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Abstract

Computational models are increasingly used to explore possi-
ble mechanisms underlying infant capability in various tasks.
Often, such models do not work directly on perceptual data,
but on hand-computed features of images; such models are
open to the criticism that these high-level features may not be
what is actually computed in the neural computation. Here we
explore the feasibility of the Serre-Poggio (S-P) model which
emulates the early ventral stream of the primate visual cortex,
and constructs a probabilistic model of the tuned cells of the
V4-IT cortex. In experiment 1, we use this system to model
asymmetry in visual category learning in early infancy (e.g.
cats vs dogs), and show that surprisal for the novel category is
higher when habituated on CAT than on DOG. In experiment
2, we show that face habituation can be used to discriminate on
full bodies. Experiment 3 demonstrates that superordinate cat-
egory discriminations are easier than for the basic level. These
experiments agree with earlier psychological data and partially
validate the S-P model for such tasks.

Introduction
Infant perceptual ability has been demonstrated for a wide
range of visual tasks, and computational models are increas-
ingly used to analyze possible mechanisms underlying such
behaviour. However, using computational models in visual
development is limited owing to the high dimensionality of
visual data and the complexity of extracting meaningful struc-
tures from images. Thus, a review of computational simula-
tion in development cites only two (out of thirty) papers for
perceptual categorization (Schlesinger & Parisi, 2001).

Yet, the infant’s strongest cue to abstracting from the world
is perception, since its motor functions are under-developed.
Between two and six months, infants demonstrate increasing
ability to discriminate a number of complex concepts, primar-
ily based on perception. Computational studies investigating
infant visual perception can throw light on the the internal
mechanisms for such learning, and also throw light on de-
bates such as degree of innateness, learnability, etc.

One of the areas that has attracted considerable attention in
visual learning by infants is that of asymmetry in infant vi-
sual categorization (e.g. DOG vs.CAT) (Mareschal, French,
& Quinn, 2000 ; Quinn, Eimas, & Rosenkrantz, 1993).
This intriguing phenomenon has attracted considerable atten-
tion, and has also been addressed by a connectionist model
(Mareschal et al., 2000). Here 3-6 month infants are shown
a series of images from a certain category, and their prefer-
ential looking (or looking time) is analyzed for objects of the

same or different categories. Based on the novelty prefer-
ence paradigm, it is expected that infants would look longer
at objects from the novel category. The asymmetry result,
demonstrated by Quinn and co-workers nearly two decades
ago, is that infants who are habituated to cats demonstrate a
preference for dogs as novel stimuli, whereas the preference
is weaker when habituated on dogs and exhibited a cat. Such
an asymmetry is especially surprising because it is assumed
that such young infants may not have had much exposure to
the classes of cats and dogs per se, and that any priors they
form are learned only from this immediate experience.

Quinn and co-workers conjectured that the asymmetry may
have arisen due to greater variation among dogs, so that
some novel cats may also be accepted on the DOG schema,
whereas the CAT schema is tighter and rejects most of the
novel dogs (Quinn et al., 1993). This hypothesis was vali-
dated using a perceptron network by Mareschal, French and
Quinn (Mareschal et al., 2000), who found that certain fea-
tures had lower spread among cats than among dogs. For the
simulation, they hand-computed ten traits from the images:
head length, head width, eye separation, ear separation, ear
length, nose length, nose width, leg length, vertical extent,
horizontal extent. These features were then given as input to
a three-layer perceptron, which was trained to discriminate on
cats and dogs over 250 epochs. The network error rates (used
internally in the backpropagation algorithm) were used as an
analog for looking time, and results were shown to correlate
with the original experiments on infants. Also, the gaussian
distribution of these features was computed and the features
for the DOG were found to have a wider variation than that for
the CAT. This analysis thus corroborated the the early sugges-
tion that the asymmetry arose because the CAT class had less
variability than the class DOG.

However, such an approach is open to criticism since the
computation of high-level features requires that one is able
to decompose the image into ear, nose, eye etc. While there
is considerable evidence that the infant is sensitive to parts
of the face (Perrett & Benson, 1992), nonetheless the task
of mapping from a raw image to such parallel data on faces
from different species remains a formidable challenge. The
images, if we consider them to be the equivalent of 300×200
pixels, have about 60,000 dimensions. The manually exe-
cuted task of obtaining ten features from the image space in-
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volves a mapping,say fman, from the original image I to these
ten features. Subsequently, the function learned by the neural
network, fL, operates a 10-dimensional feature space to ob-
tain a binary classification into CAT,DOG. The overall process
is given as

I ∈ RD fman−−→ x f ∈ R10 fL−→ {CAT,DOG}

where D represents the dimensionality of the image, be-
tween 104 and 106 pixels, say. Clearly, learning (or knowing
innately) a function such as fman is not a trivial matter. An-
other crucial question is - which ten features to choose for
the intermediate representation? Determining such a set of
informative features from this heterogeneous dataset is itself
injecting a considerable amount of human knowledge into the
process.

A second problem with manually computing features is
that only certain classes of experiments can be duplicated. In
one of the experiments of the Quinn group, the infant is habit-
uated on face images and testing is done on full bodies (Quinn
& Eimas, 1996). Clearly, mapping the full-body images to the
same ten feature vectors would defeat the very purpose of the
experiment, and assigning some other feature class to the test
images would make them incommensurate. Working directly
on image data provides a mechanism for handling these as-
pects, and we investigate this question in our experiment 2.

Computational model of early ventral stream
Improved understanding of function in the neuroanatomical
circuits serving visual perception has led to considerable ad-
vances in computational models of the visual stream. In par-
ticular, the ventral stream from the V1, V2 and V4 areas of
the visual cortex to the IT is part of the cortical computational
processes thought to be responsible for object recognition or
“what” questions. This pathway has attracted considerable
interest from computational simulation. Tomaso Poggio’s
group, working on modeling various aspects of the primate
visual system, has suggessted several models for this part of
the pathway. The model we adopt from (Serre, Kouh, et al.,
2005) seeks to replicate the gradual increase in complexity
of the preferred stimuli for neurons along the ventral stream,
culminating in tuned IT neurons which are believed to play a
key role in object recognition (Tanaka, 1996).

The Serre-Poggio model takes a gray-scale image as in-
put and performs four intermediate computations that com-
bine processes in the early computation in the primate visual
system. The first few hundred milliseconds in the retina and
LGN involves identifying simple local maxima (e.g. center-
on) processes; these are combined to obtain orientation-tuned
responses. In the S-P model, these are simulated by orienta-
tion tuned simple cells (S1) which constitute the first layer,
corresponding to the early part of the V1. The model has al-
ternating layers for tuning (simple, selective) and combining
(complex, invariant) computation. The S-cells are tuned for
specific orientations or shapes, and the C-cells combine the
responses of the neighbouring S-cells in the previous layer

using a “max” function. This gradually increases scale, speci-
ficity, and translation invariance as we move up the hierarchy.
There are four layers, the first of which roughly corresponds
to simple cells in V1 that are tuned to orientation (layer S1).
The max for each orientation is computed over a pool of S1
cells, resulting in tolerance to position and scale within the vi-
sual field. This layer, C1 passes its output to the next tuning
layer, S2 which preferentially selects differing orientations
resulting in preferences for different shape primitives. It is
suggested that these may correspond to cells in V4 or in the
superficial layers of V2. A large number of S2 cells learn their
responses based on random patches from the input. The final
C2 layer used in this work maximizes across cells tuned on
the same shape model, thus increasing invariance over scale
and position. It is this final computed C2 output which is used
in various object recognition tasks. The 4-layer hierarchy is
described in Table1.

In our experiments, we use this S-P model to compute the
C2 feature vectors for different sets of habituation images.
TThese features are used to learn probability distributions for
the habituation category, which simulates the tuning of neu-
rons in late V4 / early IT for the given visual category. The
final discrimination is done by applying these tuned C2 cells
to the test image I. The steps from S1 through C2 may be
thought of as a mapping fvs, which are then used in learning
the cat, dog discrimination as follows:

I ∈ RD fvs−→ xC2 ∈ Rn fL−→ {CAT,DOG}

Here fvs is the feature mapping performed in the ventral
stream. Note that unlike in the previous situation where fea-
tures corresponded to conscious, declarative elements, here
the features are subconscious and implicit. As in the earlier
situation, the learning component of the system now has to
learn a n dimensional discriminant function on this feature
space, based on which it can discriminate the classes dogs
and cats.

The dimension n is a function of the number of training
images that random patches are sampled from; for two sets
of 16 images in the training set, this results in 512 C2 units.
This vector is then used for identifying a distribution. Finally,
we observe that this computational model has been tuned to
reflect single cell readings obtained from various sites in the
visual stream of adult monkeys. Even if we assume sufficient
correspondence with human visual processes, the question of
relevance to the infant visual system remains. In this connec-
tion we note that there is significant evidence that infants ex-
hibit orientation selectivity from an early stage (Wattam-Bell,
1991) and the first stage in the Serre-Poggio model recruits
orientation sensitive frequency filters. What is absent in the
infant are model-based priors that would be present in adults
based on experience with visual stimuli of cats and dogs.
However, this we do not assume, since our model is feed-
forward. On this basis, Serre has described the algorithm that
learns the vocabulary of tuned neurons as “developmental-
like”. Indeed, our experiment can be taken as a test for the
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Level Functionalities
Simple cells (S1) Gabor filters, 16 spatial frequencies(=scales), 4 orientations
Complex cells (C1) Local max over a pool of S1 cells ; increase in tolerance to position and scale
Composite feature cells
(S2)

Combination of V1 like complex units at different orientations

Complex composite
feature cells (C2)

Local pooling over S2 units with same selectivity but slightly different positions and scales ;
Same selectivity as S2 units but increased tolerance to position and size of the preferred stimulus

Table 1: Summary of layers in S-P model (based on (Serre, Wolf, & Poggio, 2005))

Gabor Filter Parameter
Name

Symbol Parameter value

Receptive field(RF) size s 16 filters 7X7 to 37X37
(in steps of 2)

Orientation θ 0◦,45◦,90◦,135◦

Effective Width σ 0.0036s2 +0.35s+0.18
Aspect Ratio γ 0.3
Wavelength λ σ/0.8

Table 2: Parameters of the Gabor filter bank (Source: (Serre,
Wolf, & Poggio, 2005 ; Daptardar, 2009) )

validity of such a claim for this model.

Application to object recognition

In an object recognition task, the system is given a large
number of images of different objects, and these are labelled
with the relevant object categories. C2 features are com-
puted for all the images in the training set, and these are
used to train a classifier - typically, a support vector ma-
chine (SVM) (Bishop, 2007), which performs the classifica-
tion. Now, given a new image, its C2 vector is computed and
passed to the trained SVM which then assigns a class label to
it. The model has reported 44% percentage average accuracy
in discriminating more than a hundred object categories in the
CALTECH-101 dataset (Serre, Wolf, Bileschi, Riesenhuber,
& Poggio, 2007). However, the model has some drawbacks
on present (largely serial) computational architecture where
the computational load is very heavy due to the dense tuning
and max operation and blind feature selection.

The model replicates the shape primitives computed in the
early ventral stream (upto early IT). The model relies on
dense orientation data, and not on global shape - hence it
would not work for silhouette experiments, say. However,
many images can still be categorized, and we report the sim-
ulations for three such experiments.
Implementation of Serre Poggio model For this work,
the S-P algorithm was re-written in C++, since the available
code in MATLAB was extremely slow (Daptardar, 2009) (im-
plementation available). OpenCV, OpenMP (libgomp), MPI
(OpenMPI) and LibSVM libraries were used for this project.
Table 2 describes the parameters used in the implementation
of Gabor filter. The implemented model was tested on cate-
gorization tasks and performed similarly to the original work
(Serre, Wolf, & Poggio, 2005).

Modeling infant visual cognition
Visual categorization processes in infants have been stud-
ied by many experimenters including Quinn and co-workers
primarily based on preferential looking paradigm (Quinn &
Eimas, 1996 ; Quinn et al., 1993) though looking time or elec-
trophysiological methods (ERPs) have also been used (Quinn,
Westerlund, & Nelson, 2006). Stimuli involved images of
animals and other object classes, which were often cut-out
(isolated) from the background and held up on sticks, or
sometimes obscured to reveal only the face (Quinn & Eimas,
1996). In many of these experiments, only one class was dis-
played (e.g. CAT, and the response was measured for a novel
category such as DOG or some inanimate object such as CAR.

In our experiments, we focused on the preferential looking
paradigms, which were modeled based on probability distri-
butions computed on the input data set. Since there is no
reason to assume otherwise, we use a gaussian model for the
probabilities. The probability for novel (test) images are com-
puted based on their C2 features x, of dimensionality n, com-
puted from the images. It is assumed that these are sampled
from a distribtution x∼N (µ,∑), estimated from the training
set:

Pr(Itest |I1, I2, .., Im) =
1

(2π)n/2|∑|1/2 exp(−d2) (1)

where d =
√
(y−µ)T (∑)−1(y−µ) and I1, I2..., Im and

x1,x2...,xm are training set images and corresponding C2 fea-
ture vectors; Itest , y are test stimuli and its C2 feature vector;
∑ is the covariance matrix of x. If the Pr(Itest) is greater than
some threshold τ then the image is acceptable as a member of
the habituation class, else it is considered a novel class. We
report results for a threshold at which instances of the habitu-
ation class would have been accepted, and also test the effect
of other thresholds.

For estimating looking time, we assume that looking time
is proportional to surprisal, - an information-theroetic notion
and corresponding to the amount of information present in a
single observation (Bishop, 2007). Surprisal is often corre-
lated to looking-time in cognitive models, e.g. in psycholin-
guistics (Levy, 2008).

Thus, an observation that is close to expectation gener-
ates low surprisal, and highly deviant (novel) data generates
higher surprisal. Surprisal for novel test stimuli Itest with C2
feature vector y is defined as

surprisal(Itest) =−log{Pr(Itest |I1, I2, ...., Im)} (2)
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Figure 1: Sample dataset: first 2 images from Quinn et al. (2001) and last two were from CAT-DOG database (2011)

Hence, we have surprisal(Itest) = d2 + c, where c is a con-
stant estimated from the Σ.

The experiments
We conducted three experiments on the lines of three of the
experiments reported by Quinn and his group. In the first
experiment, the system was trained on 16 full-body images
from the categories CAT or DOG, and it computes a separate
gaussian model for each of these classes on the C2 features.
Next, it was shown a pair of individual images one of CAT
and one of DOG. Unlike with human infants, while exhibiting
images, the learning is switched off, so that each episode ef-
fectively replicates one experiment with an infant (albeit, the
same one). Modeling looking time based on surprisal, our
results are compared with experiments done on real infants
with full-body images of these animals from (Mareschal et
al., 2000). We also report the incremental error rates in as-
signing test images to the habituation (training) category or
novel category.

Experiment 2 replicates the face to whole body learning
referred to above (Quinn & Eimas, 1996). Here, we train on
16 face images from these two classes, and test on full-body
images of CAT and DOG.

Experiment 3 considers hierarchical categorization (Quinn,
2004 ; Behl-Chadha, 1996 ; Quinn et al., 2006). Here we
seek to demonstrate that distinctions between superordinate
categories (e.g. CAR vs CAT) is much more robust than basic
categories such as CAT vs DOG.

Stimuli
We chose CAT, DOG image exemplars similar to those used
by (Quinn & Eimas, 1996 ; Quinn et al., 1993)), except that
in the original experiments, the figure objects were cut out
from the background so as to avoid any distractors. This as-
sumes segmentation capability that an infant may or may not
have. We did some early tests which showed the system do-
ing almost as well on un-cropped images (without too much
background) as with cropped; so all results are reported on
un-cropped images.

Images of the animal standing sideways, on all fours, were
selected for the full-body experiment, while for face only
case, images with the animal facing the viewer were chosen.
The image sets are available online (CAT-DOG database,
2011).

The other issues are that a) a large number of image in-
stances are needed for category learning, and b) selection of

exemplars must be such that any individual instance does not
affect the overall performance of the model. Figure 1 shows
the sample database used in earlier experiment and in our ex-
periment.

Experiment 1: Asymmetry in category learning
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Figure 2: Comparison of mean percentage performance of
the asymmetry experiment done on infants (Mareschal et al.,
2000) with S-P model

In this experiment, a set of habituation images Itraining was
used to learn a distribution for a single category (in the C2
feature vector space). Now, given two test images I1 and
I2, the image with higher surprisal will corresponds to lower
conditional probability Pr(Ii|Itraining) and which means high
looking time. Different sets of 16 images from a single
category are randomly selected as Itraining for each trial of
familiarization phase, resulting in an estimated distribution
N (µ,∑). For testing, we choose all possible pairs of new test
images objects from a set of 8 CAT and 8 DOG images. After
training with the CAT category, situations where DOG images
are preferred are compared with the preference for the CAT
images. The result (average over 5 runs), compares well with
the original infant experiment (Mareschal et al., 2000) (Fig-
ure 2).

Further, we tested the discrimination between these cate-
gories based on different training sets with 16 images of both
categories, tested with a mix of cat and dog images. Un-
like the conditional probability maximization method in the
earlier single-category approaches, we use an SVM now to
discriminate among the test images. When the model was
trained on 16 CAT images against 16 images from a mix of
animals, its average categorization accuracy on 8+8 test im-
ages was 65% for CAT and 55% of DOG images were found
to be novel (Figure 3). Conversely, when trained on DOG, the
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test data categorization was 75% for dogs, and only 20% of
cats were found to be novel - i.e. 80% of the cats were ac-
cepted as dogs. To determine the stability of this result, we
tested the result by choosing different subsets for training vs
test images; the results of these tests, summarized in Fig. 4
show a consistently better performance in recognizing CATs.
This demonstrates that a) the model is able to discriminate the
novel full bodies after learning from few training exemplars,
and b) there is a high degree of asymmetry in performance, as
in the original experiment. This suggests that an SVM classi-
fier in some respects may be behaving similar to mechanisms
in infants, though this is far from saying that infants are actu-
ally using such mechanisms.
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The observed asymmetry in categorization performance for
the novel category implies that the model identifies DOG more
accurately after training on CAT, as compared to CAT after
training on DOG. We also observe that high variability in
the dog category is indicated by some individuals who tend
to have greater acceptability in the cat category (lower con-
ditional probability) than most cats (Fig. 4.b). On the whole,
this similarity to infant categorization results suggests that the
model is able to capture the relevant attributes of infant visual
learning.

In order to consider the effect of the threshold, we com-
pute the discrimination over all possible thresholds, from the

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Face Only Full Body 

P
e
rc

e
n

ta
g

e
 C

a
te

g
o

ri
z
a
ti

o
n

 
 A

c
c
u

ra
c
y

Test Condition

CAT
DOG

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Super Ordinate Basic Level

P
e
rc

e
n

ta
g

e
 C

a
te

g
o

ri
z
a
ti

o
n

 
 A

c
c
u

ra
c
y

Level of Complexity

CAT
DOG

(a) (b)

Figure 5: Experiments 2 and 3: a. Role of facial informa-
tion in categorization of full body images of CAT and DOG;
b. Better categorization performance at superordinate (CAR
vs ANIMAL) than at basic level (CAT vs DOG).

lowest discriminating value to the highest. We report the True
Positive Rate (percentage of novel detections that are actually
novel) vs the False Positive Rate(percentage of the non-novel
detections that were actually novel) for different thresholds
(Fig. 4.a). Regions for very high and very low thresholds are
noisy, but in the middle part, curves closer to the top left cor-
ner have better discrimination. Thus, the data trained on CAT
is stronger for a range of feasible thresholds.

Experiment 2: Face vs. Full-body
Quinn et al. (1993) ; Quinn et Eimas (1996) ; Quinn et al.
(2001) showed that shape or facial/head informations of cat
and dog are sufficient for 3-4 month old infants to form cat-
egorical representations that can discriminate based on full
body images, but also demonstrates similar asymmetry. Ex-
periment 2 tests this, by training the model on face exemplars
and testing on novel face images. When habituated on CAT,
72.5% of novel category data (dogs) are preferred, whereas
for DOG, only 40% for novel images are preferred (Fig. 5.a).
In the next experiment, the training was on the face exemplars
but the test image exemplars was novel full body exemplars.
In this case the model was able to categorize 70% of the novel
dogs and 55% of the novel cats accurately. The high catego-
rization accuracy in both experiments support the claim that
the head region provides signicant information for learning
individuated category representations for cats and dog. Fur-
ther ramifications of this result, in a system without any prior
experiences for faces of any kind, are suggested in the con-
clusion.

Experiment 3: Hierarchical categories
When categories are organized in hierarchies, behavioral and
electrophysiological studies reveal that superordinate cate-
gories are easier to learn (Quinn, 2004 ; Behl-Chadha, 1996 ;
Quinn et al., 2006). We tested this result on images at the su-
perordinate level (CAR vs ANIMAL) and at basic level (CAT vs
DOG). While the model was able to discriminate completely
at the upper level, at the basic level, only 50% of CAT and
80% of DOG images are identified. (Fig. 5.b). This also tallies
with the original results, thus suggesting that this computa-
tional mechanism may be behaving similarly to some aspects

2524



of infant category learning.

Conclusion
In this work we have shown that a computational model, orig-
inally constructed based on the feedforward behaviour of the
primate visual cortex, is able to replicate the infant visual re-
sponse in several scenarios, working directly on image data as
opposed to hand-computed features. This procedure enables
a number of avenues for further testing of many other aspects
of infant (and adult) learning from image data. It also lends
further weight to the early suggestion that this asymmetry is
due to a greater variation in the dogs than in cats.

The primary question we sought to answer is if the S-P
computational model exhibits behaviour similar to infant vi-
sual cognition, given that it was initially modeled on adult
primates, albeit in a feedforward manner. The results of our
experiments appear to lend some support for this position,
qualified by the absence of maturational and other aspects.

Another aspect on which the results may have some slight
bearing is the debate on whether the capability for face recog-
nition is innate. Though there is broad agreement that in-
fants have some degree of face preference at birth, whether
this is genetically encoded or not appears to be a matter of
some debate (Johnson, 2001). The results of experiment 2
demonstrate the effectiveness of the face-only test in a sys-
tem which has absolutely no priors for faces. This suggests
that faces may be recognized early as information rich visual
elements, and hence attended to early on. This would result in
face information being quickly assimilated into cortical struc-
tures. Thus, the experiment appears to indicate some degree
of learnability for face competence.

More than the immediate relevance to these experiments on
CAT-DOG asymmmetry, we feel that the technique presented
here - the first end-to-end computational model to simulate
the visual behaviour of infants - may have broader implica-
tions. The capability for, and mechanisms of object recog-
nition have a fundamental role in behaviour, and constructing
better models for it have not only improved our understanding
of cognition but also empowered a rich line of investigation
in computational vision. Unlike earlier attempts at simulation
where the details of the visual processing had to be approxi-
mated, now the internal mechanisms as posited by this model
can be assessed for its relevance to a wide range of visual de-
velopmental phenomena. Thus although this computational
simulation holds considerable interest per se, the future value
of this work may lie in the possibility of increasingly realistic
simulation of developmental visual phenomena.
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