

perform at 75% accuracy by focusing on a single relation), 

but the fact that this performance dropped back to chance 

during transfer suggests in the least that this learning was 

not very robust. 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 Deterministic condition                Probabilistic condition               

 

Figure 3. Accuracy by condition 

 

Discussion 

Kittur at al. (2004, 2006) and Jung and Hummel (2009) 

reported that subjects have great difficulty learning 

relational categories with probabilistic (family resemblance) 

structures in which no single relation predicts category 

membership 100% of the time. They interpreted this result 

in terms of subjects’ attempting to learn relational structures 

through a process of intersection discovery, which retains 

those features and relations exemplars have in common and 

discards those on which the exemplars differ (Doumas et al., 

2008; Hummel & Holyoak, 2003). Such an approach to 

learning relational categories will work as long as there is 

one feature or relation shared by all category members, but 

it will fail catastrophically if all features and relations are 

related only probabilistically to category membership. 

  

 

The current experiment provided additional support for 

this intersection discovery hypothesis. Our findings 

demonstrated that progressive alignment—a training regime 

that presents easy examples of a relational concept early in 

training, followed only later by more difficult examples 

(Kotovsky & Gentner, 1996)—facilitates learning of 

relational categories with a deterministic structure (in which 

one relation reliably predicts category membership) but 

does not facilitate learning relational categories with a 

family resemblance structure. This result suggests that the 

failure of intersection discovery in the face of probabilistic 

category structures is too catastrophic even to be 

ameliorated with a learning regime known to aid relational 

learning.  

These findings contribute to the growing literature 

suggesting that feature- and relation-based categories may 

be learned in qualitatively different ways. Whereas feature-

based categories can be learned in an associative manner 

that simply tabulates the frequency with which features and 

category labels co-occur—an algorithm that naturally 

tolerates family resemblance category structures—relational 

categories appear to demand learning in a qualitatively 

different way (Hummel & Holyoak, 1997, 2003). Whatever 

algorithm supports relational concept acquisition (whether 

intersection discovery or something else) is more powerful 

than association learning in the sense that (unlike 

associative learning) it can operate on relational structures at 

all (see Hummel, 2010, for a discussion of the differences 

between associative and relational learning). But it is 

weaker than associative learning in the sense that, unlike 

associative learning, it is too "brittle" to tolerate family 

resemblance structures. 
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