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Abstract

Adaptive learning techniques have typically scheduled
practice using learners' accuracy and item presentation
history. We describe an adaptive learning system (Adaptive
Response Time Based Sequencing—ARTS) that uses both
accuracy and response time (RT) as direct inputs into
sequencing. Response times are used to assess learning
strength and to determine mastery, making both fluency and
accuracy goals of learning. ARTS optimizes spacing by
expanding item recurrence intervals as an inverse function of
RT. In Experiment 1, we compared ARTS to Atkinson’s
(1972) Markov model system using geography learning and
found substantially greater learning efficiency for ARTS. In
Experiment 2, we deployed the system in a real learning
setting. Third graders attending an online school mastered
basic multiplication facts in about two hours using ARTS,
outperforming a control group using standard instruction.
These results suggest that response time-based adaptive
learning has remarkable potential to enhance learning in
many domains.

Keywords: learning; adaptive learning; learning technology;
education; instruction and teaching; memory.

Introduction

Principles of learning and memory applied to instruction
might be powerfully amplified in their effects if, through
adaptive learning, they can be customized to the needs of
individual learners and tasks. Since pioneering work by
Atkinson and colleagues (e.g., Atkinson, 1972), various
adaptive learning schemes have been proposed (e.g., Pavlik
& Anderson, 2008; Wozniak & Gorzalanczyk, 1994). Most
systems require prior research to estimate model parameters
for particular domains and learners. Sequencing is usually
calculated by combining parameters, response accuracy and
presentation history in a learning session.

We have developed a novel adaptive learning system
(Adaptive Response Time Based Sequencing -- ARTS) that
uses response times along with accuracy as primary inputs
to govern adaptive sequencing in interactive learning. There
are two primary reasons to incorporate response times in
adaptive learning. First, considerable research indicates the
importance of spacing in learning (for a recent review, see
Pashler, Rohrer, Cepeda & Carpenter, 2007). When multiple
items, categories, or procedures are to be learned,

intervening intervals and/or items between presentations of
a given item in a learning session can greatly improve the
efficiency and durability of learning. Some important
benefits of spacing relate to changing spacing as learning
progresses. Using response times on interactive trials offers
a more direct indicator of learning, making them a useful
input into adaptive scheduling. Second, fluency itself is
often a goal of learning. Using response times to set and
meet learning criteria may offer important benefits for long
term retention and fluent use of knowledge in complex
problem solving situations.

Spacing and Adaptive Learning

One powerful spacing effect is that expanding intervals of
retrieval practice produce better learning, relative to fixed
intervals (Landauer & Bjork, 1978; Cull et al., 1996). Very
recent research provides evidence for a substantial
advantage of expanding the retrieval interval when material
is highly susceptible to forgetting or when intervening
material is processed between testing events (Storm, Bjork
& Storm, 2010), conditions that apply to many formal
learning situations.

Most explanations of the value of expanded retrieval
intervals, and other spacing principles, involve an
underlying notion of learning strength. Learning strength
can be thought of as a hypothetical construct related to
probability of successful recall on a future test. When a new
item is presented, learning strength may be low, but it
typically increases with additional learning trials. The value
of any new test trial varies with an item's learning strength.
Specifically, evidence suggests that difficulty of successful
retrieval is a crucial factor (Landauer & Bjork, 1978;
Karpicke & Roediger, 2007; Pyc & Rawson, 2009). Pyc &
Rawson (2009) labeled this idea the "retrieval effort
hypothesis": More difficult, but successful, retrievals are
more beneficial. They studied the relation of number of
successful retrievals to later memory performance, while
manipulating the difficulty of those retrievals via number of
intervening trials. Greater numbers of intervening trials led
to better retention. These investigators also found evidence
that, as had been suggested in other work, larger gaps
produced longer average response latencies (Pyc & Rawson,
2009), a finding consistent both with the idea that a larger
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gap affects an item's learning strength and with the idea that
learning strength is reflected in response times. One can
summarize many of these findings by saying that the best
time for a new presentation of an item is after the longest
possible interval at which retrieval will still succeed. The
idea is to stretch, but not snap, the retention interval.

Research on spacing has typically used fixed schedules,
either equal intervals of item recurrence or a fixed schedule
of increasing intervals. Yet different learners are likely to
have different learning strengths for different items at
different times, as well as differing rates of change in
learning strength. Fixed schedules of recurrence cannot
accommodate such variations, but adaptive learning
schemes can. Previous adaptive approaches have relied on
accuracy and trial history to predict learning strength, either
in a Markov model estimating transition probabilities
between different states of retention (e.g., Atkinson, 1972)
or more elaborate models of learning (Pavlik & Anderson,
2008; Wozniak & Gorzelanczyk, 1994). Pavlik & Anderson
(2008) reported strong learning results, better than with
Atkinson's (1972) approach, using a detailed cognitive
model of acquisition, based partially on ACT-R (Anderson
& Lebiere, 1998), using prior studies to acquire learning
parameters for individual items and comparable learners.
Deploying such an approach in real world learning settings
requires considerable up-front investment. Also, despite the
value of efforts to model the learning process in exact detail,
there are limits to the accuracy of any known a priori
model.  Variability among items, learners, and their
interactions is substantial, requiring ongoing adjustments to
the model,' and specific additions (such as a way to
incorporate spacing effects) are needed to incorporate
phenomena not originally predicted by ACT-R (Pavlik &
Anderson, 2005, 2008).

Basing adaptive schemes on both accuracy and response
times offers a more direct way to assess learning strength
for individual learners and items in an ongoing manner. In
our system, retention intervals expand as an inverse function
of response time (for accurate responses), such that faster
responses automatically produce longer recurrence intervals.
Consistent with many studies and models, the approach
assumes that learning strength is reflected in response times
(Benjamin & Bjork, 1996; Karpicke & Roediger, 2007; Pyc
& Rawson, 2009).

A Response Time Based Adaptive Sequencing System

Consider a set of n items (facts, patterns, concepts,
procedures) to be learned. How can we implement learning
principles summarized above to optimize learning of the set
for the individual learner? We do so by applying principles
of learning to all learning items simultaneously in a priority
score system, in which all items are assigned scores

! Because procedures for specifying these adjustments and
determining numerous other parameters of the model for a new
learning domain are not available in published work, we did not
implement and test the Pavlik & Anderson (2008) system here.

indicating the relative importance of that item appearing on
the next learning trial. Priority scores for each item are
updated after every trial, as a function of learner accuracy
and RTs,” trials elapsed, and in view of predetermined
mastery criteria. Learning strength is assessed continuously
and in some implementations, cumulatively, from
performance data. The most straightforward version of our
sequencing algorithm chooses the highest priority item for
presentation on each learning trial. Adjustable parameters
allow flexible and concurrent implementation of several
principles of learning and memory. One important principle
is that the retention interval automatically increases for an
item as its learning strength grows.

In this report, we focus on item sequencing, although the
system can also be applied to procedural learning and to
perceptual or category learning, in which each presentation
of a category involves a novel instance (Kellman, Massey &
Son, 2010).

The sequencing algorithm is flexible; it may utilize any
equations relating elapsed time or trials, accuracy, and RT to
the priority for presentation of an item on a given learning
trial. When any particular function of these variables is
used, parameters may be adjusted to suit particular learning
contexts and even individual learners. We describe here a
characteristic ~ priority score equation that allows
implementation of several key principles of learning and has
proven highly effective in our prior research. The Priority
Score for item i (P; ) is given by:

P; = a(N; - D) [b(1 - a;) Log (RTi/1)+ a;W]

where:
N; = number of trials since item i was presented
D = enforced delay constant (trials)
a,b,r = weighting constants
ao; = 0, if learning item was last answered correctly
= 1, if learning item was last answered incorrectly
W = priority increment for an error
RT; = response time on most recent presentation of

item 1

Priority scores are dynamically updated after each trial.
In many applications, initial priority scores are given to all
items, and an item’s score does not change until after it is
first selected for presentation. This establishes a baseline
priority for feeding in new items that may be balanced
against changing priorities for items already introduced.
Parameters may be set to favor recurrence of new items,
items already seen, or combinations of the two.

Rapid Reappearance of Missed Items. The system
ensures rapid re-presentation of items answered incorrectly
by the assignment of a high priority weighting increment

2 Adaptive learning systems that schedule learning events based on
accuracy and speed of response are covered by US Patent
#7052277. All rights reserved. For information, contact
info@insightlearningtech.com.
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(W). The binary variable o; is used to activate one or the
other part of the equation, depending on whether the last
trial response was correct or not. If correct, a; is set to 0,
and priority becomes a function of RT. If incorrect, o, is set
to 1, and priority increment W applies to the item. With
ordinary parameter settings, the error increment W will
exceed all initial priority score assignments, as well as the
highest priority that may result from a slow, correct answer.
However, reappearance of missed items is still subject to
enforced delay (see below). With typical parameter
settings, a missed item will tend to have highest priority,
once it passes the enforced delay.

Interleaving / Enforced Delay. To prevent presentation of
an item while its answer remains in working memory
(Karpicke & Roediger, 2007; Taylor & Rohrer, 2010), the
system is normally configured to prevent the presentation of
the same item on consecutive trials. The parameter N; and
constant D determine the enforced delay, because (N; — D)
is a global multiplier in the equation. A value of 2 is typical
for D, and N; represents number of trials since last
presentation of item i. Thus, the overall priority of item i
will be negative on the trial immediately following the error
(because (N; —D) = -1). On the next trial, the priority will be
0 (because (N; — D) = 0). For both negative and zero values,
the priority for re-presentation of item i will be lower than
all learning items having positive priority values. From then
on, the priority for a missed item will be high, as its priority
increment W grows proportionally to the number of elapsed
trials since last presentation.

Dynamic Spacing Based on RT. The system can use
various functions of RT but typically produces large priority
weightings for slow, accurate responses, although not as
large as for missed items. In the exemplar priority equation:
For an item answered correctly, o; = 0, and the part of the
equation involving RT is activated. RTs for inaccurately
answered items are not considered meaningful. For correctly
answered items, a log function of RT is used, as differences
between long RTs (e.g., 20 and 30 sec) are probably not as
significant as differences between short RTs (e.g., 2 and 12
sec). In this arrangement, longer spacing between
presentations of an item arises automatically as the learner
gives faster (accurate) responses.

Retirement Criteria. Adaptive learning focuses a learner’s
effort where it is needed most. We use the term retirement
to describe removal of an item or category from the learning
set, based on attainment of learning criteria. Pyc & Rawson
(2007) called this "dropout" and found evidence that greater
learning efficiency can be achieved with this feature,
especially in highly demanding learning situations. In Exp.
1 below, the learner had to answer an item correctly and
under a criterion response time on three consecutive (widely
spaced) presentations to retire that item. Requiring several
consecutive, fast responses to an item automatically ensures
stretching of retention intervals. Thus, a retired item will
have been answered quickly and accurately several times
across long delays before being retired.

Our approach concurrently incorporates a number of
learning principles supported by recent research. The ARTS
system is built around short interactive trials, an approach
supported by considerable evidence indicating that
interactive “testing” trials, in which the learner makes a
response, are highly effective in learning, moreso than
passive presentations or “study” trials (Carpenter, Pashler,
Wixted & Vul, 2008; Karpicke & Blunt, 2011). The use of
systematic mastery criteria, including speed, assures both
comprehensiveness and fluency in learning. As cognitive
load is an important limiting factor in learning (Chandler &
Sweller, 1991), it is important that items that are
foundations for later learning be mastered to a reasonable
degree of fluency. Finally, the rich stream of performance
data accumulated by the ARTS system enables continuous
assessment by instructors, and also provides several forms
of learner-directed feedback, which can support specific
increments in learning and sustain motivation.

Exp.1 Comparing Adaptive Learning Systems

In Experiment 1, we compared ARTS to Atkinson’s (1972)
system, a classic in the literature on adaptive learning, and a
benchmark against which other systems have been
compared (e.g., Pavlik & Anderson, 2008). Atkinson's
system was based on a Markov model tracking strength of
learning items. Presentations were chosen as a function of
probabilities of transitioning between three hypothetical
learning states -- unlearned, temporarily learned or
permanently learned. The algorithm attempted to select
items that would have the highest probability of moving
from an unlearned or temporarily learned state into the
permanently learned state if tested and studied on the next
trial. Previous learning data were analyzed to determine the
model’s initial parameters, including learning and forgetting
rates and prior knowledge. Atkinson successfully used his
model to improve learning of German-English vocabulary
pairs (and used related systems in a variety of domains; for a
review, see Atkinson, 1976). Performance, as measured by
recall on a delayed post-test, was superior to random
presentation. In the present experiment, we compared the
ARTS system with a version of the Atkinson model using
material that consisted of names and locations of countries
on a map of Africa. To implement the Atkinson condition,
item parameters were estimated using data from a previous
experiment, in a manner similar to that in Atkinson (1972).
No prior information was required for implementation of the
ARTS system.

Method

50 undergraduates, participating for course credit, were
randomly assigned to two learning conditions. One group
received training using ARTS. The other group received
training using the Atkinson scheduling algorithm. Each
group of subjects took a pre-test in which they were asked to
identify 24 countries on a map of Africa. We used countries
whose location was relatively unfamiliar (e.g., Djibouti, but
not Egypt). On each trial, a country was highlighted on the
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map, and participants were asked to choose its name from a
list of 24 country names. Countries were presented
individually and no feedback was given.

The training task was identical to the pre-test, except that
participants received feedback on each trial and item
selection was governed by one of the two algorithms. In the
ARTS condition, participants were trained until they had
reached a learning criterion (responding correctly for each
item three times in a row under 10 sec per item). Individual
countries were removed from the learning set when
retirement criteria were reached. The Atkinson system has
no prescribed stopping point; we ended learning sessions
after 45 minutes or a 234 trial cut-off, whichever came first.
The end point was determined from pilot testing, where 234
trials was a number of trials in which more than half of
participants in the ARTS condition retired all items.

Immediately after training, participants were given a post-
test that was identical to the pre-test, but with countries in
random order. One week later, participants returned to
complete an identical delayed post-test. The entire first
session took no longer than 1 hour. The experiment was run
twice. The two versions were identical except that they were
run on separate computers. In the first version, we
discovered that the computer was introducing a delay of a
few seconds between trials for the Atkinson condition. We
carried out a new version with this problem eliminated.
Patterns of results were indistinguishable in the two versions
of the experiment, so they have been combined for this
analysis.

Results

We express our primary results in terms of learning
efficiency—post-test gains in accuracy divided by the
number of learning trials invested. Adaptive response-time
based sequencing produced substantially greater efficiency
(53.4% greater) than the Atkinson system (Figure 1).
Statistical analyses showed that efficiency was reliably
higher for the ARTS condition (M=0.132) than for the
Atkinson algorithm condition (M=0.086), (t(48)= 4.33,
p<0.001). Post-test accuracy considered apart from learning
trials invested was also reliably higher in the ARTS
condition (M=0.827 vs. 0.732), ((48)=2.39, p=0.021). A
different way to view the results is to consider efficiency
based on total fime rather than trials invested (Pavlik &
Anderson, 2008). Time-based efficiency (items learned per
minute of training) is shown in Figure 2. In the immediate
post-test, time-based efficiency for ARTS was 79% greater
than in the Atkinson condition (M=0.964 for ARTS vs.
0.539 for Atkinson; t(30)=4.50, p<0.001). Values for time-
based efficiency for the Atkinson condition were taken only
from the subset of participants who ran on computers that
were not affected by a calculation delay that added space
between trials.

We carried out a separate analysis of the 1-week delayed
post-test, as not every subject was tested at a delay.
Participants who completed the delayed posttest (41 of 50)
were included. For trial-based efficiencies, an ANOVA

with factors of condition and phase showed a reliable effect
of condition (F(1,37) = 17.6, p< 0.001), but no interaction
(F(1,37) = 0.811, p=0.371). Efficiency for ARTS was 48%
greater than the Atkinson algorithm on the delayed test, and
the two conditions differed reliably (M=0.092 vs. M=0.062
respectively;  t(39)=2.09, p=0.043). For time-based
efficiencies, reliable differences were found between ARTS
and Atkinson algorithms across tests (F(1,37)=17.6,
p<0.001), with no interaction (F(1,37)=0.81, p=0.370; see
Figure 2). At delayed test, the ARTS algorithm showed an
89% advantage in time-based efficiency (0.662 vs. 0.35,
t(30) = 2.78, p=0.009). Response times improved from
pretest to posttest but the improvement did not vary by
condition.

Discussion

These results suggest that adaptive sequencing based on
response times and accuracy can produce substantial
enhancements in learning relative to other methods. The
ARTS system was 54% more efficient on immediate post-
test based on trials and 76% more efficient based on time
than the Atkinson (1972) approach, and these differences
were equally evident on delayed post-test. The Atkinson
condition tested in this study has been shown in prior work
to offer substantial improvement over random schedules of
presentation (Atkinson, 1972), so we might infer that the
ARTS system would outperform random schedules
substantially, a prediction confirmed in other work
(Kellman, Zucker & Massey, 2007).

The systems tested here differed in their prior assumptions
and overall complexity. The Atkinson model, as with
model-based systems in general (e.g., Pavlik & Anderson,
2008) requires pre-programming of learning parameters

X condition
0.15 I 1 B ARTS
Atkinson
1y
c 0.10
2
=
=
L
0.05
0.00
Post-test Delayed
(1 Week)
Phase
Figure 1: Efficiency for ARTS and Atkinson

scheduling algorithms at immediate and delayed post-
test. Efficiency equals improvement in number of
post-test items answered correctly per trial of training.
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Figure 2: Time-based efficiency by test phase and
scheduling algorithm. Efficiency here indicates
items learned per unit time (minutes) as shown by
the immediate and delayed post-tests.

based on data obtained from a prior learning experiment.
With ARTS, no prior study is needed to apply the system to
new domains or learners. Use of response times in
interactive learning provides a more direct and up-to-date
indication of learning strength as input to a sequencing
algorithm.

Exp. 2 Applying ARTS to Elementary
Mathematics Learning

Studying adaptive learning in genuine learning settings is
crucial but has been less common than laboratory studies.
One kind of challenge in real-world learning contexts is the
need to do prior studies to estimate parameters in model-
based systems. Another kind of challenge may be issues of
diverse users, motivation, and learning materials. Students
engaged in school learning may be motivated differently
from paid adult subjects (as in Pavlik & Anderson, 2008),
and it would be valuable to extend beyond the foreign
language vocabulary used in most previous studies.

To explore these issues, we tested ARTS in a
collaborative project with an online learning company that
runs online charter schools in many states. We focused on
third graders’ learning of basic multiplication facts.
Although memorization of basic math facts is one of the
least appealing parts of learning in mathematics, it is a
crucial foundation for later work and success in math
(NCTM, 2006). Adaptive sequencing technology, we
believe, can provide a highly efficient way to ensure
comprehensive learning of math facts.

Method

We developed Best Basic Math™, an adaptive program for
elementary math, and we designed a study to focus on the
learning of basic multiplication facts up to 12 x 12.

Specifically, 3rd grade students (n=72) in an online school
in Pennsylvania logged in from home over a number of
sessions in one of two conditions. Both received a pretest
and posttest of 30 multiplication problems. Assessments and
the learning module were web-delivered. In the treatment
group (n=41), the module retained each participant's
progress and current place in the learning phase across
different days, and each participant's learning continued
until all problems had been retired, where retirement
entailed answering 4 out of the previous 5 presentations of
an item correctly in less than 6.5 sec. These criteria ensured
that several presentations would be widely spaced by the
time any item was retired. Response time and accuracy were
recorded and used in adaptive sequencing, as well as to
determine item retirement. Feedback was given on each trial
and also for 10-trial blocks. Overall progress toward
completion was indicated at the bottom of the screen using
mastery strips. For the control group (n=31), standard math
lessons including multiplication content were presented as
usual in the daily online sessions.

Results

For the ARTS condition, learning basic multiplication
through 12 x 12 took on average 123.5 minutes (median =
109.8 min) before learning criteria were reached. Given that
we were most interested in learners who had not already
mastered most of this content, a primary analysis involved
those students (n=28) who began with < 80% accuracy on
the pretest (mean pretest accuracy = 49%; mean RT = 12.6
sec per problem). Posttest scores averaged 83% accuracy
and 8.3 sec per problem, gains of 69% for accuracy and
34% in fluency. Pretest to post-test gains were highly
reliable for accuracy, t(27) = 10.43, p < .001, and RT, t(27)
= 529, p < .001. Effect sizes (Cohen’s d) were 2.0
(accuracy) and 1.53 (RT). The online learning company's
researchers compared treatment students (n=41) with
control students (n=31) who had standard assigned lessons
for the same period. Groups were matched for prior
performance on standardized tests. Gains of accuracy and
speed for the ARTS group were highly reliable relative to
the control group, p < .01. Effect sizes for treatment vs.
control were .49 for accuracy and 1.29 for fluency. (These
latter analyses did not exclude learners who were at or near
ceiling on accuracy in the pretest.)

General Discussion

The studies reported here indicate that the ARTS system
makes several contributions to improving the state of the art
in technology-based adaptive learning systems. Specifically,
in comparison to another well-known adaptive system
(Atkinson, 1972), incorporating response time as a dynamic,
real-time input to learning algorithms designed to
implement established laws of learning and memory
significantly improves the efficiency of learning. Strong
learning gains were obtained in both a laboratory setting
with adult learners as well as an on-line school setting with
young elementary students.
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The continuous stream of performance data (accuracy and
speed) used in this adaptive system offers other important
benefits to learning. One is the comprehensiveness of
learning, based on tracking all items or categories to be
learned and leading each learner to mastery criteria. In
Experiment 2, about two hours of learning was sufficient to
give 3rd graders reasonably complete knowledge of
multiplication through 12 x 12. Although we did not study
it directly here, another benefit is the use of response times
in learning criteria as a means of producing fluency in
learning. Finally, the rich data used by the ARTS system
offers unusually rich opportunities for formative assessment
and diagnosis of learning hurdles for both individuals and
groups.

While the studies reported here have focused on
sequencing meaningful factual ifems in mathematics and
geography, the adaptive system can also be applied to other
types of content, such as perceptual, category, or procedural
learning. In other research, we have used adaptive
algorithms to enhance pattern learning and structure
extraction in high-level conceptual domains (e.g., Kellman,
Massey & Son, 2010). Further, the embodiment of the
adaptive system in learning technology that can be deployed
without conducting prior studies to set parameters supports
its potential for cost-effective application in a great variety
of domains and learning settings, such as professional
training in medicine, aviation, and chemistry; distance
learning; and learning in K-12 schools and universities.
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