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Abstract
People can learn visual concepts from just one example, but
it remains a mystery how this is accomplished. Many authors
have proposed that transferred knowledge from more familiar
concepts is a route to one shot learning, but what is the form
of this abstract knowledge? One hypothesis is that the shar-
ing of parts is core to one shot learning, and we evaluate this
idea in the domain of handwritten characters, using a massive
new dataset. These simple visual concepts have a rich inter-
nal part structure, yet they are particularly tractable for com-
putational models. We introduce a generative model of how
characters are composed from strokes, where knowledge from
previous characters helps to infer the latent strokes in novel
characters. The stroke model outperforms a competing state-
of-the-art character model on a challenging one shot learning
task, and it provides a good fit to human perceptual data.
Keywords: category learning; transfer learning; Bayesian
modeling; neural networks

A hallmark of human cognition is learning from just a few
examples. For instance, a person only needs to see one Seg-
way to acquire the concept and be able to discriminate future
Segways from other vehicles like scooters and unicycles (Fig.
1 left). Similarly, children can acquire a new word from one
encounter (Carey & Bartlett, 1978). How is one shot learning
possible?

New concepts are almost never learned in a vacuum. Past
experience with other concepts in a domain can support the
rapid learning of novel concepts, by showing the learner what
matters for generalization. Many authors have suggested this
as a route to one shot learning: transfer of abstract knowledge
from old to new concepts, often called transfer learning, rep-
resentation learning, or learning to learn. But what is the
nature of the learned abstract knowledge that lets humans ac-
quire new object concepts so quickly?

The most straightforward proposals invoke attentional
learning (Smith, Jones, Landau, Gershkoff-Stowe, & Samuel-
son, 2002) or overhypotheses (Kemp, Perfors, & Tenenbaum,
2007; Dewar & Xu, in press), like the shape bias in word
learning. Prior experience with concepts that are clearly orga-
nized along one dimension (e.g., shape, as opposed to color or
material) draws a learner’s attention to that same dimension
(Smith et al., 2002) – or increases the prior probability of new
concepts concentrating on that same dimension (Kemp et al.,
2007). But this approach is limited since it requires that the
relevant dimensions of similarity be defined in advance.

For many real-world concepts, the relevant dimensions of
similarity may be constructed in the course of learning to
learn. For instance, when we first see a Segway, we may
parse it into a structure of familiar parts arranged in a novel
configuration: it has two wheels, connected by a platform,
supporting a motor and a central post at the top of which are
two handlebars. These parts and their relations comprise a

Figure 1: Test yourself on one shot learning. From the example
boxed in red, can you find the others in the array? On the left is a
Segway and on the right is the first character of the Bengali alphabet.

AnswerfortheBengalicharacter:Row2,Column3;Row4,Column2.

Figure 2: Examples from a new 1600 character database.

useful representational basis for many different vehicle and
artifact concepts – a representation that is likely learned in
the course of learning the concepts that they support. Several
papers from the recent machine learning and computer vision
literature argue for such an approach: joint learning of many
concepts and a high-level part vocabulary that underlies those
concepts (e.g., Torralba, Murphy, & Freeman, 2007; Fei-Fei,
Fergus, & Perona, 2006). Another recently popular machine
learning approach is based on deep learning (Salakhutdinov
& Hinton, 2009): unsupervised learning of hierarchies of dis-
tributed feature representations in neural-network-style prob-
abilistic generative models. These models do not specify ex-
plicit parts and structural relations, but they can still construct
meaningful representations of what makes two objects deeply
similar that go substantially beyond low-level image features.

These approaches from machine learning may be com-
pelling ways to understand how humans learn so quickly,
but there is little experimental evidence that directly supports
them. Models that construct parts or features from sensory
data (pixels) while learning object concepts have been tested
in elegant behavioral experiments with very simple stimuli
and a very small number of concepts (Austerweil & Griffiths,
2009; Schyns, Goldstone, & Thibaut, 1998). But there have
been few systematic comparisons of multiple state-of-the-art
computational approaches to representation learning with hu-
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man learners on a large scale, using a large number of inter-
esting natural concepts. This is our goal here.

We work in the domain of handwritten characters, an ideal
setting for studying one shot learning at the interface of hu-
man and machine learning. Handwritten characters contain a
rich internal part structure of pen strokes, providing good a
priori reason to explore a parts-based approach to representa-
tion learning. Supporting this notion, psychological studies
have shown that knowledge about how characters are pro-
duced from strokes influences basic perception, including
classification (Freyd, 1983) and apparent motion (Tse & Ca-
vanagh, 2000). While characters contain complex internal
structure (Fig. 2), they are simple enough for us to hope that
tractable computational models can represent all the struc-
ture people see in them – unlike natural images. Handwritten
digit recognition (0 to 9) has received major attention in ma-
chine learning, with genuinely successful algorithms. Clas-
sifiers based on deep learning can obtain over 99 percent ac-
curacy on the standard MNIST dataset (e.g., LeCun, Bottou,
Bengio, & Haffner, 1998; Salakhutdinov & Hinton, 2009).
Yet these state-of-the-art models are still probably far from
human-level competence; there is much room to improve on
them. The MNIST dataset provides thousands of training ex-
amples for each class. In stark contrast, humans only need
one example to learn a new character (Fig. 1 right).

Can this gap be closed by exploring different forms of prior
knowledge? Earlier work on one shot digit learning investi-
gated transferable knowledge of image deformations, such as
scale and rotation (Miller, Matsakis, & Viola, 2000). These
factors are important, but we suggest there is much more to
the knowledge that supports one shot learning. People have
a rich understanding of how characters are formed from the
strokes of a pen, guided by the human motor system.

There are challenges with conducting a large scale study
of character learning. People already know the digits and
the Latin alphabet, so experiments must be conducted on new
characters. Also, people receive massive exposure to domes-
tic and foreign characters over a lifetime, including extensive
first hand drawing experience. To simulate some of this ex-
perience for machines, we collected a massive new dataset of
over 1600 characters from around the world. By having par-
ticipants draw characters online, it was possible to record both
the images, the strokes, and the time course of drawing (Fig.
3). Using the dataset, we can investigate the dual problems
of understanding human concept learning and building ma-
chines that learn as rapidly as people can. We propose a new
model of character learning based on inducing probabilistic
part-based representations, similar to the computer vision ap-
proaches of Torralba, Fei-Fei, Perona and colleagues. Given
an example image of a new character type, the model infers
a sequence of latent strokes that best explains the pixels in
the image, drawing on a large stroke vocabulary abstracted
from many previous characters. This stroke-based represen-
tation guides generalization to new examples of the concept.
We test the model against both human perceptual discrimi-
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Figure 3: Illustration of the drawing data. Each panel shows the orig-
inal character, 20 people’s image drawings, and 20 people’s strokes
color coded for order.

nation data and human accuracy in a challenging one shot
classification task, while comparing it with a leading alter-
native approach from machine learning, the Deep Boltzmann
Machine (DBM; Salakhutdinov & Hinton, 2009). The DBM
is an interesting comparison because it is also a generative
probabilistic model, it achieves state-of-the-art performance
on the permutation invariant version of the MNIST task, and
it has no special knowledge of strokes or even image geome-
try. We find that the stroke model outperforms the DBM by a
large margin on one shot learning accuracy, and both models
provide a good fit to human perceptual discrimination.

New dataset of 1600 characters
We collected a new dataset suitable for large scale concept
learning from few examples. The dataset can be viewed as the
“transpose” of MNIST; rather than having 10 character (digit)
classes with thousands of examples each like MNIST, the
new dataset has over 1600 characters with only 20 examples
each. These characters are from 50 alphabets from around
the world, including Bengali, Cyrillic, Avorentas, Sanskrit,
Tagalog, and even synthetic alphabets used for sci-fi nov-
els. Prints of the original characters were downloaded from
www.omniglot.com and several original images are shown
in Fig. 3 (top left in each panel). Perception and modeling
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should not be tested on these original typed versions, since
they contain differences in style and line width across alpha-
bets. Instead each alphabet was posted on Amazon Mechan-
ical Turk using the printed forms as reference, and all char-
acters were drawn by 20 different non-experts with computer
mice (Fig. 3, bottom left). In addition to capturing the image,
the interface captures the drawer’s parse into strokes, shown
in Fig. 3 (right) where color denotes stroke order.

Drawing methods are remarkably consistent across par-
ticipants. For instance, Fig. 3a shows a Cyrillic charac-
ter where all 20 people used one stroke. While not visi-
ble from the static trace, each drawer started the trajectory
from the top right. Fig. 3b shows a Tagalog character where
19 drawers started with top stroke (red), followed by a sec-
ond dangling stroke (green). But there are also slight vari-
ations in stroke order and number. Videos of the drawing
process for these characters and others can be downloaded at
http://web.mit.edu/brenden/www/charactervideos.html.

Generative stroke model of characters

The consistent drawing pattern suggests a principled infer-
ence from static character to stroke representation (see Bab-
cock & Freyd, 1988). Here we introduce a stroke model that
captures this basic principle. When shown just one new ex-
ample of a character, the model tries to infer a set of latent
strokes and their configuration that explains the pixels in an
image. This high-level representation is then used to clas-
sify new images with unknown identity. Fig. 4 describes
the generative process. Character types (A, B, etc.) are gen-
erated from general knowledge which includes knowledge
of strokes. These types are abstract descriptions defined by
strokes: their number, identity, and general configuration.
Character tokens (images) are generated from the types by
perturbing stroke positions and inking the pixels.

Generating a character type A character type is defined
by a set of strokes S, their positions W , and their mixing
strengths π. The number of strokes m is picked from a uni-
form distribution (1 to 10 for simplicity). The first stroke
identity is drawn from the uniform distribution P (S1) = 1/K
whereK = 1000 is the size of the stroke set. Each stroke also
has a starting position for its trajectory, denoted Wi where
Wi = [wxi ,wyi ] which has discrete x and y coordinates. The
first stroke’s position is uniform across the R2 discrete pixel
locations in the image (the image size is R×R). Subse-
quent strokes P (Si+1|Si) and positions P (Wi+1|Wi) are
drawn from a transition model, which is uniform and inde-
pendent of the past. The transition models could be extended,
both for the strokes and positions, to include a more accu-
rate sequential process. Finally, we draw the mixing weights
π ∼ Dirichlet(1,1, ...,1) which is a vector of length m.

Generating a character token A character type then gen-
erates a character token I(j), which is a pixel image. While
W specifies a character type position template, the token
specific positions Z(j) can vary in both relative positions
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Figure 4: Illustration of the generative process as described in text.
All variables inside the character type plate are implicitly indexed
by character type.

of the strokes and through a global translation controlled
by τ (j). As with W , the image specific positions Z(j) =
{Z(j)

1 , ...,Z
(j)
m } = {z(j)

x1 ,z
(j)
y1 , ...,z

(j)
xm ,z

(j)
ym} specify discrete

x and y coordinates in the image. The distribution is

P (Z(j)|W,τ (j))∝
m∏
i=1

exp(− 1
2σ2
z

||(Z(j)
i −Wi− τ (j)||22),

which is like a spherical Gaussian but with support
on a discrete set. The translation τ (j) is distributed
as P (τ (j)) ∝ exp(− 1

2σ2
t
||τ (j)||22) with support on

{−R,...,R} × {−R,...,R}. Given the positions, the
image can be generated by G1 hypothetical draws of pixels
to “ink” from a distribution over pixels. The ink model is
based on Revow, Williams, and Hinton (1996) although we
extend it to the multi-stroke case. The probability that none
of the draws landed in a pixel slot g (g is white) is

P (I(j)
g = 0|S,Z(j),π) = (1−Q(I(j)

g |S,Z(j),π))G,

and the probability of a pixel being inked is the comple-
ment P (I(j)

g = 1|S,Z(j),π) = 1−P (I(j)
g = 0|S,Z(j),π). In-

tuitively, the functionQ distributes ink across the strokes with
Gaussian spray paint. This is captured by lining each stroke
with little Gaussian beads that generate ink. Q is defined by
a nested mixture:2 an inked pixel is a mixture of noise (pa-
rameter β) and another mixture over the m strokes, and each
stroke is yet another mixture (V ) of the Gaussian beads

1We use the actual number of inked pixels forG. But as Revow et
al. point out, other values would increase the probability of the data
since hypothetical draws will overlap. But this inaccuracy will hurt
both correct and incorrect candidate models during classification.

2Note that if Q can have values greater than 1, this is no longer a
valid distribution. But it can be shown that if σb > 0.4, then Q< 1.
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Q(I(j)
g |S,Z(j),π) = β

R2 +(1−β)
m∑
i=1

πiV (I(j)
g |Si,Z(j)

i )

V (I(j)
g |Si,Z(j)

i ) = 1
B

B∑
b=1

N(I(j)
g |Xb+Z

(j)
i ,σ2

b I),

where I is the identity matrix, N is a Gaussian, and Xb ∈ R2

are the bead coordinates for the stroke Si. Evaluating the ink
model is expensive, but each stroke’s V can be computed
offline, cached, and then translated by Z(j)

i as needed. We
used B = 28, σb = 1.5, β = 0.01, σz = 2, and σt = 10.

Learning a library of strokes General knowledge of
strokes was learned from the drawing data. The entire dataset
was split randomly into a 25 alphabet “background set” and a
25 alphabet “experiment set.” The stroke library was learned
from the background set, and the models and people were
tested on the experiment set. About 40,000 strokes were
aligned and clustered (using k-means) to formK = 1000 cen-
troids that comprise the model’s library (Fig. 4). Stroke tra-
jectories vary widely in length so they were reduced to a com-
mon dimensionality by fitting a cubic B-spline with 10 con-
trol points and clustering was done in this new space (Revow
et al., 1996; Branson, 2004).3 Strokes are direction specific,
meaning a left to right line and a right to left line are different.

Inference for one shot learning For one shot learning, the
model is given a single example image I(e) and a candidate
image I(t). Exact computation of P (I(t)|I(e)) is intractable
and even a maximum a posteriori (MAP) estimate involves
fitting every pair of images I(e) and I(t), which is very ex-
pensive. Instead, the computation is approximated as follows:

P (I(t)|I(e))
=

∑
S,W,π

P (I(t)|S,W,π)
∑

τ(e),Z(e)

P (S,W,π,Z(e), τ (e)|I(e))

≈ P (I(t)|S∗,W ∗,π∗),where

{S∗,W ∗,π∗}= argmax
S,W,π,Z(e),τ(e)

P (S,W,π,Z(e), τ (e)|I(e)).

To compute the maximization, we run Markov Chain Monte
Carlo (MCMC) and the Metropolis-Hastings algorithm,
taking the most probable sample after 50,000 proposals.
Intuitively, this picks the best strokes it can find to explain
just the training image. Proposals include a replacement of a
stroke Si and position Wi with a similar stroke and position,
moves to change π, moves to permute stroke indices, and
reversible jump moves to add or remove the last stroke while
also perturbing all the other variables. There is just one
image so far, so we fix Z(e) =W and τ (e) = 0. The sampler
is initialized after exploring a set of bottom-up parses, using
a stochastic tracing algorithm inspired by Edelman, Flash,
and Ullman (1990). Each bottom-up parse is mapped to the

3B-splines are a compact representation of a smooth curve, pro-
viding a function B(s) that maps a dimension s (similar to time for
strokes) to an x and y position. It smoothly interpolates between
the 10 control points (which are x and y coordinates) such that the
curve starts near the first control point and ends near the last. The
least-squares fit can be computed in closed form (Branson, 2004).

closest library strokes, scored, and the best is picked for
initialization. We then approximate

P (I(t)|S∗,W ∗,π∗)
=

∑
Z(t),τ(t)

P (I(t),Z(t), τ (t)|S∗,W ∗,π∗)

≈ P (I(t),Z(t)∗, τ (t)∗|S∗,W ∗,π∗),where

{Z(t)∗, τ (t)∗}= argmax
Z(t),τ(t)

P (Z(t), τ (t)|I(t),S∗,W ∗,π∗).

Again, we use Metropolis-Hastings and take the most proba-
ble sample after 2000 proposals. Moves include proposing a
new Z

(t)
i or jointly proposing changes in Z(t) and τ (t).

20-way classification from one example
We tested three models on one shot learning: the stroke
model, the Deep Boltzmann Machine (DBM, Salakhutdinov
& Hinton, 2009), and Nearest Neighbor (NN) in pixel space.
Performance was evaluated on 20-way classification, where
each training class gets only one example. For a given run, 20
characters were picked at random from different alphabets in
the experiment set. The models have never seen any of these
alphabets or characters before. Accuracy was then tested on
novel images drawn from this set of 20 characters.

All models received 28× 28 images (binary for the stroke
model and NN, grayscale for the DBM). The stroke model
fits a latent stroke representation to each training image I(e),
and a test image I(t) is classified by picking the largest
P (I(t)|I(e)) across the 20 possible training characters. The
DBM was pretrained on the 25 background alphabets using
a combination of MCMC and variational approximation (see
Salakhutdinov & Hinton, 2009). The architecture was two
hidden layers with 1000 units each. DBM classification is
performed by nearest neighbor in the hidden representation
space, combining vectors from both hidden layers and using
cosine similarity. NN classification uses Euclidean distance
but cosine performs similarly.

The stroke model achieves 54.9% correct, compared to
39.6% for the DBM and 15.7% for nearest neighbor in pixels
(Fig. 5 left). This was averaged over many random runs (27)
of the training characters and four test examples per class.
Figure 6 illustrates model fits to the training images in one
run. The stroke model is reasonable but imperfect parser. To
disentangle the imperfect parsing from the general approach,
we replaced the inferred strokes at training time (like Fig.
6) with the real strokes produced by the drawer of the im-
age. Classification was then conducted after inferring the test
image parameters (Z(t) and τ (t)) like in the standard stroke
model. The real strokes achieve 63.7% correct, which is
likely an upper bound for the current stroke model implemen-
tation. But there are many promising avenues for overcoming
this bound, which are outlined in the discussion. How would
people perform? We found that people were 97.6% correct
on a Same/Different task (baseline is 75%); see footnote for
details.4 Although this is a different task, it confirms there is

4If people were run directly on 20-way classification, they could
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Figure 5: Classification accuracy from one example (left, our re-
sults) and on the MNIST digits (right, published results not from
this work). DBM = Deep Boltzmann Machine; K-NN = K-Nearest
Neighbors; Motor programs model is from Hinton and Nair (2006).
Error bars are standard error.

a substantial gap between human and machine competence.
To create an interesting juxtaposition with one shot learn-

ing, some previously published results on MNIST, not from
this work, are displayed (Fig. 5 right). Even simple meth-
ods like K-nearest neighbors perform extremely well (95%
correct LeCun et al., 1998) due to the huge training set
(n≈ 6,000 per character). As a possible analog to the stroke
model, Hinton and Nair (2006) learned motor programs for
the MNIST digits where characters were represented by just
one, more flexible stroke (unless a second stroke was added
by hand). As evident from the figure, the one example setting
provides more room for both model comparison and progress.

Fit to human perceptual discrimination
The models were also compared to human perceptual judg-
ments. A set of six alphabets and four characters each was
selected for high confusability within alphabets. Fig. 7
shows the original images, but participants saw the handwrit-
ten copies. Participants were asked to make 200 same vs.
different judgments, where the proportion of same trials was
1/4. The task was speeded and the first of two images was
flashed on the screen for just 50 milliseconds before it was
covered by a mask. The second image then appeared and re-
mained visible until a response was made. There was an op-
tion for “I wasn’t looking at the computer screen” and these
responses were discarded. Sixty people were run on Mechan-
ical Turk, and 13 subjects were removed for having a d-prime
less than 0.5.5 Of the remaining, accuracy was 80 percent.

Trials were pooled across participants to create a character
by character similarity matrix. Cells show the percentage of
responses that were “same,” and the matrix was made sym-
metrical by averaging with its transpose (Fig. 8). There is a
clear block structure showing confusion within alphabets, ex-
cept Inuktitut that contains shapes already familiar to people
(e.g. triangle). The stroke model, DBM, and image distance

learn from the test examples. Instead, people made same vs. dif-
ferent judgements using the whole experiment set of characters.
“Same” trials were two images, side by side, of the same character
from two drawers, and “Different” trials were two different charac-
ters. Each of 20 participants saw 200 trials using a web interface on
Mechanical Turk, and the ratio of same to different trials was 1/4.

5The number of false alarms was divided by 3 to correct for hav-
ing 3 times as many different trials.
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Figure 6: Example run of 20-way classification, showing the training
images/classes (white background) and the stroke model’s fits (black
background). Accuracy rates are indicated on the 4 test examples
(not shown) per class.

were compared to the perceptual data. Perceptual discrimi-
nation was modeled using the same procedure for all models,
where each model saw many replications (76) of mock 24-
way classification, as in the previous section. For each test
image, the goodness of fit to each of the 24 training classes
was assigned a rank r from best (1) to worst (24). For each
pairing of stimuli, the similarity s = 1/r was added to the
corresponding cells, averaging across replications. Both the
stroke model (r=0.80) and the DBM (r=.77) show clear alpha-
bet block structure and correlate well with the human judg-
ments, while image distance does not fit well (r=0.30).

Discussion
This paper introduced a generative model of how characters
are composed from parts. Given a new character type, the
model attempts to infer latent strokes that explain the pixels
in the image. This approach performs well on one shot clas-
sification, beating Deep Boltzmann Machines (DBM) by a
wide margin. Both of these models provide good fits to hu-
man perceptual judgements on a small set of characters.

The stroke model is still far from human competence, al-
though there are many avenues for extension and improve-
ment. There is a clear need for both a richer basis of composi-
tional elements and the ability to expand this basis to include
new strokes when needed. The strokes in the current model
are rigid, allowing for translations but no scaling, rotations,
or deformation within individual strokes (see Revow et al.,
1996). As suggested in the classification results, there is not
much room for improvement within the rigid stroke regime,
given the upper bound obtained by using the real but still rigid
strokes. Additionally, novel characters often contain novel
strokes, and a model could benefit from moving beyond a fi-
nite library with a non-parametric Bayesian approach. While
our general framework allows for these improvements, the
present choices were made for computational efficiency, and
it will be critical to overcome these limitations in future work.

While more flexible models introduce new problems for
inference, bottom-up parsers are a promising means for tack-
ling these challenges. In preliminary simulations using an im-
age tracer modified from Edelman et al. (1990), we found that
these methods can work well for classification, even without a
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Figure 7: Human perceptual discrimination was measured on pairs
of these characters, which are from 6 alphabets. The original printed
images are shown, but participants saw handwritten drawings. Char-
acter index within an alphabet is denoted.
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Figure 8: Similarity matrices (lighter is more similar) for the 24
characters in Fig. 7. Alphabets are blocked and denoted by their
starting letter (A, I, etc.). Character index (Fig. 7) within alphabet
blocks is in increasing order, left to right.

notion of shared parts. If the stroke model’s parse is replaced
with a bottom-up parse and inference is then performed on
the remaining parameters in the generative model, classifica-
tion accuracy is often higher, likely because complex strokes
are fit more precisely. But performance is still limited by the
upper bound for rigid strokes, and without a notion of shared
parts, it is unclear how to incorporate multiple training exam-
ples. Despite the limitations of a pure bottom-up approach,
these methods could play an important role by making data
driven proposals, either by proposing new strokes or by fine-
tuning existing strokes within a richer generative framework.

What other domains are like our simple visual concepts?
Like characters, artifacts are complex concepts composed of
parts. Bicycles, cars, and scooters share parts like wheels,
handlebars, and motors, and new artifacts like the Segway
can be generated by combining these parts in novel ways. Our
simple visual concepts also share deep similarities with other
symbols used for communication, such as spoken words, ges-
tures, and sign language. When defining the concept as the
raw symbol rather than its meaning, people readily both gen-
erate and perceive these concepts, and there is a similar em-
phasis on building objects from primitives. For instance,
a spoken word is a sequence of phonemes just as a char-

acter is a sequence of strokes. Learning in these domains
could involve similar computational mechanisms. For spo-
ken words, Feldman, Griffiths, and Morgan (2009) proposed
that concepts are learned in conjunction with their compo-
nents parts, and this is also a guiding principle behind the
stroke model. Most speculatively, people learn rich visual
concepts like animals and faces from few examples, although
their forms are governed by very complicated generative pro-
cesses. Could similar computational principles explain rapid
learning in even these domains?
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