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Abstract 

Invariance principles underlie many key theories in modern 

science. They provide the explanatory and predictive framework 

necessary for the rigorous study of natural phenomena ranging 

from the structure of crystals, to magnetism, to relativistic 

mechanics. Vigo (2008, 2009) introduced a new general notion 

and principle of invariance from which two parameter-free (ratio 

and exponential) models were derived to account for human 

conceptual behavior. Here we introduce a new parameterized 

exponential “law” based on the same invariance principle. The 

law accurately predicts the subjective degree of difficulty that 

humans experience when learning different types of concepts. In 

addition, it precisely fits the data from a large-scale experiment 

which examined a total of 84 category structures across 10 

category families (      ,        ; r=.98,        ). 

Moreover, it overcomes seven key challenges that had, hitherto, 

been grave obstacles for theories of concept learning. 

Keywords: Concepts; concept learning; categorization; law of 

invariance; mathematical model; pattern perception; ideotype. 

Introduction 

One of the long standing goals of psychological science has 

been to discover the laws that govern human conceptual 

learning behavior and, in particular, to describe these with the 

mathematical precision and rigor commonly found in the 

physical sciences. The two main representational paradigms 

of concepts -- concepts as exemplars and as prototypes -- and 

their respective formal models, such as the generalized 

context model (Nosofksy, 1984, 1986), ALCOVE (Kruschke, 

1992), and the multiplicative prototype model (Estes, 1986) 

have contributed significantly toward this goal (Nosofsky, 

1991; Nosofsky et al., 1994; Kruschke, 2006). But these 

models, mostly of the probabilistic variety, have not been 

able to account for the learnability of large classes of Boolean 

category structures (Feldman, 2006). One of the reasons is 

that they do not fully capture key relational and contextual 

information in sets of stimuli, and how this information plays 

a role in determining how hard or easy it is to learn a concept 

(Gibson, 1966; Garner, 1963, 1970a, 1970b, 1974). For 

example, an abundance of laboratory experiments have 

supported the premise that subjects extract rules from 

perceived patterns in stimulus sets (i.e., sets of objects) from 

which concepts are learned (Bourne, 1966; Estes, 1994; 

Murphy, 2002). However, in spite of this understanding, the 

development of a mathematically precise and elegant 

relational principle of concept learning that is able to reveal 

the nature of pattern detection with respect to sets of stimuli, 

and that is sufficiently general to accurately predict the 

degree of learning difficulty of a wide range of category 

structures, remains an open problem. Instead, alternative 

accounts have emerged which place mediating constructs at 

their core. One such account (Feldman, 2000) posits that 

since humans report forming rules when performing 

laboratory categorization tasks, one can then measure the 

degree of concept learning difficulty associated with a 

stimulus set by the length of the shortest logical rule that 

defines it. This proposal, referred to as "minimization 

complexity", does not answer two key questions about 

concept learning as a rule-oriented process: 1) what is the 

nature of the relational pattern perception process that must 

precede (and that is necessary for) the formation of efficient 

rules and heuristics in the first place, and 2) what are the 

limits of our capacity to detect such relational patterns? We 

believe that the answers to these two questions are the key to 

explaining and predicting a wide variety of phenomena 

associated with classification performance. In other words, 

rule simplification procedures based on Boolean logic should, 

but do not, give a deep rationale for why it is easier to form 

rules about certain sets of stimuli but not about others. Such a 

rationale is necessary to better understand why categorization 

performance is often inconsistent with rule-based accounts of 

concept learning (Vigo, 2006; Lafond, 2007). In this report, 

we propose an invariance principle and law of invariance 

(LOI) as the answer. 

  In what follows, we shall discuss how the data from a large-

scale human categorization experiment by the author and data 

from several classic experiments on concept learning can be 

directly accounted for by a simple mathematical law. The law 

is based on the assumption that humans learn concepts by 

applying a differential (analytic) operator to stimulus sets in 

order to optimize their classification performance. The 

operator generates an ideotype or higher level memory trace 

of the essential or “atomic” structural patterns (referred to 

henceforth as the “structural kernels” or SKS) perceived in 

the stimulus set. Ideotypes are represented by points in a 

high-level psychological space whose coordinates are the 

values of their SKS. Varying sensitivity to these SKS (and to 

the ideotypes in general) can accounts for individual 
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differences in classification performance. Although, 

throughout this brief report, we shall offer hints about the 

process or algorithmic level theory of concepts as ideotypes, 

our main aim is to propose a goal-oriented high-level 

mathematical description (what David Marr referred to as a 

computational theory) of conceptual behavior. In Marr’s 

computational theory of the human visual system, the 

Laplacian differential operator plays a role that is similar to 

the role played by our own differential operator (the 

structural manifold operator) in facilitating the assumed 

goals of the human conceptual system (likewise, one might 

say that the ideotype of a stimulus set is a higher level 

cognition counterpart of the primal sketch of a visual 

stimulus). We shall focus on only two, but important, goals of 

our conceptual system: the first is to generate and supply key 

information about the “diagnosticity” and “redundancy” of 

the recognized dimensions in the stimulus set to a rule-

construction subsystem, and the second goal is to classify 

exemplars from the stimulus set optimally. Note that Vigo 

(2011) generalized the invariance law proposed in this report 

in order to account for the learnability of ill-defined concepts. 

This generalization is achieved under a process account of 

SK detection featuring notions of high-level similarity 

assessment and goal-directed attention. Unfortunately, its 

details are beyond the scope of this brief report. 

Notwithstanding, the aforementioned theoretical assumptions 

offer an adequate conceptual sketch for interpreting and 

predicting individual differences as encoded in the 

parameters of the invariance law. 

 

Figure 1 Instances of the 3[4] category types studied by Shepard et 

al. (1961) where   represents the color dimension,   represents the 

shape dimension, and   represents the size dimension. 

As we shall see, the LOI overcomes seven challenges that 

have been stumbling blocks for theories of Boolean concept 

learning: 1) it perfectly predicts the key 3[4] family (Figure 

1) learning difficulty ordering as shown in Figure 2 below; 2) 

it is able to accurately account for the learnability of 

categories in both up and down parity; 3) it accurately 

accounts for the learnability of a very large class of category 

types and families (      ,         ; 4) it does so 

without the need for free parameters (      , p<0.0001), 5) 

through the use of well-motivated and cognitively meaningful 

parameters, it can explain individual differences in 

classification performance; 6) it introduces an original 

mathematical and deterministic framework for the study of 

concept learning behavior; 7) it unifies in precise quantitative 

terms key and ubiquitous constructs in universal science such 

as symmetry, invariance, and complexity from the 

perspective of concept research. No other formal model of 

concept learning behavior has accomplished all of the above. 

The Mathematical Law of Invariance 

Most investigations pertaining to degree of concept learning 

difficulty have focused on sets of stimuli that are defined by 

Boolean algebraic rules (i.e., expressions consisting of 

disjunctions, conjunctions, and negations of variables that 

stand for binary dimensions). These algebraic representations 

of a categorical stimulus (category of objects) or stimulus set 

are referred to as concept functions. Concept functions are 

useful in spelling out the logical structure of a stimulus set. 

For example, suppose that   stands for blue,    stands for red, 

  stands for round, and    stands for square, then the two-

variable concept function (    )  (    ) (where “ ” 

stands for “or”, “ ” stands for “and”, and “  ” stands for “not-

 ”) defines the category of “red and round or blue and 

square” objects. Clearly, the choice of labels in the 

expression is arbitrary. Hence, there are many Boolean 

expressions that define the same category structure. For 

example, making   stand for red instead of blue yields the 

structurally equivalent category of “blue and round or red and 

square” objects, where the relationships between the 

dimensional values remain the same. These structurally 

equivalent categories form category types (or distinct 

structures) and may be represented by a canonical concept 

function in disjunctive normal form or DNF (informally, a 

concept function in DNF is simply a function that is a 

verbatim description of the entire category content just like 

the function given above). A class of Boolean category types 

whose category instances are defined by D dimensions and 

contain p objects is called a D[p] family. For instance, the 

Boolean category described above belongs to the 2[2] family 

since it is comprised of two objects that are defined by two 

dimensions (color and shape). Every category family has a 

fixed number of category types. For example, the 3[4] family 

has six category types (for a proof see Higonnet et al., 1958). 

This latter family was studied empirically by Shepard et al. 

(1961) who observed the following increasing learning 

difficulty ordering: I < II < [III, IV, V] < VI (with types III, 

IV, and V of approximately the same degree of difficulty). 

The degree of learning difficulty of a category type is 

typically operationalized by the percentage of errors made by 

a subject while attempting to classify the objects from the 

stimulus set that is an instance of the type. Figure 1 above 

illustrates visual instances of the 3[4] family types in the form 

of simple geometric shapes. This 3[4] family ordering has 

been empirically replicated numerous times by several 
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researchers (Shepard et al., 1961; Kruschke, 1992; Nosofsky, 

1994; Love & Medin, 1998) but has been difficult to predict 

quantitatively. 

 

Figure 2 LOI standardized predictions for the 3[4] stimulus types 

using data from the experiment by the author (  =1, p<.0001) using 

a single scaling parameter k estimated for all six types. 

In a more recent and broader study, Feldman (2000) observed 

an approximate empirical difficulty ordering for 76 category 

types from the 3[2], 3[3], 3[4], 4[2], 4[3], and 4[4] families 

along with their “down parity” counterparts. A category is in 

down parity whenever it has more objects than its 

complementary category; otherwise, it’s in “up parity” (the 

complement of a category is the set of objects that are also 

definable by D dimensions but that are not in the category). 

Although a difficulty ordering was observed for the 

aforementioned 76 types, the classic 3[4] family ordering 

discussed above was not observed by Feldman.  In our study 

(described briefly under the methods section), we extended 

these same six families, by adding the 2[1], 2[2], 3[1], and 

4[1] families (for a total of 84 category types in up and down 

parity across 10 families). The 2[1] and 2[2] families were 

tested because they were studied extensively in the 1960s 

(Hunt et al., 1960; Welles, 1963; Haygood et al., 1965). In 

our study, we measured the “subjective degree of learning 

difficulty” of each category type by computing the average 

percentage of classification errors made by subjects when 

attempting to classify members of its instances.  As expected, 

we observed the classic 3[4] family difficulty ordering. 

  To understand how the LOI accounts for the learnability of 

the above category structures, consider a simple example. 

The stimulus set containing a triangle that is black and small 

and a circle that is black and small and a circle that is white 

and large which is described by the concept function     

            (note that, for readability, we have eliminated 

the symbol “ ” representing “and”). Let's encode the features 

of the objects in this category using the digits "1" and "0" so 

that each object may be representable by a binary string. For 

example, "111" stands for the first object when 

x=1=triangular, y=1=small, and z=1=black. Thus, the entire 

set can be represented by  111,  011,  000C  . If we perturbed 

this stimulus set with respect to the shape dimension by 

assigning the opposite shape value to each of the objects in 

the set, we get the perturbed stimulus set  
1
( ) 011,  111,  100T C 

which indicates a transformation along the first dimension (in 

general, ( )
i

T C  stands for the category C transformed along the 

i-th dimension). Now, if we compare the original set to the 

perturbed set, they have two objects in common with respect 

to the dimension of shape. Thus, two out of three objects 

remain the same. This ratio is a measure of the partial 

homogeneity of the category with respect to the dimension of 

shape and can be written more formally as

( ) ( ) /
ii

C C T C C   . Here, C stands for the number of 

objects in the category and ( )
i

C T C  for the number of 

objects that they share (Vigo, 2009). 

 

Figure 3 Structural manifold transformations across the dimensions 

of shape, color, and size for a 3[3] family category instance.  

The first pane of Figure 3 illustrates this transformative 

process. Doing this for each of the dimensions, we can 

generate the SKS of the stimulus set (represented by the 

Boolean category C) with the operator (where D is the 

number of dimensions in C): 

(1.1)  
1 2

( ) ( ) , ( ) , , ( )/ / /
D

C C T C C C T C C C T C C    

 Note that equation 1.1 does not define the transformation 
i

T

and hence, does not specify how to compute ( )iC T C (for 

any i). In fact, thus far, I have only described the 

transformation 
i

T  in non-mathematical terms. In Vigo (2009) 

this “extraction” of the SKS of a stimulus set is achieved with 

a mathematically precise and generalizable definition of   

as a partial differential operator on concept functions which, 

by its very nature, mathematically defines the role and nature 

of
i

T . This is expressed in equation 1.2 below where  ( ) 

stands for the structural manifold of the concept function   

and where a “hat” symbol over the partial differentiation 

symbol indicates discrete differentiation (for an explanation 

of the equivalence of equations 1.1 and 1.2 below, see Vigo 

(2009) or the technical appendix of this note).  

(1.2)     ( )  (‖
 ̂ (       )

 ̂  
‖  ‖

 ̂ (       )

 ̂  
‖    ‖

 ̂ (       )

 ̂  
‖) 

 

Please note that: 1) 1.2 above is not the gradient operator (see 

technical appendix) and 2) applying the structural manifold 

operator to a concept function is not equivalent to factoring 

out variables from the concept function formulae in DNF that 

define the category structures. To recognize this, note that the 

variables of the sixth and last concept function in the table of 
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Figure 1 may be factored out in several ways: yet, the degree 

of invariance of the concept function is zero.  It is also 

important to recognize that the components of the structural 

manifold which reveal the patterns of invariance in the 

stimulus set are partial measures of its homogeneity. 

Accordingly, the perceived relative degrees of total 

homogeneity across category types from different families 

can then be measured by taking the Euclidean distance of 

each structural manifold (equation 1.1) from the zero 

structural manifold whose components are all zeros (i.e., 

0=(0,…,0)). Thus, the overall degree of invariance (or 

homogeneity)   of the concept function F (and of any 

stimulus set that it defines) is given by the equation below 

(where  ⏞ is the stimulus set defined by F): 

  (1.3)   ( )  [∑ *‖
 ̂ (       

 ̂  
‖+

 
 
   ]

   

 [∑ [
| ⏞   ( ⏞)|

| ⏞|
]
 

 
   ]

   

 

 

Using our example from pane one in Figure 3, we showed 

that the original stimulus set and the perturbed stimulus set 

have two elements in common (out of the three transformed 

elements) in respect to the shape dimension; thus, its degree 

of partial invariance is expressed by the ratio    . 

Conducting a similar analysis in respect to the dimensions of 

color and size, its logical manifold computes to (
 

 
 
 

 
 
 

 
) and 

its degree of categorical invariance is: 

(1.4)  (               )  √(
 

 
)
 
 (

 

 
)
 
 (

 

 
)
 

     

  
But how does invariance help us understand concept 

learning? The proposed mathematical theory describes the 

goal of our conceptual system as being that of the extraction 

or detection of SKS in the stimulus set in ways that optimize 

classification performance: in particular, in ways that 

generate information regarding the redundancy and 

diagnosticity of its dimensions for the purpose of constructing 

efficient membership rules and for the purpose of assessing 

degree of homogeneity and degree of learning difficulty. To 

illustrate, consider the partial symmetry shown in the bottom 

pane of Figure 3. This symmetry is revealed when the 

structural manifold operator is applied to the stimulus set in 

the top pane of Figure 3. Identifying these partial symmetries 

allows our conceptual system to determine the diagnostic 

value of each dimension in that the more symmetries that are 

detected, the less the associated dimension is useful in 

determining category membership. In other words, the 

dimensions associated with high invariance do not help us 

discriminate the perturbed objects from the original objects in 

terms of category membership. Consequently, these particular 

dimensions do not carry “diagnostic” information about their 

associated category; however, they signal the presence of 

redundant information that is eventually eliminated. Again, 

note that the ratio between the number of qualitative 

symmetries and the number of objects in the stimulus with 

respect to a particular dimension (i.e., the value of the SK) is 

a measure of the partial homogeneity of the stimulus set. Due 

to their great utility in forming efficient rules, the SKS that 

our conceptual system should be most sensitive to are those 

that have value 0. In-between valued SKS should play a 

relatively lesser, but important role in determining “in-

between rules”. We assume that this implicit heuristic drives 

the classification process. As a consequence, the LOI should 

be able to predict that, because it has the most instrumental 

importance in maximizing classification performance (from 

the standpoint of the assumed goals of the conceptual 

system), non-redundant information is emphasized by the 

human conceptual system. Also, we assume that performance 

gains will be disproportionately smaller as homogeneity 

detection increases because most of the information needed to 

classify efficiently is supplied by a relatively few SKS that 

equal to zero. This is consistent with the trend of the data per 

category family tested in our current experiment, which 

indicates that the degree of subjective learning difficulty of a 

category type (as measured by the proportion of errors in the 

classification tasks) decays in a non-linear monotonic fashion 

(likely exponential) as a function of its degree of invariance. 

Using the above description of the invariance pattern 

detection process, a simple mathematical law of conceptual 

behavior emerges: namely, that the degree of subjective 

learning difficulty   of a stimulus set  ⏞ defined by a concept 

function F is directly proportional to its cardinality or size 

and it is indirectly proportional to the exponent of the degree 

of invariance of the concept function   that defines it. This 

relationship is expressed formally by the parameter-free 

equation in 1.5 below. 

(1.5) 
 ( ⏞)      ( )    

 [∑ [‖
 ̂ (       )

 ̂  
‖]

 
 
   ]

   

 
 

Although the above equation, as seen in column 2 of Figure 

4, accurately fits the data, the law may be further generalized 

with the judicious use of cognitively motivated parameters as 

shown in equation 1.6 below. While less parsimonious, the 

parameterized version can account for individual differences 

in concept learning performance and can further our 

understanding of the role that invariance pattern information 

plays in the concept learning process. 

(1.6) 

 ( ⏞)    
  [∑ [  [‖

 ̂ (       )

 ̂  
‖]]

 

 
   ]

 
 

 

 

In equation 1.6 above, the scaling parameter    stands for the 

degree of sensitivity to the SK associated with dimension i. In 
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the current study, this is a number in the closed real interval 

[0, 1] so we assume that sensitivity to each SK is a non-

distributed resource. The value of    is a function of attention 

and high-level similarity processes (see Vigo, 2011 for an 

explanation). From the classification data from our 

experiment we determined that, in general, the optimal values 

for    are consistent with our hypothesis that humans are 

most sensitive to SKS that identify the diagnostic dimensions 

of the stimulus set: in other words, the SKS with value zero. 

The scaling sensitivity parameter k (     ) indicates the 

overall degree of discriminability between the ideotypes and 

the standard ideotype represented by 0 (i.e., zero invariance) 

in the higher order psychological space. Stimulus sets in 

down parity should result in higher k values due to their 

corresponding greater variety of ideotypes. Parameter 

estimates for stimuli in down parity confirm this. 

Accordingly, k also indicates an increase in stimulus 

exposure. Indeed, estimates of this parameter using our data 

for the 3[4] family were higher than those of data from the 

Feldman experiment (2000) where subjects were exposed to 

the stimulus set for 25% less time. Finally, s is a parameter 

that indicates the most appropriate measure of distance as 

defined by the generalized Euclidean metric (i.e., the 

Minkowski distance measure). In our investigation, the best 

predictions are achieved when s=2. Optimal estimates of 

these free parameters on the aggregate data using the gradient 

descent method provide a baseline to assess any individual 

differences encountered in the pattern perception stage of the 

concept learning process. 

Fitness and Robustness 

The parameter-free variant of the LOI fits our data very 

accurately, accounting for about 70% of the variance by 

removing three outliers (      , p<0.0001; r=.84, 

p<0.0001). The parameterized version, however, can account 

for individual differences. The parameterized version, with 

the use of optimal values for k and    (as computed by the 

gradient descent method) accounts for 97% of the variance in 

the data (      ,        ; rs=.98,        ) when the 

parameters are estimated on a per family basis and for 95% of 

the variance using only k. Moreover, it accounts for about 

99% of the variance when the parameters are estimated on a 

per stimulus type basis, and for 87% of the variance when the 

parameters are estimated across all types (dimensional-level 

estimates). Figures 4 and 5 above summarize these results. In 

contrast, with optimal values for all of its parameters, the 

Generalized Context Model (Nosofsky, 1984) accounts for 

about 27% of the variance using dimensional-level estimates, 

and for much less without parameters. Other leading models 

also tested do not perform nearly as well. 

 

Figure 4 Approximate   s and correlations (  /r) for the LOI using 

data from the author’s study (84V) and Feldman’s study (76F). The 

first variant of the law has no parameters, the second uses only k, the 

third uses k plus alphas. F, T, and D stand for family-level, type-

level, and dimensional-level estimates. 

In this note, we have argued that, as in the physical sciences, 

a mathematically precise and general invariance principle can 

be useful in understanding the nature and limits of human 

cognition. That such a simple principle can, in deterministic 

terms, serve as the basis for a mathematical law that explains 

and predicts key aspects of our concept learning behavior is 

testimony to the parsimony and structural unity of all natural 

phenomena, whether physical or mental in nature.  

 

Figure 5 Classification performance predictions (for the 84 types 

tested) made by the exponential law of invariance using only the 

scaling parameter k (k was estimated on a per family basis). 

Methods Sketch 
 

Instances of category structures from the 10 tested category 

families were displayed as sets of one to four flasks (i.e., flat 

bottles) with two (color and shape), three (color, shape, and 

size), or four dimensions (color, size, shape, and neck width). 

Each target set of flasks and its complement (the set of flasks 

not in the target set) were displayed on a computer screen 

above and below a line (respectively) for a period of 20 

seconds. After this training period, subjects were presented 

once with each flask (one at a time and at random) from the 

two sets combined. Subjects were given three seconds to 

press either a button labeled “yes” or a button labeled “no” 

indicating whether or not the displayed flask belonged in the 

target category. After each block of classification trials, a 

new category type from the tested families was generated and 

displayed by the program at random. The following 10 

families, along with their down parity counterparts, were 

tested: 2[1], 2[2], 3[1], 3[2], 3[3], 3[4], 4[1], 4[2], 4[3], and 

4[4] (a total of 84 types represented by no less than 4 

instances each). For testing purposes, the families were 

grouped as follows: (2[1], 2[2]), (3[1], 3[2]), (3[3], 3[4]), 

(4[1], 4[2]), (4[3]). The 4[4] family was divided into 3 

subgroups.  Thirty subjects were used to test each group. This 

grouping helped in limiting each experimental section to 

about an hour, thereby reducing noisy data due to subject 

R² = 0.95 
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fatigue and to the confusability introduced by stimulus sets of 

mixed dimensions. The program recorded the percentage of 

classification errors per block of trials. 
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Technical Appendix 
 

Vigo (2008, 2009, 2011) introduced an original mathematical 

framework for cognitive research referred to as logical (or 

structural) manifold theory. The portion of the framework 

discussed here involves discrete partial derivatives. Discrete 

partial derivatives are completely analogous to continuous 

partial derivatives in Calculus. Loosely speaking, in Calculus, 

the partial derivative of an n variable function  (       ) is 

defined as how much the function value changes relative to 

how much the input value(s) change as seen below: 

 
  (       )

   
         

 (                 )  (       )

(      )   
 

 
On the other hand, the discrete partial derivative, defined by 

the equation below (where   
        with    *   +) is 

totally analogous to the continuous partial derivative except 

that there is no limit taken because the values of    can be 

only 0 or 1. 

 ̂ (       )

 ̂  

 
 (        

      )   (       )

   
    

 

 

The value of the derivative is    if the function assignment 

changes when    changes, and the value of the derivative is 0 

if the function assignment does not change when    changes. 

Notice that the value of the derivative depends on the entire 

vector (       ) (abbreviated as  ⃗  in this note) and not just 

on   . As an example, consider the concept function AND, 

denoted as  ( ⃗)       . Also, consider the particular point 

 ⃗  (   )  At that point, the derivative of the concept 

function AND with respect to    is 0 because the value of the 

concept function does not change when the stimulus changes 

from (   ) to (   ). If instead we consider the point (   ), 

the derivative of AND with respect to    is 1 because the 

value of the concept function does change when the stimulus 

changes from (   ) to (   ). Using the discrete partial 

derivative we can define a logical manifold  Λ F  of a 

Boolean function F as follows:  

 

(1.7)        ( )  (‖
 ̂ (       )

 ̂  
‖  ‖

 ̂ (       )

 ̂  
‖    ‖

 ̂ (       )

 ̂  
‖) 

  

Accordingly, the i-th component of the manifold of the 

Boolean concept function F is defined as follows: 

(1.8) 
  ( )  ‖

 ̂ (       )

 ̂  

‖    [
 

 
∑ |

 ̂ ( ⃗ )

 ̂  

|

 ⃗   ⏞

] 
 

In the above definition,  ⃗ stands for an object defined by D 

dimensional values (       ). The general summation 

symbol represents the sum of the partial derivatives evaluated 

at each object  ⃗  from the Boolean category  ⏞ (the set bracket 

over the F indicates that this is the category defined by the 

concept function F). The partial derivative transforms each 

object  ⃗  in respect to its i-th dimension and evaluates to 0 if, 

after the transformation, the object is still in  ⏞ (it evaluates to 

1 otherwise). Thus, to compute the proportion of objects that 

remain in  ⏞ after changing the value of their  -th dimension, 

we need to divide the sum of the partial derivatives evaluated 

at each object  ⃗  by   (the number of objects in  ⏞) and 

subtract the result from 1. The absolute value symbol is 

placed around the partial derivative to avoid a value of 

negative 1 (for a detailed explanation, see Vigo, 2009).  
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