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Abstract 

Although number words are common in everyday speech, for 
most children, learning these words is an arduous, drawn out 
process. Here we present a formal, computational analysis of 
number learning that suggests that the unhelpful structure of 
the linguistic input available to children may be a large 
contributor to this delay, and that manipulating this structure 
should greatly facilitate learning. A training-experiment with 
three-year olds confirms these predictions, demonstrating that 
significant, rapid gains in numerical understanding and 
competence are possible given appropriately structured 
training.  At the same time, the experiment illustrates how 
little benefit children derive from the usual training that 
parents and educators provide.  Given the efficacy of our 
intervention, the ease with which it can be adopted by parents, 
and the large body of research showing how strongly early 
numerical ability predicts later educational outcomes, this 
simple discovery could have potentially far-reaching import. 
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Introduction 
Given the importance of numeracy to modern society, and 

the tortuous process of number learning experienced by 
many children, improving our understanding of how 
numbers are learned, and devising formal methods for 
improving this process, may produce numerous benefits for 
both individuals and societies.  While number words are 
highly frequent in languages like English, appearing 
regularly in child-directed speech, children’s acquisition of 
them is slow and labored (Wynn, 1992).  Ask a three-year 
old for “3 balls,” and they are likely to give you a handful 
instead, having treated ‘3,’ rather indiscriminately, like 
‘some’ (Wynn, 1990).  This behavior does not stem from an 
inability to recognize differences between set-sizes: even 6-
month-olds are able to discriminate between large set-sizes 
if the ratio is at least 2:1 (Xu, 2003; Xu, Spelke & Goddard, 
2005; Lipton & Spelke, 2004) and this discriminability ratio 
becomes more fine-tuned over time (Wynn, 1998; 
Feigenson, Dahaene & Spelke, 2004; Van de Walle, Carey 
& Prevor, 2000) Children’s difficulties with number are 
thus unlikely to be due to problems with detecting 
differences in quantity (Mix, Huttenlocher & Levin, 2002). 
Yet nor do they stem from an inability to grasp the 
relationship between language and quantity: one- and two-
year-olds grasp that number words relate to quantities 
(Bloom & Wynn, 1997) and are often quite adept at reciting 
the count sequence (Fuson, 1988).  The puzzle, then, is why 
children – who clearly both recognize number words as 
quantity designators and discriminate between set-sizes – go 
through an extended phase where they fail to understand 

how specific words match to specific quantities (Brannon & 
Van de Walle, 2001). 

An ordinary child learning about number certainly will 
not suffer from any lack of exposure to count-relevant 
auditory and visual stimuli: count words and plural-sets are 
everywhere abundant. However, learning to discriminate 
which words match with which sets is not an insignificant 
problem: it involves 1) abstracting representations of 
specific set-sizes from the variable objects that make up any 
particular set, and then 2) mapping those representations on 
to specific number words. Here, we show how tightly 
coupled these processes are in learning (Gelman & Gallistel, 
2004), and how they are effectively impeded by the way 
information is structured in English, and many other 
languages.  We present a formal analysis and series of 
simulations that illustrate the problem and suggest a means 
of correcting it.  In a training experiment, we then put this 
analysis to the test, contrasting the performance gains of 
children after typical number training – in which 
information was presented as usual – with that of children 
after restructured number training – in which the sequencing 
of linguistic information was manipulated to make it more 
conducive to learning and discrimination. The experiment 
reveals that when information is structured appropriately, 3-
year olds rapidly improve their accuracy and consistency on 
not only trained number sets (2,4,6) but also on untrained 
sets (3,5,7).  The improvement of the children following our 
intervention is particularly remarkable given that other 
recent training studies with older children have failed to find 
improvement even for trained numbers (Huang, Spelke & 
Snedecker, 2010) a finding replicated by the children in our 
‘typically structured’ training condition. 

 
Figure 1. An illustration of the challenge presented by number learning: 
there are nine objects: one red ball, two hats, three balls and four bears; 
there are more bears than balls or hats, less hats than balls, and more balls 
and hats than bears. Somehow, a child must discern the cues that 
discriminate between appropriate and inappropriate usage of each word.  
 
Information Structure in Learning 

One problem that a child learning number words must 
overcome is that she will never encounter numerical sets 
independently: she may encounter three apples, or three 
bears, but she will never encounter a “set of three” on its 
own (Wittgenstein, 1953). To further complicate matters, it 
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is virtually impossible to ascertain the meaning of a given 
number word from a single encounter (Fig. 1).  For 
example, for a child faced with two apples and three 
oranges, the cues to the words “2” and “less” and “3” and 
“more” will initially be identical.  This creates a 
discrimination problem: over time, a child must learn to 
discriminate which features appropriately match a given 
word in a given context.  

 In both natural and computational models of learning, 
this kind of discrimination is usually achieved by adjusting 
the degree to which various features in the environment are 
valued in predicting a relationship: highlighting those 
features which are most informative, and downgrading those 
which are not (Rosenblatt, 1959; Rescorla & Wagner, 1972; 
Gallistel, 2003). This suggests that over the course of 
number learning, the value of the features that successfully 
predict number words should increase, while the value of 
those that prompt erroneous expectations should 
correspondingly decrease.  This process will produce 
competition for value between features, enabling the most 
reliable feature(s) to win out.   

Given that in number learning, the best predictor of a 
given number word is set-size, the ‘goal’ of number learning 
is one of homing in on, and valuing, set-size over other 
competing features.  So long as a given set-size – say, three 
– is the most reliable predictor of “3” in the environment, 
this goal will naturally be met as a result of the process of 
competitive reinforcement learning (Rosenblatt, 1959; 
Rescorla & Wagner, 1972; Gallistel, 2003), which will 
allow a child to discover and form a strong association 
between set-size three and the word “3,” while 
simultaneously weakening any spurious associations to “3”.  
With the correct association in place (and with ever-
reducing interference from competitors), a child will then be 
able to accurately use and comprehend “three” (Fig. 2). 

 
Figure 2.   Here, we illustrate how the number three is learned over time. 
Learning is facilitated both by positive evidence (hearing the word “3” after 
seeing sets of three) and negative evidence (not hearing “3” when it is 
expected).  Initially, several cues potentially predict “3,” including 
uninformative features like round and red (Left Panel). However, these 
uninformative features will later erroneously cause “3” to be expected 
(Center). Because these unhelpful cues will result in prediction-error 
when, e.g., “2” is heard instead, they will lose value as cues to “3,” both in 
this instance, and in any other cases where they erroneously predict “3.”  
Further, because discrimination learning is competitive, they will lose 
associative value to more reliably informative cues.  As set-size three 
continues to accrue positive evidence (Right), it will steadily gain value 
with respect to the initial set of cues.  Provided that the relationship 
between the labels and the set-sizes is reliable, set-size three will eventually 
be learned as the meaning of “3” (see Ramscar et al., 2010). 

However, given that this kind of learning is driven by 
prediction, the temporal structure of information will play a 
critical role in whether or not competitive learning actually 
occurs. Indeed, the effects of competitive learning can be 
isolated by comparing learning when complex (multi-
feature) stimuli predict a series of discrete classes, to the 
inverse process (Ramscar et al., 2010). As Figure 2 shows, 
learning to predict a discrete Label – such as “2” or “3” – 
from a complex set of Features (FL-learning) allows for 
competitive learning amongst features, causing value to 
shift from features that produce more error to those that 
produce less. However, when this arrangement is temporally 
reversed, and the process becomes one of learning to predict 
a complex set of Features from a discrete Label (LF-
learning), competition between cues cannot occur, since the 
label is the only cue present (value cannot transfer to other 
cues when there are none).  Although these two processes 
appear similar, the differences in their temporal sequencing 
result in their having markedly different information 
structures, which produce very different patterns of learning 
(Ramscar et al., 2010). Color, another aspect of vocabulary 
that children master only after a noticeable delay (Darwin, 
1877), offers an apt illustration of this. 

Children’s pattern of delay in learning colors words bears 
a striking resemblance to the pattern observed in number 
learning.  Although color words appear in children’s 
vocabularies from a very young age, sighted children’s early 
use of them is comparable to that of blind children: i.e., they 
can produce them in familiar contexts (“yellow banana”), 
but cannot pick out novel objects by color, or reliably apply 
color words in unfamiliar contexts (Landau & Gleitman, 
1985).  Here again, children do not appear to grasp how 
specific words match to specific hues.  Colors and numbers 
share several notable characteristics that may help explain 
the common pattern.  First, like numbers, colors are 
properties of the environment, and cannot be encountered 
independently. Second, as with set-sizes, many different 
shades of color are present in any given context (Fig. 1). 
This means that in order to learn to map colors to their 
labels, a child must somehow discriminate the range of hues 
that best predict a specific color label from an environment 
in which color is ubiquitous (Ramscar et al., 2010).  
Fortunately, the difficulty of this problem can be 
significantly reduced if a child is encouraged to localize 
mappings – e.g., by seeking to extract color matches from 
known objects.  This situation will allow the environment to 
be sampled in way that is far more informative (Landau & 
Gleitman, 1985).  (Unfortunately, the structure of many 
languages proves largely unhelpful to learners in this regard; 
Ramscar et al., 2010). 

To understand why, consider a child learning about the 
relationship between the features of a ball and various color 
labels, as depicted in Fig. 3. There are two possible ways 
this process can be structured temporally: either the various 
Features of the ball can predict the color Label (Feature-to-
Label-learning) or the color Label can predict the ball’s 
Features (Label-to-Feature learning; Ramscar et al., 2010). 
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Critically, the results of learning from these information 
structures differs markedly, which has important 
consequences for other sequential processes, such as 
language (Ramscar et al., 2010; Ramscar, Yarlett & Dye, 
2009).  
 

 
 

Figure 3. Learning can be dramatically affected by how information is 
presented to a learner in time (Elman, 1990; Ramscar et al., 2010). In this 
scenario, a child learns about the relationship between the features of a ball 
and various color labels. There are two ways this process can be structured 
temporally: either the child hears the color word used postnominally, which 
promotes FL-learning (the Features of the ball predict the color Label), or 
the child hears the color word used prenominally, which promotes LF-
learning (the color Label predicts the ball’s Features; Ramscar et al., 2010).  
Prior research on color learning indicates that only postnominal (FL) usage 
facilitates accurate category learning, whereas prenominal (LF) usage does 
not. Unfortunately, color words occur prenominally around 70% of the 
time in English (e.g., “the red ball;”), which may help explain English-
speaking children’s typically delayed pattern of acquisition (Rice, 1980). 
 

Because children track events in their environment as 
speech unfolds (Tanenhaus et al., 1995; Kamide et al., 2003; 
Dahan & Tanenhaus, 2005; Fernald et al., 2006), the 
sequencing in an English sentence employing a postnominal 
construction (“Look! The ball is blue,”) will present the 
feature information a child needs for color-label 
discrimination prior to the label that needs to be learned 
about. If the child has already learned “ball,” her attention 
will be drawn to the ball before the word “blue” is heard. 
This means that postnominal constructions will typically 
result in FL-learning.  However, this will not hold true for a 
prenominal construction (“Look at the blue ball”), where the 
label to be learned is heard prior to the known label.   In this 
case, LF-learning will result. 

The outcome of these two processes differs dramatically.  
In FL-learning, all of the features of the ball will be 
highlighted as potential cues to “blue,” and with experience, 
the unreliable features (such as shape, size and texture) will 
lose value to the most reliable feature (color). Over time, 
and learning trials, this will result in representations in 
which features are valued relative to their informativity – 
that is, how well they predict the relevant label, given both 
positive and negative evidence.  This will allow a child to 
learn the meanings of each of the color labels perfectly.  By 
contrast, in LF-learning, there is no opportunity for 
competitive learning amongst features, and as a 
consequence, the child will develop a simple, probabilistic 

representation of the relationship between the label and 
object features, which captures co-occurrence information 
rather than informativity.  This representation will impair 
category discrimination, since the overlapping, unreliable 
features will never fully be ‘unlearned’ (for a review, see 
Ramscar et al., 2010).  Consistent with this, a prior study 
found that training with postnominal constructions 
significantly improved the accuracy and consistency of two-
year olds’ color word application, whereas a similar 
schedule of prenominal training had no effect on 
performance at all (Ramscar et al., 2010).   

This raises the question of whether information structure 
plays a similar role in the acquisition of number words. 
Number words in English – and many other languages – are 
far more likely to occur in a prenominal position (e.g., 
“those three chairs”), than in a postnominal position (e.g., 
“those chairs, all three of them”). If our analysis is correct, 
hearing a number word postnominally should facilitate 
competitive discrimination learning, as the child 
discriminates what it is about, say, ‘those chairs,’ that 
predicts the word ‘three.’  However, so long as number 
words occur prenominally, the child will have no way of 
isolating the semantic cues (set-sizes) that best match 
number words. 
 

Simulating Number Learning 
To formally illustrate the problems involved in 

learning number, we conducted three sets of simulations. 
The first simulated the effects of prenominal and 
postnominal presentation on number learning; the second 
examined the effects that the peculiar information structure 
of number sets has on number learning; and the third 
integrated these factors, to examine predicted learning 
outcomes.   

The effects of learning were simulated using the Rescorla-
Wagner model (1972), a widely used learning rule that has 
been applied to numerous learning effects in animals and 
humans, and for which there is strong neurobiological 
evidence (Waelti, Dickinson & Schultz, 2001; Schultz, 
2006; Niv & Schoenbaum, 2008).  While it cannot account 
for all the phenomena observed in associative learning, the 
model provides an accessible formalization of the basic 
principles of error-driven learning, and is sufficiently 
detailed to allow a straightforward testing of the analysis we 
present here.  

Simulation 1 modeled the learning of the association of 
sets of 2, 4 and 6 objects (with color, shape and size 
dimensions) with the labels “2,” “4” & “6.”  Two 
simulations were implemented, one in which the sets and 
object features served as cues to the number labels (Feature-
to-Label, FL), and one in which the number labels served as 
cues to the sets of objects and their features (Label-to-
Feature, LF).  Figure 4 illustrates why learning where object 
Features predict Labels (FL-learning) should result in far 
better learning of number words than when Labels predict 
Features (LF-learning).  
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Figure 4. Simulations of number learning in which object Features predict Labels (FL-learning; left panel), and in which Labels predict Features (LF-
learning; right panel). The models learned to associate sets of two, four and six objects to the labels “2,” “4” and “6.”  In addition to number, each object set 
had size, shape and color cues that competed as cues with set-size as predictors of number words.  These graphs depict the value of mappings between the 
object features, set-sizes and the label “6” learned in each simulation. As can be seen, FL-learning resulted in considerably greater discrimination of the 
appropriate cue-label mapping (set-size six to “6”) than LF-learning, where competing activations continued to cause interference. 
 

In Simulation 1, all set-sizes and numbers were 
experienced with equal frequency. However, it is unlikely 
that this is the case in real life. To get an estimate of the 
distribution of different set-sizes children might actually be 
expected to encounter and learn from, we examined the 
spoken distribution of number words in two languages 
(English and Spanish), taking frequency of mention as an 
index of the relevance of various set-sizes in children’s 
lives.  Both languages revealed the same distributional 
pattern, with the rank frequency of number words 
decreasing by quantity, following an inverse power function 
(Benford, 1938): “one” was the most frequent number word, 
followed by “two,” “three,” and so on (Fig. 5).  This means 
the larger the set, the less frequently it is experienced. 

At the same time, cue-competition should increase 
steadily with set-size: while the cue to set-size one is present 
in every set, the cues to “two” are only in every set greater 
than one, the cues to “three” are only in every set greater 
than two, and so on. Greater cue competition will demand a 
greater error signal to successfully resolve itself.  However, 
since the extra competitors to larger sets will themselves be 
ever larger and less-frequent, larger sets will generate less 
and less of the error that makes discrimination learning 
possible.  This means that confusability – and error – are 

unequally distributed in number sets, and leads to a 
intriguing situation with regards learning: as set size 
increases, the problem of discrimination gets successively 
harder, requiring increasing amounts of information to 
facilitate learning, just as the information available to the 
learner is shrinking. 

To examine how the distribution of error in different sets 
might interact with the environmental relevance of different 
set-sizes, Simulation 2 was trained on sets in proportion to 
their spoken frequency. Specifically, the simulation 
modeled how the features of sets of 1-7 objects were 
associated with the labels 1 to 7.  The simulation assumed 
that learners can discriminate objects from one another, and 
can contextually discriminate objects that are part of larger 
sets from objects that are not part of a larger set (i.e., that a 
learner can use context to discriminate a person standing 
alone from the same person standing with someone else).  
These elementary assumptions were reflected in the cue 
structure available for learning. 

As Figure 6 illustrates, while learning to discriminate 
sets 1, 2 and then 3 and 4 was relatively straightforward, 
discriminating sets 5 and 6 required markedly more training, 
and discrimination of set size 7 remained poor, even after 
hundreds of training trials. 

 
 
Figures 5 (Left Panel).  The proportional frequency with which the numbers 1-7 are used to describe nouns in spoken English and Spanish (r=.999) 
(Davies, 2009; 2010). The distribution of number words by size and frequency follows an inverse power function: “one” is the most frequent number word, 
followed by “two,” “three,” etc. In the simulations, frequency of mention (the frequency of number word – noun sequences in a corpus) was used to estimate 
the relevance of different set-sizes in a learner’s environment. 
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Figure 6 (Middle Panel). Learning to discriminate between set-sizes 1-7 after training on sets 1 - 20 according to their spoken frequency in English and 
Spanish (Davies, 2009; 2010). Sets 1-4 are discriminated straightforwardly, 5 and 6 require markedly more training, and 7 is discriminated only very slowly. 
 
Figure 7 (Right Panel) . An illustration of how learning set-size could be impacted by training. In this simulation, training reflected the usual distribution of 
set sizes as suggested by English spoken frequency (Davies, 2009) for 110 trials, after which training either continued to reflect this distribution (the dashed 
lines represent the average of 5 such simulations) or else simulated exposure to six groups of 2, 4 or 6 objects learned FL (solid lines). The model trained on 
2, 4 and 6 showed a marked improvement in its discrimination of 5 (solid green) and 7 (solid orange) despite not being trained on those items (Ramscar et al. 
2010).  This change was a result of the increase in the amount of error generated by 4 and 6, which in turn acted to increase the discriminability of 5 and 7.

 
The pattern of learning this produces appears to conform 

neither to the incremental nature of number sets, nor to 
Weber’s law, which states that fixed levels of discrimination 
should occur between proportional set-sizes (i.e., 1:2 and 
5:10 should be equally discriminable). Given that the input 
to this simulation comprised straightforward assumptions 
about the representation of sets and the environment in 
which they are learned, this result is striking. There has been 
much debate in the number literature over whether the 
differences in the way that smaller and larger sets are 
processed is evidence for a specific, capacity-limited system 
for representing small sets (Revkin et al., 2008), or whether 
the representation of smaller and larger sets is continuous 
(Cordes et al., 2001).This simulation reveals how, once the 
environment and the representational requirements of sets 
are taken into consideration, a continuous system for 
learning, representing and discriminating set-sizes can give 
rise to effective discontinuities in processing.   This finding 
suggests one way in which these opposing perspectives 
might be formally reconciled, while leaving open the 
question of whether these differences are purely the result of 
learning (Cordes et al., 2001), or whether these constraints 
may begin to account for why the discrimination of smaller 
sets is hard-wired (Revkin et al., 2008). 

Finally, Simulation 3 extended Simulation 1 by adding 
representations of size and shape to the sets of objects, as 
competing cues. Like Simulation 2, however, this 
simulation examined the effect that FL-training would have 
on a model previously trained on a more ‘natural’ 
distribution of sets: i.e., that observed in English and 
Spanish.  The simulation was trained for 110 trials on the 
usual distribution with which numerical terms are related to 
sets in spoken English and Spanish (i.e.,the frequency with 
which number words are used to describe sets of nouns in 
each language) and then for 18 trials on a repeated pattern of 
sets of 2, 4 and 6 objects, to replicate the FL-training blocks 
of the three-year olds in our experiment. Figure 7 shows 
how six FL-training blocks of even sets (2,4,6) actually 
improved discrimination of untrained, odd sets (5,7).  (This 
is a natural consequence of error-driven learning, see 
Ramscar et al., 2010 for a review). 

As part of Simulation 3, we also ran five further 
simulations in which the last 18 trials were trained on the 
usual distribution of numerical terms in spoken English, and 
an average of the associative strengths learned between the 
cues and labels in these trials was taken for the purposes of 
comparing learning under “normal conditions” with the 
training simulation (see broken lines, in Fig. 7). 

 
 

Training Experiment 
We have described how a child might learn number 

words. The question is, do children learn in this way? Can 
manipulating the typical information structure of words in 
English – by teaching numbers in postnominal contexts – 
improve children’s understanding of number? 

  
Participants  

Participants were 56 typically developing, monolingual 
English learners from 30 to 40 months old (M = 35.7 
months, 30 females, 26 males) recruited from the Stanford 
area. Testing was conducted by an experimenter blind to the 
hypotheses. 

 
Procedure and design  

To test our predictions, we asked 56 children, aged 30 to 
40 months, to identify twelve sets of objects on the basis of 
the numerosity. This established a baseline of competence 
for the numbers 2 through 7.  Half of the pre-test questions 
were phrased pre-nominally (“Look!  Can you show me four 
hearts?”), and half postnominally (“Look!  Hearts.  Can you 
show me four?”).  

Children were then randomly assigned to two training 
groups. In both conditions, children learned about the 
numbers 2, 4 and 6, with six familiar objects, which differed 
both in type and arrangement of presentation from those 
used in testing.  The sets and labels employed in training 
were identical across conditions, with the critical distinction 
that the order of presentation was reversed. In the Feature-
to-Label (FL) condition, a picture of the object set was 
shown first, and then the label was provided after the picture 
was shown (“What can you see?  Balls. There are two”).  By 
contrast, in the Label-to-Feature (LF) condition, the 
experimenter stated the number while the children looked at 
a blank page (“What can you see?  There are two balls”), 
and immediately flipped to a picture depicting the object set 
as it was named.  Thus, in the FL condition, children saw 
the object set and then heard the number label presented 
postnominally, while in the LF condition, children heard the 
number label presented prenominally, then saw the object 
set.  

Children in each condition were then given a post-test 
identical to the pre-test. 
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       a)                                      b)                   c) 

 
Figure 8. Performance in the identical pre-and post training-tests in the two groups of children (a) and average change in performance between the pre-and 
post-tests in the two groups (b). Graph (c) shows performance in the trained (even) and untrained (odd) pre-and post training-tests in the FL-trained children 
Because the untrained numbers were always tested together—separately from the trained numbers—the improvement on these items cannot be a result of 
children’s improved performance on the trained items. (Error bars are SEM). 
 

Results 
Children’s performance in these tests overwhelmingly 

supported our predictions about how the structure of 
information in training would affect children’s ability to 
appropriately match set-sizes to their corresponding 
numerical labels. While there were no significant 
differences between the groups on pre-test performance 
(FL-trained M=47% correct; LF-trained (M=48% correct), 
the FL-trained children showed a marked improvement in 
the post-test (M=56%), whereas the LF-trained children 
(M=46%) did not (Figure 8a). 

A 2 (item type: trained or untrained) x 2 (test type: pre 
versus post test) repeated measures ANOVA of children’s 
performance (with training type—FL versus LF—as a 
between subjects measure) revealed that while overall 
performance had increased (there was a marginal effect of 
test type, F(1,54)=3.399, p=0.07), there were significant 
interactions between testing type and training-type 
(F(1,54)=5.751, p<0.02) and training-type and item type 
(F(1,54)=4.44, p<0.04), supporting the idea that FL-training 
was responsible for this improvement. 

Planned tests revealed both that the FL-children’s overall 
improvement in performance was significant (paired 
t(27)=3.757, p<0.001), and that this was true both on tests of 
the trained even numbers (pre-test M= 55%; post-test 
M=65%; t(27)=2.447, p<0.025) and the untrained odd 
numbers (pre-test M= 39%; post-test M=47%; t(27)=2.555, 
p<0.01); see Fig. 8c. LF-trained children’s performance 
showed no change on either the trained (even) or untrained 
(odd) number tests (all tests p>.3).  Overall, the FL-trained 
children performed 30% better on the post-test than the pre-
test, whereas the change in the LF trained children was just 
4% (unpaired t(54)=2.242, p<0.05); see Fig. 8b. 

The different effects of training were further underlined 
by analyses of the consistency of the children’s responses: 
First, the rate at which the LF-trained children provided 
consistent responses to tests of the same set-label mapping 
in the post-test (M=27%) was unchanged from the pre-test 
(M=28%), whereas the FL-trained children’s post-test 
consistency again improved considerably (pre-test  

consistency M=30%, post-test M=38%), t(27)=1.948, 
p<0.05) (see Fig 8c); Second, FL-trained children’s average 
performance improved across all of the items (t(6)=2.824, 
p<0.05), whereas the LF-trained children’s average 
improved only for 3 and 6, and actually decreased slightly 
for 2, 4, 5 and 7 (this effect was not significant, p>.4). 

 
Discussion 

These data reveal that children as young as 2 ½ have 
begun to acquire an understanding of number words, and 
that this can be given a boost when the information structure 
in training supports competitive discrimination learning.  
FL-trained children, who saw the sets of objects before 
hearing labels presented postnominally, were significantly 
better both in terms of the accuracy and consistency of their 
reponses, both as compared to baseline measures, and in 
terms of their performance gains over LF-trained children.  
The performance of our FL-subjects was particularly 
remarkable given that longitudinal studies of 2 and 3-year-
olds have demonstrated that improvements of this 
magnitude usually take place over months (Wynn, 1992), 
and not, as in our experiment, over half an hour.  

Consistently using postnominal phrasing in child-directed 
speech, and introducing the object set (visually) before 
labeling it, may dramatically shorten the time-course of 
number word acquisition. Since a growing body of research 
suggests that understanding counting is predicated on a 
basic understanding of number (Wynn, 1990; Fuson, 1988; 
Branon & Van de Walle, 2001) and that mastery of this kind 
of numerical aptitude at a young age dictates later learning 
outcomes (Booth & Sigler, 2008; Jordan et al., 2010; 
Clements & Sarama, 2007) employing such an intervention 
may have a long lasting impact on children’s mathematical 
aptitude and advancement.  
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