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Abstract 
While the use of concrete, contextualized and personally 
relevant examples can benefit learners in terms of 
comprehension and motivation, these types of examples can 
come with a cost.  Examples may become too bound to their 
particular context, and individuals may have a difficult time 
recognizing when the underlying principles are relevant in 
new situations.  In the current study, we provide evidence that 
contextualization may impair knowledge transfer even when 
that context occurs outside of the training example itself.  
Specifically, when students were taught about positive 
feedback systems in the context of polar ice-albedo effects, 
those individuals that had previously learned about the effects 
of global warming on polar bear populations showed reliably 
poorer transfer performance. 

Introduction 
In virtually all educational domains, the ultimate goal of 
learning is not simply to acquire some static body of 
specific facts.  Rather, the objective is to gain more general 
kinds of knowledge structures that can be applied in new 
situations and under novel conditions.  For example, 
computer programmers may learn very general algorithms 
that can be used in a variety of different tasks and 
instantiated in very different programming languages; 
students of literature or history learn about themes and 
patterns that can occur across a wide variety of situations 
that are superficially dissimilar; and those learning about 
science may discover principles that are relevant not only 
across different contexts, but even across disciplines.  In 
short, the goal of learning is primarily to acquire 
generalizable knowledge that may be used productively. 

Unfortunately, it is not immediately clear what the most 
effective means of conveying this kind of knowledge might 
be, and the data on this topic can seem counterintuitive or 
contradictory.  This is a critical area to understand, however.  
Instructors have a great deal of latitude in their selection of 
teaching examples and methods, and research suggests that 
even subtle differences in these choices may have an 
important impact on students’ learning.  The current study 
extends our understanding of this issue.  Specifically, we 
explore the ways in which the context surrounding a 
particular training example may influence what students 
learn, and their ability to apply this knowledge to new cases. 

One straightforward approach of conveying generalizable 
knowledge is to present information in a highly abstracted 
way, removing any context-specific details and features.  
For example, consider the concept of positive feedback 

systems.  Such systems are ubiquitous in science, and can be 
instantiated in an almost limitless number of ways.  In order 
to maximize the set of situations where a learner’s 
knowledge can be applied, this concept could be presented 
in a way that is not specific to any particular context, such 
as: “A system in which increases to a variable cause still 
further increases to that variable.”  Such a general definition 
would make the concept applicable to a wide range of 
domains, capturing positive feedback phenomena in 
biology, physics, chemistry and even interpersonal 
interactions. 

However, it has long been argued that while such abstract 
presentations might capture the relevant information 
efficiently, they do so at the expense of comprehensibility 
(e.g., Bruner, 1966), making this approach ultimately 
counterproductive. Learners cannot apply information that 
they do not understand.  Consistent with this, research has 
found that people tend to rely on more concrete examples 
when possible.  For example, in one study (LeFevre & 
Dixon, 1986) researchers provided participants with explicit 
verbal instructions on how to perform a task, while also 
giving them a concrete example of the task being 
performed.  However, for some individuals, those sources of 
information conflicted with each other, and actually 
reflected different tasks and goals.  Under those conditions, 
participants were overwhelmingly more likely to act on the 
basis of the concrete example rather than the more abstract 
verbal instructions.  Similarly, Ross (1987) found that even 
when students were given the appropriate mathematical 
formula to use in solving a story problem, their performance 
was influenced by the concrete examples they had 
previously seen (see also Anderson, Farrell, & Sauers, 
1984). 

One of the most striking examples of the merits of 
contextualization is the Wason selection task, which leads to 
uniformly poor performance (typically about 10% correct) 
when presented in its abstract symbolic form, but is often 
solved when instantiated in a familiar context (e.g., 
Johnson-Laird, Legrenzi, & Legrenzi, 1972; Wason & 
Shapiro, 1971).  As we will discuss, however, there are 
issues with learning from contextualized training examples 
as well.   

First, it can be challenging to define exactly what 
contextualization means.  At one end of the spectrum, it 
could simply refer to the concrete perceptual features that 
are associated with a situation.  For example, instructors 
could teach a principle with an animated simulation, using 
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more or less realistic perceptual features.   Another way of 
construing contextualization is in terms of the learner’s 
existing knowledge structures.  A case may be considered 
contextualized to the extent that it draws on familiar 
schemas, in which many of the relationships are already 
known.  Alternatively, contextualization could be a function 
of personal relevance or perspective, with more engaging or 
interactive tasks possibly leading to deeper kinds of 
understanding.  Of course, in most situations, these factors 
are probably highly interrelated. 

Perhaps surprisingly, for each of these ways of construing 
contextualization, there is at least some empirical evidence 
suggesting that greater contextualization can impair 
people’s learning.  For instance, when Goldstone and 
Sakamoto (2003) examined students’ ability to learn and 
transfer a scientific principle from a perceptually concrete 
computer simulation, they found superior performance when 
the simulations used relatively less detailed or less realistic 
entities (e.g., portraying ants as dots, as opposed to more 
realistic ant animations; also see Kaminski, Sloutsky & 
Heckler, 2008).  Likewise, while the activation of schemas 
can sometimes support performance (as in some versions of 
the Wason selection task), schemas may also be detrimental 
if they suggest irrelevant or inappropriate relationships (e.g., 
Bassok, Wu & Olseth, 1995). And while personal 
interaction and personal relevance has been argued to 
support learning both cognitively (e.g., McCombs & 
Whistler, 1997) and in terms of motivation (e.g., Lepper, 
1988), research has also called these potential benefits into 
question.  For instance, Son and Goldstone (2009) found 
that when participants were taught the principles underlying 
signal detection theory through a concrete training example, 
their performance was impaired when the task was made 
more personally relevant, either by giving participants first-
hand detection experience, or by framing the task in a first-
person perspective (e.g., “Imagine that you are a doctor…” 
vs. “Imagine a doctor…”).  Similarly, DeLoache (2000) 
found that young children’s ability to use materials as 
symbolic representations was impaired after they were given 
the chance to directly manipulate and play with them. 

Findings such as these raise some serious cognitive and 
pedagogical questions.  For example, teachers are frequently 
told of the benefits of using concrete examples in their 
classes, and of making instruction engaging and relevant to 
the students (e.g., Rivet & Krajcik, 2008).  The empirical 
research, however, suggests that the picture may be more 
complex than that advice would suggest.  Injudicious use of 
contextualization and personalization in the classroom could 
actually hurt students’ performance under some 
circumstances, particularly if performance is measured in 
terms of transfer to new situations.  Furthermore, the fairly 
broad scope of the factors that could count as 
contextualization opens the possibility that seemingly subtle 
differences in the way that an example is described or 
introduced could have important consequences for learning. 
In the current research, we investigate the possible effects of 
these subtle kinds of contextualization. 

Experiment 
In the previous research discussed thus far, context has been 
manipulated by directly altering perceptual or conceptual 
aspects of the training task itself.  In the current study, we 
examined the effects of manipulating context less directly.  
While the task itself, and even the introductory description 
of the task, were identical between conditions, the preceding 
introduction to the general content domain differed.  
Specifically, one condition described information that was 
expected both to be associated with more background 
knowledge and to be more personally relevant and engaging 
to the students. 
 
Participants 
144 students from a public middle school participated in this 
study, as part of their regular class time in a General Science 
course. The group included both 7th- and 8th-grade students 
(n = 70 and 74, respectively) from six class periods. A little 
more than a third of the students (n = 49) were part of the 
school’s Accelerated Learning Program (ALPs), which is 
composed of students passing a science achievement test.  
The students were roughly evenly divided between males (n 
= 68) and females (n = 76). 

Materials and Design 
Our experiment was conducted during the course of regular 
class periods in a public middle school.  Students first 
completed a pretest, in which they read several brief 
scenarios and decided whether each was an example of a 
positive feedback system.  The instructions for this test 
included a brief definition of positive feedback, along with 
an example.  Students then read a short introduction to the 
topic of polar melting.  The wording of this introduction 
varied between participants in terms of its contextual 
richness (High Context vs. Low Context), and this variation 
was the only difference between the experimental 
conditions.  All students then interacted with a computer 
simulation of the behavior of the polar ice caps.  Next, 
students responded to an open-ended item, asking them to 
write a short paragraph describing positive feedback 
systems in general.  Finally, the pretest feedback scenarios 
were administered again as a posttest. 
 
Pretest and Posttest.  The pretest and posttest materials 
were designed to assess students’ understanding of positive 
feedback systems.  The materials included eight brief 
scenarios (averaging 48 words apiece), each describing a 
real-world phenomenon.  Half of these scenarios 
represented positive feedback systems and half did not.  For 
example, one scenario was the following: 

Economic inflation involves a complex set of 
factors.  Here is an example scenario. Minimum 
wage is increased; therefore the cost of producing 
goods increases; this causes a rise in the price of 
the goods; this in turn increases the cost of living, 
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leading to a call for an increase in the minimum 
wage. 

Participants were then asked whether or not the 
relationship between the relevant factors represented a 
positive feedback system.  Responses were given by 
selecting one of the following options from a five-point 
rating scale:  Definitely not, Probably not, Don’t know, 
Probably yes, and Definitely yes. 

Identical items were given at pre-test and post-test. 
However, in order to minimize any explicit memorization 
and reference to previous answers, students were not 
informed about the post-test until later in the experimental 
session. 
 
Computer simulation.  All students interacted with a 
computer simulation demonstrating the effects of ice-albedo 
feedback (a kind of positive feedback system) on the Earth’s 
polar ice caps.  Prior to interacting with the simulation, each 
participant read a one-paragraph introduction to the topic of 
polar melting resulting from global warming (see Box 1).  
For roughly half of the students (n = 75), this introductory 
paragraph described recent patterns of polar melting in the 
Hudson Bay area (the Low Context condition).  While this 
introduction is directly relevant to the topic of the 
simulation, it was expected to provide little in the way of 
subjective context because of students’ limited background 

knowledge of, and personal relationship to, this specific 
content.  The remainder of the students (n = 69) read an 
introduction describing the negative impact of global 
warming on polar bear populations (the High Context 
condition).  We expected students to have fairly rich 
existing knowledge about polar bears, and to have a greater 
sense of personal relevance and identification with the 
plight of the bears.  The full texts of these introductions, as 
well as the photographs accompanying each, are given in 
Box 1. 

Next, all students read a more specific introduction to ice-
albedo feedback effects: 
 

This is a simulation of the polar ice caps.  Heat 
from the sun warms the earth, and can melt the ice. 

One interesting thing about the polar caps is that 
because ice is white, it REFLECTS much of the 
sunlight, so it isn't absorbed.  Because of this, when 
some ice melts, less sunlight is reflected, so the 
earth gets warmer, which makes even MORE ice 
melt.  On the other hand, when some water freezes, 
more sunlight is reflected, making the earth cooler, 
which can make even more water freeze. 

This kind of system is called “positive 
feedback.”  Any change in the system (like water 
freezing) tends to cause even more of that change 
(like more water freezing). 

 
 
  

 
Polar bears are in danger. Climate research now shows 
that because of global warming, Canada’s Hudson Bay 
sea-ice forms later in the winter, and is breaking up 
earlier in the spring than in the past. This shortage of sea 
ice leaves the population of polar bears there with more 
time waiting for ice to form, and less time on the ice. 
The less time they have on the ice, the less food they 
have. Currently the polar bears have been off the ice 
since July 15 and must rely on fat reserves which      
they lose quickly. The longer they wait the more at-risk 
they are of not being strong enough to hunt when      
they can. If polar bears cannot hunt, they will not 
survive. 

 
Hudson Bay’s sea-ice in Canada takes a long time to 
form during the colder months. It usually starts forming 
in October, and has full ice-cover by December. The 
bay’s sea ice-extent and thickness is studied to determine 
the effects of global warming. “Ice-extent” is a 
measurement of the area of the ocean where there is at 
least some ice. Scientists say Hudson Bay’s ice extent in 
the winter is much less than it used to be. One reason for 
the lack of ice in the bay is the warmer temperatures in 
the past twenty years. Given its size, history, and impact 
on global climate patterns, Hudson Bay’s sea ice 
processes will continue to be very important to study as 
we struggle to understand global warming. 

Box 1: Pre-simulation context materials.  The photo and text on the left were given to those in the high context 
condition; those on the right were given to the low context group. 
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Students then interacted with the ice-albedo simulation 
itself (This was implemented in NetLogo, a software 
package for developing agent-based simulations; Wilensky, 
1999).  Students were guided through the simulation with 
very specific instructions, which were designed to highlight 
the feedback effects. Additionally, these instructions 
explicitly reiterated at multiple points that these effects were 
a demonstration of positive feedback behavior, and why.  
Box 2 provides a thorough description of the simulation and 
instructions. 

After the simulation, students were asked to define 
positive feedback systems in their own words: “We would 
like you to tell us what a positive feedback system is.  Just 
do your best to describe it in your own words.  Please don’t 
just write about the simulation you just saw.  Instead, try to 
write about positive feedback systems in general.”  Students 
had a full page to provide their answers, but there were no 
instructions regarding the required length for this response. 

Finally, all students completed the scenario classification 
task again as a posttest. 

Results 
Our analyses found reliable differences between the context 
conditions in terms of ability to recognize positive feedback 
systems in new situations.  Responses on the pretest and 
posttest were coded according to their proximity to the 
correct end of the rating scale.  For instance, if a scenario 
actually reflected positive feedback behavior, a response of 
Definitely yes would be coded as a 5, a response of 
Definitely not would be coded as a 1, and a response of 
Don’t know would be coded as a 3.  These codings would be 
reversed for scenarios that did not reflect positive feedback 
(e.g., a response of Definitely yes would be coded as a 1).  
For each student, we calculated an improvement score, 
which was simply the sum of the posttest scores minus the 
sum of the pretest scores.  11 of the 144 students were 
dropped from the analysis because of items left blank during 
one of the two tests. 

We found reliable differences between the improvement 
scores of the low and high context conditions (t(132) = 2.42, 
p = .017).  Specifically, those in the low context condition 
improved reliably at posttest (M = 1.58, t(68) = 3.30,  p = 
.002), while those in the high context condition showed a 
non-significant decrease in posttest performance (M = -.36, 
t(63) = 0.55,  n.s.).  Because of the poor performance by 
those in the high context group, there was no reliable 
improvement when collapsing across all participants (M = 
.65, t(132) = 1.59,  p = .114).  The superiority of the low 
context group also held in a separate analysis of the eight 
test items (t(7) = 2.47, p = .043). 

This poor transfer performance did not appear to be the 
result of less effective learning of the training example 
itself.  Students’ responses to the open-ended definition item 
were coded on a scale from 0 to 5, based on a rubric 
assessing their understanding of positive feedback.  These 
scores did not differ between the two groups (M = 1.99 and 

2.11 for the low and high context conditions, respectively 
(t(132) = 0.48, p = .63). 

The effects of context condition also did not appear to 
vary as a function of student ability.  While the accelerated 
(ALPS) students outperformed those in regular classes at 
both pretest (t(132) = 6.99, t < .001) and posttest (t(132) = 
6.43, t < .001), there were no differences between the 
groups in terms of overall improvement or differences in 
improvement between context conditions.  Similarly, there 
were no differences in the effects of condition on 7th vs. 8th 
graders. 

We also found evidence for a small but reliable bias in 
students’ posttest responses, such that items at posttest were 
more likely to be classified as examples of positive 
feedback.  To assess this bias, we coded each response 
based on its proximity to the end of the rating scale labeled 
Definitely yes, regardless of what the correct response for 
that item should be (e.g., responses of Definitely yes were 
coded as 5, responses of Definitely not were coded as 1).  
Bias for each student was simply calculated as the sum these 
scores at posttest minus the sum at pretest.  Across all 
participants, this value was reliably greater than zero (M = 
.30, t(132) = 3.47, p < .001).  The level of this bias did not 
differ between the low (M = .22) and high (M = .39) context 
conditions (t(132) = 0.99, p = .32). 

Discussion 
Individuals in the current study were adversely affected by 
rich contextualization, even when that contextualization 
occurred outside of the training example itself.  All of the 
students in our experiment interacted with identical 
computer simulations, and the descriptions of both ice-
albedo effects and positive feedback systems more generally 
were the same across conditions.  However, those 
individuals who had previously read a contextually rich 
general introduction to the issue of polar melting (involving 
polar bears) showed reliably poorer transfer performance.  
Specifically, while students who had read a less personally 
relevant and engaging introduction had reliable posttest 
gains in their ability to classify new cases as examples of 
positive feedback, those in the high context condition 
showed no gains at all. 

 
Figure 1: Pretest and posttest classification results. 
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The computer simulation displays a top-down view of a polar ice cap, 
surrounded by water.  The primary observable dynamics of the system involve 
the size and shape of the ice surface, which is constantly changing.  These 
changes are a function of the temperature at each location on the earth, and 
this temperature is affected by four different factors: cooling, diffusion, 
sunlight, and albedo.  First, there is a slow but constant net cooling of the 
earth, reflecting the dissipation of heat into space. Similarly, there is a 
constant diffusion of heat between adjacent areas of the earth, which serves to 
“average out” the temperature in a given region.  The most relevant factors for 
the students, however, are sunlight and albedo.  The earth is receiving a steady 
flow of energy in the form of sunlight, which can be absorbed and can 
increase an area’s temperature.  However, not all of this energy is absorbed: 
much of the light is reflected back into space.  Furthermore, the amount of 
light that is reflected depends on a given area’s albedo or reflectance.  
Critically, ice has a much higher albedo than land or water, because of its 
white color.  In our simulation, ice only absorbs one quarter of the energy that 
is absorbed by the surrounding water (20% vs. 80%, respectively).  Because 
of this, greater ice coverage results in lower overall warming.  It is this factor 
that produces the system’s feedback behavior.  A decrease in ice coverage 
results in more heat being absorbed, leading to even more melting, and so on.  
Conversely, an increase in ice coverage causes the reflection of more light, 
reducing the temperature and potentially causing even more water to freeze. 

The simulation uses a grid of colored points to indicate each region’s 
overall light reflectance and absorption (the “reflection grid”).  Red dots 
(darker in the image above) indicate absorbed energy, while blue dots (lighter) 
 

indicate reflected energy.  The actual location of these dots is irrelevant for the 
operation of the simulation itself, but they provide a way for students to 
directly perceive the relative balance of reflected and absorbed energy in 
different locations.  Specifically, 80% of the dots on frozen areas show 
reflectance (blue dots), compared with 20% of the dots on the water.  When 
active, this grid flashes on and off in one second increments. 

Students were guided through the simulation via specific instructions, given 
through popup messages.  Initially, students were familiarized with the 
operation of the system, first without the reflection grid, and then with.  
Messages appeared at brief intervals reminding them of the relevant principles 
of the system, such as: 

Right now, the system of ice, water and heat is pretty balanced, 
and doesn't change much.  One interesting thing about the polar caps 
is that because ice is white, it REFLECTS much of the sunlight, so 
that light isn't absorbed.  Next, we will show you how much light is 
being reflected by the ice and by the water.  Red dots show light and 
heat that are being ABSORBED by the earth.  Blue dots show light 
and heat that are being REFLECTED away from the earth.  

Next, students were instructed to interact with the system in various ways.  
For example, students were asked to select the button labeled “Melt” and to 
click and drag a few lines through the ice.  As they did so, the ice under the 
cursor changed to water (with a temperature of 36° F).  After a sufficient 
amount of the ice had been melted in this way, the simulation resumed.  At 
this point, the reduced albedo led to a positive feedback loop in which 
additional ice melted at an accelerating rate, until eventually all of the ice had 
melted.  At this point, students were told: 

Notice how this is a POSITIVE FEEDBACK system.  Melting some 
of the ice tends to make MORE ice melt.  This is because less 
sunlight is being reflected, so more heat is absorbed. 

Next, students used the simulation’s controls to observe the complementary 
feedback effect, with greater ice coverage causing additional freezing.  Again, 
they were explicitly reminded afterward the way in which this reflected 
positive feedback behavior. 

Finally, students were able to freely interact with simulation for up to three 
minutes.  Additionally, at this point we added sliders that allowed students to 
directly control the reflectance of ice and water in the simulation. 

The complete simulation may be viewed and completed at:  

 http://cognitrn.psych.indiana.edu/albedo/albedo_F10_grid2.html 
 

Box 2: Ice-albedo computer simulation 
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What accounts for these differences?  One possible 

explanation is that students in the high context condition 
were simply distracted by the salient and emotionally 
engaging introductory content.  If so, this distraction may 
have impaired their ability to attend to the subsequent task, 
and therefore inhibited their learning about the simulation 
itself.  However, our data suggest that this is not the case.  
When participants were asked to describe positive feedback 
systems in their own words after the simulation, those in the 
high context condition did just as well (and numerically 
slightly better) than those in the low context group. 

Instead, we would argue that the rich context provided by 
the general introduction served to tie students’ knowledge 
more tightly to this particular content area.  Rather than 
being able to construe the concepts underlying positive 
feedback behavior independently, those students perceived 
the ideas entirely in terms of this specific physical system: 
abstract ideas of variable values, causation and mutual 
influence were explicitly bound to the more particular 
notions of heat and reflectance.  They were therefore less 
able to integrate those concepts with the content of new 
examples involving, for example, economics or biology. 

Our findings are somewhat counterintuitive.  It seems like 
a common sense truism that engaging examples are superior 
for instruction.  However, previous research has confirmed 
that there can be a considerable disconnect between which 
factors learners (and instructors) believe best support 
learning and those factors that actually do (e.g., Kornell & 
Bjork, 2008).  Just because students are more attentive to 
engaging examples and enjoy them more does not in itself 
indicate that they will lead to generalizable knowledge. 

Of course, our study examined the use of supporting 
context that was extraneous to the principle to be learned.  
While the plight of polar bears is very much related to polar 
melting, it plays no causal role in the underlying feedback 
system itself (see Greeno, 2009).  We would argue that such 
extraneous content is very much a relevant issue for 
classroom instruction, however.  In the interest of making 
materials accessible and holding students’ attention, 
teachers are likely to couch examples in whatever salient 
context may be available—for example, grounding a 
discussion of probabilities in terms of LeBron James 
shooting free throws.  More subtle cases of 
contextualization—such as those in the current experiment, 
which were not directly involved or mentioned in the 
example itself—are likely to be even more common. 

The current research adds to our understanding of the role 
of context and specific content in learning from instructional 
examples, and provides a striking example of just how 
broadly the definition of “context” may extend.   

Acknowledgments 
This work was supported by National Science Foundation 
REESE grant 0910218.  We would like to thank Nancy 
Martin of Jackson Creek Middle School and Akshat Gupta 
for their help with our research. 

References 
Anderson, J. R., Farrell, R., & Sauers. R. (1984). Learning 

to program In LISP. Cognitive Science. 8, 87–129. 
Bassok, M., Wu, L.L., & Olseth, K.L. (1995). Judging a 

book by its cover: Interpretative effects of content on 
problem-solving transfer. Memory & Cognition, 23, 354–
367. 

Bruner, J. S. (1966). Toward a theory of instruction. 
Cambridge, MA: Harvard University Press. 

DeLoache, J. S. (2000). Dual representation and young 
children’s use of scale models. Child Development, 71, 
329–338. 

Greeno, J. (2009). A theory Bite on Contextualizing, 
Framing, and Positioning: A Companion to Son and 
Goldstone. Cognition and Instruction, 27, 269–275. 

Goldstone, R. L., & Sakamoto, Y. (2003). The Transfer of 
Abstract Principles Governing Complex Adaptive 
Systems.  Cognitive Psychology, 46, 414–466. 

Johnson-Laird, P. N., Legrenzi, P., & Legrenzi, M. S. 
(1972). Reasoning and a sense of reality. British Journal 
of Psychology, 63, 395–400. 

LeFevre, J. A. & Dixon, P. (1986). Do written instructions 
need examples? Cognition and Instruction, 3, l–30.  

Kaminski, J. A., Sloutsky, V. M., & Heckler, A. F. (2008). 
The advantage of abstract examples in learning math. 
Science, 320, 454–455. 

Kornell, N., & Bjork, R. A. (2008). Learning concepts and 
categories: Is spacing the “enemy of induction?” 
Psychological Science, 19, 585–592. 

Lepper, M. R. (1988). Motivational considerations in the 
study of instruction. Cognition and Instruction, 5, 289–
309. 

McCombs, B. L., & Whistler, J. S. (1997). The learner-
centered classroom. San Francisco: Jossey-Bass. 

Rivet, A.E., & Krajcik, J.S. (2008). Contextualizing 
instruction: Leveraging students’ prior knowledge 
experiences to foster understanding of middle school 
science.  Journal of Research in Science Teaching, 45, 
79-100. 

Ross, B. H. (1987). This is like that: The use of earlier 
problems and the separation of similarity effects. Journal 
of Experimental Psychology: Learning, Memory, and 
Cognition, 13, 629–639. 

Son, J. Y., & Goldstone, R. L. (2009).  Contextualization in 
perspective. Cognition and Instruction, 27, 51-89. 

Wason, P. C., & Shapiro, D. (1971). Natural and contrived 
experience in a reasoning problem. Quarterly Journal of 
Psychology, 23, 63–71. 

Wilensky, U. (1999). NetLogo (and NetLogo User Manual). 
http://ccl.northwestern.edu/netlogo/ 

2642

http://ccl.northwestern.edu/netlogo/

