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Abstract

Invariance principles underlie many key theories in modern
science. They provide the explanatory and predictive framework
necessary for the rigorous study of natural phenomena ranging
from the structure of crystals, to magnetism, to relativistic
mechanics. Vigo (2008, 2009) introduced a new general notion
and principle of invariance from which two parameter-free (ratio
and exponential) models were derived to account for human
conceptual behavior. Here we introduce a new parameterized
exponential “law” based on the same invariance principle. The
law accurately predicts the subjective degree of difficulty that
humans experience when learning different types of concepts. In
addition, it precisely fits the data from a large-scale experiment
which examined a total of 84 category structures across 10
category families (R? =.97,p <.0001; r=.98, p <.0001).
Moreover, it overcomes seven key challenges that had, hitherto,
been grave obstacles for theories of concept learning.
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Introduction

One of the long standing goals of psychological science has
been to discover the laws that govern human conceptual
learning behavior and, in particular, to describe these with the
mathematical precision and rigor commonly found in the
physical sciences. The two main representational paradigms
of concepts -- concepts as exemplars and as prototypes -- and
their respective formal models, such as the generalized
context model (Nosofksy, 1984, 1986), ALCOVE (Kruschke,
1992), and the multiplicative prototype model (Estes, 1986)
have contributed significantly toward this goal (Nosofsky,
1991; Nosofsky et al., 1994; Kruschke, 2006). But these
models, mostly of the probabilistic variety, have not been
able to account for the learnability of large classes of Boolean
category structures (Feldman, 2006). One of the reasons is
that they do not fully capture key relational and contextual
information in sets of stimuli, and how this information plays
a role in determining how hard or easy it is to learn a concept
(Gibson, 1966; Garner, 1963, 1970a, 1970b, 1974). For
example, an abundance of laboratory experiments have
supported the premise that subjects extract rules from
perceived patterns in stimulus sets (i.e., sets of objects) from
which concepts are learned (Bourne, 1966; Estes, 1994,
Murphy, 2002). However, in spite of this understanding, the

2580

development of a mathematically precise and elegant
relational principle of concept learning that is able to reveal
the nature of pattern detection with respect to sets of stimuli,
and that is sufficiently general to accurately predict the
degree of learning difficulty of a wide range of category
structures, remains an open problem. Instead, alternative
accounts have emerged which place mediating constructs at
their core. One such account (Feldman, 2000) posits that
since humans report forming rules when performing
laboratory categorization tasks, one can then measure the
degree of concept learning difficulty associated with a
stimulus set by the length of the shortest logical rule that
defines it. This proposal, referred to as “minimization
complexity”, does not answer two key questions about
concept learning as a rule-oriented process: 1) what is the
nature of the relational pattern perception process that must
precede (and that is necessary for) the formation of efficient
rules and heuristics in the first place, and 2) what are the
limits of our capacity to detect such relational patterns? We
believe that the answers to these two questions are the key to
explaining and predicting a wide variety of phenomena
associated with classification performance. In other words,
rule simplification procedures based on Boolean logic should,
but do not, give a deep rationale for why it is easier to form
rules about certain sets of stimuli but not about others. Such a
rationale is necessary to better understand why categorization
performance is often inconsistent with rule-based accounts of
concept learning (Vigo, 2006; Lafond, 2007). In this report,
we propose an invariance principle and law of invariance
(LQI) as the answer.

In what follows, we shall discuss how the data from a large-
scale human categorization experiment by the author and data
from several classic experiments on concept learning can be
directly accounted for by a simple mathematical law. The law
is based on the assumption that humans learn concepts by
applying a differential (analytic) operator to stimulus sets in
order to optimize their classification performance. The
operator generates an ideotype or higher level memory trace
of the essential or “atomic” structural patterns (referred to
henceforth as the “structural kernels” or SKS) perceived in
the stimulus set. ldeotypes are represented by points in a
high-level psychological space whose coordinates are the
values of their SKS. Varying sensitivity to these SKS (and to
the ideotypes in general) can accounts for individual



differences in classification performance. Although,
throughout this brief report, we shall offer hints about the
process or algorithmic level theory of concepts as ideotypes,
our main aim is to propose a goal-oriented high-level
mathematical description (what David Marr referred to as a
computational theory) of conceptual behavior. In Marr’s
computational theory of the human visual system, the
Laplacian differential operator plays a role that is similar to
the role played by our own differential operator (the
structural manifold operator) in facilitating the assumed
goals of the human conceptual system (likewise, one might
say that the ideotype of a stimulus set is a higher level
cognition counterpart of the primal sketch of a visual
stimulus). We shall focus on only two, but important, goals of
our conceptual system: the first is to generate and supply key
information about the “diagnosticity” and “redundancy” of
the recognized dimensions in the stimulus set to a rule-
construction subsystem, and the second goal is to classify
exemplars from the stimulus set optimally. Note that Vigo
(2011) generalized the invariance law proposed in this report
in order to account for the learnability of ill-defined concepts.
This generalization is achieved under a process account of
SK detection featuring notions of high-level similarity
assessment and goal-directed attention. Unfortunately, its
details are beyond the scope of this brief report.
Notwithstanding, the aforementioned theoretical assumptions
offer an adequate conceptual sketch for interpreting and
predicting individual differences as encoded in the
parameters of the invariance law.

>.
> e
o

L]

2L 2 4

A
® -
.

>

Figure 1 Instances of the 3[4] category types studied by Shepard et
al. (1961) where x represents the color dimension, y represents the
shape dimension, and z represents the size dimension.

As we shall see, the LOI overcomes seven challenges that
have been stumbling blocks for theories of Boolean concept
learning: 1) it perfectly predicts the key 3[4] family (Figure
1) learning difficulty ordering as shown in Figure 2 below; 2)
it is able to accurately account for the learnability of
categories in both up and down parity; 3) it accurately
accounts for the learnability of a very large class of category
types and families (R? =.97, p <.0001; 4) it does so
without the need for free parameters (R? = .70, p<0.0001), 5)
through the use of well-motivated and cognitively meaningful
parameters, it can explain individual differences in
classification performance; 6) it introduces an original
mathematical and deterministic framework for the study of
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concept learning behavior; 7) it unifies in precise quantitative
terms key and ubiquitous constructs in universal science such
as symmetry, invariance, and complexity from the
perspective of concept research. No other formal model of
concept learning behavior has accomplished all of the above.

The Mathematical Law of Invariance

Most investigations pertaining to degree of concept learning
difficulty have focused on sets of stimuli that are defined by
Boolean algebraic rules (i.e., expressions consisting of
disjunctions, conjunctions, and negations of variables that
stand for binary dimensions). These algebraic representations
of a categorical stimulus (category of objects) or stimulus set
are referred to as concept functions. Concept functions are
useful in spelling out the logical structure of a stimulus set.
For example, suppose that x stands for blue, x" stands for red,
y stands for round, and y’ stands for square, then the two-
variable concept function (x'-y)+ (x-y') (where “+”
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stands for “or”, stands for “and”, and “x"” stands for “not-
x”) defines the category of “red and round or blue and
square” objects. Clearly, the choice of labels in the
expression is arbitrary. Hence, there are many Boolean
expressions that define the same category structure. For
example, making x stand for red instead of blue yields the
structurally equivalent category of “blue and round or red and
square” objects, where the relationships between the
dimensional values remain the same. These structurally
equivalent categories form category types (or distinct
structures) and may be represented by a canonical concept
function in disjunctive normal form or DNF (informally, a
concept function in DNF is simply a function that is a
verbatim description of the entire category content just like
the function given above). A class of Boolean category types
whose category instances are defined by D dimensions and
contain p objects is called a D[p] family. For instance, the
Boolean category described above belongs to the 2[2] family
since it is comprised of two objects that are defined by two
dimensions (color and shape). Every category family has a
fixed number of category types. For example, the 3[4] family
has six category types (for a proof see Higonnet et al., 1958).
This latter family was studied empirically by Shepard et al.
(1961) who observed the following increasing learning
difficulty ordering: 1 < Il < [IlI, 1V, V] < VI (with types IlI,
IV, and V of approximately the same degree of difficulty).
The degree of learning difficulty of a category type is
typically operationalized by the percentage of errors made by
a subject while attempting to classify the objects from the
stimulus set that is an instance of the type. Figure 1 above
illustrates visual instances of the 3[4] family types in the form
of simple geometric shapes. This 3[4] family ordering has
been empirically replicated numerous times by several



researchers (Shepard et al., 1961; Kruschke, 1992; Nosofsky,
1994; Love & Medin, 1998) but has been difficult to predict
quantitatively.

Standardized IL
Predictions

Standardized
Proportion of
Errors

3[4] Family

Figure 2 LOI standardized predictions for the 3[4] stimulus types
using data from the experiment by the author (R%=1, p<.0001) using
a single scaling parameter k estimated for all six types.

In a more recent and broader study, Feldman (2000) observed
an approximate empirical difficulty ordering for 76 category
types from the 3[2], 3[3], 3[4], 4[2], 4[3], and 4[4] families
along with their “down parity” counterparts. A category is in
down parity whenever it has more objects than its
complementary category; otherwise, it’s in “up parity” (the
complement of a category is the set of objects that are also
definable by D dimensions but that are not in the category).
Although a difficulty ordering was observed for the
aforementioned 76 types, the classic 3[4] family ordering
discussed above was not observed by Feldman. In our study
(described briefly under the methods section), we extended
these same six families, by adding the 2[1], 2[2], 3[1], and
4[1] families (for a total of 84 category types in up and down
parity across 10 families). The 2[1] and 2[2] families were
tested because they were studied extensively in the 1960s
(Hunt et al., 1960; Welles, 1963; Haygood et al., 1965). In
our study, we measured the “subjective degree of learning
difficulty” of each category type by computing the average
percentage of classification errors made by subjects when
attempting to classify members of its instances. As expected,
we observed the classic 3[4] family difficulty ordering.

To understand how the LOI accounts for the learnability of
the above category structures, consider a simple example.
The stimulus set containing a triangle that is black and small
and a circle that is black and small and a circle that is white
and large which is described by the concept function xyz +
x'yz + x'y'z' (note that, for readability, we have eliminated
the symbol “-” representing “and”). Let's encode the features
of the objects in this category using the digits "1" and "0" so
that each object may be representable by a binary string. For
example, "111" stands for the first object when
x=1=triangular, y=1=small, and z=1=black. Thus, the entire

set can be represented by C = {111, 011, 000}. If we perturbed

this stimulus set with respect to the shape dimension by
assigning the opposite shape value to each of the objects in

the set, we get the perturbed stimulus set T (C) = {011, 111, 100}

which indicates a transformation along the first dimension (in
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general, T (C) stands for the category C transformed along the

i-th dimension). Now, if we compare the original set to the
perturbed set, they have two objects in common with respect
to the dimension of shape. Thus, two out of three objects
remain the same. This ratio is a measure of the partial
homogeneity of the category with respect to the dimension of
shape and can be written more formally as

A(C)=|CAT(C)|/|C|. Here, |c|stands for the number of

objects in the category and |C AT (C)| for the number of
objects that they share (Vigo, 2009).
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Figure 3 Structural manifold transformations across the dimensions
of shape, color, and size for a 3[3] family category instance.

The first pane of Figure 3 illustrates this transformative
process. Doing this for each of the dimensions, we can
generate the SKS of the stimulus set (represented by the
Boolean category C) with the A operator (where D is the
number of dimensions in C):

(1.1)a©) = (enT©@l/lcllc nT©@l/lcl....lc nT @) /Ic)
Note that equation 1.1 does not define the transformation T

and hence, does not specify how to compute [c ~T(c)| (for

In fact, thus far, | have only described the

any i).
transformation T in non-mathematical terms. In Vigo (2009)

this “extraction” of the SKS of a stimulus set is achieved with
a mathematically precise and generalizable definition of A
as a partial differential operator on concept functions which,
by its very nature, mathematically defines the role and nature

of T . This is expressed in equation 1.2 below where A(F)

stands for the structural manifold of the concept function F
and where a “hat” symbol over the partial differentiation
symbol indicates discrete differentiation (for an explanation
of the equivalence of equations 1.1 and 1.2 below, see Vigo
(2009) or the technical appendix of this note).

(1.2) AF)= (”31?(;(1,...‘%)

|| 9F (x1,Xp)
0x, ! 2

||5F(X1"".XD)
3%, ) ’ 3

dxp

)

Please note that: 1) 1.2 above is not the gradient operator (see
technical appendix) and 2) applying the structural manifold
operator to a concept function is not equivalent to factoring
out variables from the concept function formulae in DNF that
define the category structures. To recognize this, note that the
variables of the sixth and last concept function in the table of



Figure 1 may be factored out in several ways: yet, the degree
of invariance of the concept function is zero. It is also
important to recognize that the components of the structural
manifold which reveal the patterns of invariance in the
stimulus set are partial measures of its homogeneity.
Accordingly, the perceived relative degrees of total
homogeneity across category types from different families
can then be measured by taking the Euclidean distance of
each structural manifold (equation 1.1) from the zero
structural manifold whose components are all zeros (i.e.,
0=(0,...,0)). Thus, the overall degree of invariance (or
homogeneity) @ of the concept function F (and of any
stimulus set that it defines) is given by the equation below

(where F is the stimulus set defined by F):

1/2
]2]1/2 _ |an(?)|]2 /
e G

Using our example from pane one in Figure 3, we showed
that the original stimulus set and the perturbed stimulus set
have two elements in common (out of the three transformed
elements) in respect to the shape dimension; thus, its degree
of partial invariance is expressed by the ratio 2/3.

Conducting a similar analysis in respect to the dimensions of

. . . . 200
color and size, its logical manifold computes to (5,5,5) and

(13) o(F) = [ D [|[re

its degree of categorical invariance is:

@ -

But how does invariance help us understand concept
learning? The proposed mathematical theory describes the
goal of our conceptual system as being that of the extraction
or detection of SKS in the stimulus set in ways that optimize
classification performance: in particular, in ways that
generate information regarding the redundancy and
diagnosticity of its dimensions for the purpose of constructing
efficient membership rules and for the purpose of assessing
degree of homogeneity and degree of learning difficulty. To
illustrate, consider the partial symmetry shown in the bottom
pane of Figure 3. This symmetry is revealed when the
structural manifold operator is applied to the stimulus set in
the top pane of Figure 3. Identifying these partial symmetries
allows our conceptual system to determine the diagnostic
value of each dimension in that the more symmetries that are
detected, the less the associated dimension is useful in
determining category membership. In other words, the
dimensions associated with high invariance do not help us
discriminate the perturbed objects from the original objects in
terms of category membership. Consequently, these particular
dimensions do not carry “diagnostic” information about their
associated category; however, they signal the presence of

(1.4) o(xyz+x'yz+x'y'z) = J(E)z + (2)

3 3
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redundant information that is eventually eliminated. Again,
note that the ratio between the number of qualitative
symmetries and the number of objects in the stimulus with
respect to a particular dimension (i.e., the value of the SK) is
a measure of the partial homogeneity of the stimulus set. Due
to their great utility in forming efficient rules, the SKS that
our conceptual system should be most sensitive to are those
that have value 0. In-between valued SKS should play a
relatively lesser, but important role in determining “in-
between rules”. We assume that this implicit heuristic drives
the classification process. As a consequence, the LOI should
be able to predict that, because it has the most instrumental
importance in maximizing classification performance (from
the standpoint of the assumed goals of the conceptual
system), non-redundant information is emphasized by the
human conceptual system. Also, we assume that performance
gains will be disproportionately smaller as homogeneity
detection increases because most of the information needed to
classify efficiently is supplied by a relatively few SKS that
equal to zero. This is consistent with the trend of the data per
category family tested in our current experiment, which
indicates that the degree of subjective learning difficulty of a
category type (as measured by the proportion of errors in the
classification tasks) decays in a non-linear monotonic fashion
(likely exponential) as a function of its degree of invariance.
Using the above description of the invariance pattern
detection process, a simple mathematical law of conceptual
behavior emerges: namely, that the degree of subjective

learning difficulty 1 of a stimulus set F defined by a concept
function F is directly proportional to its cardinality or size
and it is indirectly proportional to the exponent of the degree
of invariance of the concept function F that defines it. This
relationship is expressed formally by the parameter-free
equation in 1.5 below.

OF (x1,+:Xp)
ﬁx,-

]2]1/2
Although the above equation, as seen in column 2 of Figure
4, accurately fits the data, the law may be further generalized
with the judicious use of cognitively motivated parameters as
shown in equation 1.6 below. While less parsimonious, the
parameterized version can account for individual differences
in concept learning performance and can further our
understanding of the role that invariance pattern information
plays in the concept learning process.

(1.5) w ('p) = pe=®F) = pe—[2?=1[

1
s

(1.6)

OF (x R 'd
e

P)=pe” J
o(F)-ve |
In equation 1.6 above, the scaling parameter «; stands for the
degree of sensitivity to the SK associated with dimension i. In



the current study, this is a number in the closed real interval
[0, 1] so we assume that sensitivity to each SK is a non-
distributed resource. The value of «; is a function of attention
and high-level similarity processes (see Vigo, 2011 for an
explanation). From the classification data from our
experiment we determined that, in general, the optimal values
for a; are consistent with our hypothesis that humans are
most sensitive to SKS that identify the diagnostic dimensions
of the stimulus set: in other words, the SKS with value zero.
The scaling sensitivity parameter k (0 < k < ) indicates the
overall degree of discriminability between the ideotypes and
the standard ideotype represented by O (i.e., zero invariance)
in the higher order psychological space. Stimulus sets in
down parity should result in higher k values due to their

corresponding greater variety of ideotypes. Parameter
estimates for stimuli in down parity confirm this.
Accordingly, k also indicates an increase in stimulus

exposure. Indeed, estimates of this parameter using our data
for the 3[4] family were higher than those of data from the
Feldman experiment (2000) where subjects were exposed to
the stimulus set for 25% less time. Finally, s is a parameter
that indicates the most appropriate measure of distance as
defined by the generalized Euclidean metric (i.e., the
Minkowski distance measure). In our investigation, the best
predictions are achieved when s=2. Optimal estimates of
these free parameters on the aggregate data using the gradient
descent method provide a baseline to assess any individual
differences encountered in the pattern perception stage of the
concept learning process.

Fitness and Robustness

The parameter-free variant of the LOI fits our data very
accurately, accounting for about 70% of the variance by
removing three outliers (R? =.70, p<0.0001; r=.84,
p<0.0001). The parameterized version, however, can account
for individual differences. The parameterized version, with
the use of optimal values for k and «; (as computed by the
gradient descent method) accounts for 97% of the variance in
the data (R? = .97, p <.0001; r:=.98, p < .0001) when the
parameters are estimated on a per family basis and for 95% of
the variance using only k. Moreover, it accounts for about
99% of the variance when the parameters are estimated on a
per stimulus type basis, and for 87% of the variance when the
parameters are estimated across all types (dimensional-level
estimates). Figures 4 and 5 above summarize these results. In
contrast, with optimal values for all of its parameters, the
Generalized Context Model (Nosofsky, 1984) accounts for
about 27% of the variance using dimensional-level estimates,
and for much less without parameters. Other leading models
also tested do not perform nearly as well.
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-- ~®(F) pe——kduﬂ pe»kilr(,lwﬂ
84V-F .70/.84 .95/.98 97/.99
76F-F .501.71 .761.87 8291
84V-T .70/.84 .98/.99 .99/.99
76F-T .501.71 .96/.98 .96/.98
84V-D .70/.84 .70/.84 87/.93
76F-D .501.71 .70/.84 .761.87

Figure 4 Approximate R%s and correlations (R?/r) for the LOI using
data from the author’s study (84V) and Feldman’s study (76F). The
first variant of the law has no parameters, the second uses only k, the
third uses k plus alphas. F, T, and D stand for family-level, type-
level, and dimensional-level estimates.

In this note, we have argued that, as in the physical sciences,
a mathematically precise and general invariance principle can
be useful in understanding the nature and limits of human
cognition. That such a simple principle can, in deterministic
terms, serve as the basis for a mathematical law that explains
and predicts key aspects of our concept learning behavior is
testimony to the parsimony and structural unity of all natural
phenomena, whether physical or mental in nature.

R?=0.95

FNINFCENEN

Standardized
Log Proportion
of Classification
Errors

Standardized LOI Predictions (one parameter)

Figure 5 Classification performance predictions (for the 84 types
tested) made by the exponential law of invariance using only the
scaling parameter k (k was estimated on a per family basis).

Methods Sketch

Instances of category structures from the 10 tested category
families were displayed as sets of one to four flasks (i.e., flat
bottles) with two (color and shape), three (color, shape, and
size), or four dimensions (color, size, shape, and neck width).
Each target set of flasks and its complement (the set of flasks
not in the target set) were displayed on a computer screen
above and below a line (respectively) for a period of 20
seconds. After this training period, subjects were presented
once with each flask (one at a time and at random) from the
two sets combined. Subjects were given three seconds to
press either a button labeled “yes” or a button labeled “no”
indicating whether or not the displayed flask belonged in the
target category. After each block of classification trials, a
new category type from the tested families was generated and
displayed by the program at random. The following 10
families, along with their down parity counterparts, were
tested: 2[1], 2[2], 3[1], 3[2], 3[3], 3[4], 4[1]., 4[2], 4[3], and
4[4] (a total of 84 types represented by no less than 4
instances each). For testing purposes, the families were
grouped as follows: (2[1], 2[2]), (3[1], 3[2]), (3[3], 3[4]),
(4[1], 4[2]), (4[3]). The 4[4] family was divided into 3
subgroups. Thirty subjects were used to test each group. This
grouping helped in limiting each experimental section to
about an hour, thereby reducing noisy data due to subject



fatigue and to the confusability introduced by stimulus sets of
mixed dimensions. The program recorded the percentage of
classification errors per block of trials.
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Technical Appendix

Vigo (2008, 2009, 2011) introduced an original mathematical
framework for cognitive research referred to as logical (or
structural) manifold theory. The portion of the framework
discussed here involves discrete partial derivatives. Discrete
partial derivatives are completely analogous to continuous
partial derivatives in Calculus. Loosely speaking, in Calculus,
the partial derivative of an n variable function f (x4, ..., x,,) is
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defined as how much the function value changes relative to
how much the input value(s) change as seen below:

Of (X1,.0Xn)
dx;

F(xq e XA, . X)) — f (X 1,000 %0)
(ri+Ax)—x;

= hmAX[-N)

On the other hand, the discrete partial derivative, defined by
the equation below (where x;" =1 — x; withx; € {0,1}) is
totally analogous to the continuous partial derivative except
that there is no limit taken because the values of x; can be
only 0 or 1.

OF (1, s X)) F(Xy ey %/, e %) = F (g, 0, %)

ox; X' —x;

The value of the derivative is +1 if the function assignment
changes when x; changes, and the value of the derivative is 0
if the function assignment does not change when x; changes.
Notice that the value of the derivative depends on the entire
vector (x4, ..., X,,) (abbreviated as ¥ in this note) and not just
on x;. As an example, consider the concept function AND,
denoted as F (¥) = x; - x,. Also, consider the particular point
¥ = (0,0). At that point, the derivative of the concept
function AND with respect to x; is 0 because the value of the
concept function does not change when the stimulus changes
from (0,0) to (1,0). If instead we consider the point (0,1),
the derivative of AND with respect to x; is 1 because the
value of the concept function does change when the stimulus
changes from (0,1) to (1,1). Using the discrete partial

derivative we can define a logical manifold A(F) of a
Boolean function F as follows:

OF (x1,xp)
GEZY

(1.7)

|5F(x1.'“.xo)
’ dxp

)

” OF (x1,+Xp)
dx;

Ao =(]

Accordingly, the i-th component of the manifold of the
Boolean concept function F is defined as follows:

Z ’617(9(]
dx;
In the above definition, ¥ stands for an object defined by D

dimensional values (xq,...,xp). The general summation
symbol represents the sum of the partial derivatives evaluated

(1.8)

AR = ”91’(961 »Xp)

at each object x; from the Boolean category F (the set bracket
over the F indicates that this is the category defined by the
concept function F). The partial derivative transforms each
object X; in respect to its i-th dimension and evaluates to 0 if,
after the transformation, the object is still in F (it evaluates to
1 otherwise). Thus, to compute the proportion of objects that
remain in F after changing the value of their i-th dimension,
we need to divide the sum of the partial derivatives evaluated
at each object ¥; by p (the number of objects in f) and
subtract the result from 1. The absolute value symbol is

placed around the partial derivative to avoid a value of
negative 1 (for a detailed explanation, see Vigo, 2009).
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