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Abstract

Although number words are common in everyday speech, for
most children, learning these words is an arduous, drawn out
process. Here we present a formal, computational analysis of
number learning that suggests that the unhelpful structure of
the linguistic input available to children may be a large
contributor to this delay, and that manipulating this structure
should greatly facilitate learning. A training-experiment with
three-year olds confirms these predictions, demonstrating that
significant, rapid gains in numerical understanding and
competence are possible given appropriately structured
training. At the same time, the experiment illustrates how
little benefit children derive from the usual training that
parents and educators provide. Given the efficacy of our
intervention, the ease with which it can be adopted by parents,
and the large body of research showing how strongly early
numerical ability predicts later educational outcomes, this
simple discovery could have potentially far-reaching import.
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Introduction

Given the importance of numeracy to modern society, and
the tortuous process of number learning experienced by
many children, improving our understanding of how
numbers are learned, and devising formal methods for
improving this process, may produce numerous benefits for
both individuals and societies. While number words are
highly frequent in languages like English, appearing
regularly in child-directed speech, children’s acquisition of
them is slow and labored (Wynn, 1992). Ask a three-year
old for “3 balls,” and they are likely to give you a handful
instead, having treated ‘3,” rather indiscriminately, like
‘some’ (Wynn, 1990). This behavior does not stem from an
inability to recognize differences between set-sizes: even 6-
month-olds are able to discriminate between large set-sizes
if the ratio is at least 2:1 (Xu, 2003; Xu, Spelke & Goddard,
2005; Lipton & Spelke, 2004) and this discriminability ratio
becomes more fine-tuned over time (Wynn, 1998;
Feigenson, Dahaene & Spelke, 2004; Van de Walle, Carey
& Prevor, 2000) Children’s difficulties with number are
thus unlikely to be due to problems with detecting
differences in quantity (Mix, Huttenlocher & Levin, 2002).
Yet nor do they stem from an inability to grasp the
relationship between language and quantity: one- and two-
year-olds grasp that number words relate to quantities
(Bloom & Wynn, 1997) and are often quite adept at reciting
the count sequence (Fuson, 1988). The puzzle, then, is why
children — who clearly both recognize number words as
quantity designators and discriminate between set-sizes — go
through an extended phase where they fail to understand

how specific words match to specific quantities (Brannon &
Van de Walle, 2001).

An ordinary child learning about number certainly will
not suffer from any lack of exposure to count-relevant
auditory and visual stimuli: count words and plural-sets are
everywhere abundant. However, learning to discriminate
which words match with which sets is not an insignificant
problem: it involves 1) abstracting representations of
specific set-sizes from the variable objects that make up any
particular set, and then 2) mapping those representations on
to specific number words. Here, we show how tightly
coupled these processes are in learning (Gelman & Gallistel,
2004), and how they are effectively impeded by the way
information is structured in English, and many other
languages. We present a formal analysis and series of
simulations that illustrate the problem and suggest a means
of correcting it. In a training experiment, we then put this
analysis to the test, contrasting the performance gains of
children after typical number training — in which
information was presented as usual — with that of children
after restructured number training — in which the sequencing
of linguistic information was manipulated to make it more
conducive to learning and discrimination. The experiment
reveals that when information is structured appropriately, 3-
year olds rapidly improve their accuracy and consistency on
not only trained number sets (2,4,6) but also on untrained
sets (3,5,7). The improvement of the children following our
intervention is particularly remarkable given that other
recent training studies with older children have failed to find
improvement even for trained numbers (Huang, Spelke &
Snedecker, 2010) a finding replicated by the children in our
‘typically structured’ training condition.

W P
T

Figure 1. An illustration of the challenge presented by number learning:
there are nine objects: one red ball, two hats, three balls and four bears;
there are more bears than balls or hats, less hats than balls, and more balls
and hats than bears. Somehow, a child must discern the cues that
discriminate between appropriate and inappropriate usage of each word.

Information Structure in Learning

One problem that a child learning number words must
overcome is that she will never encounter numerical sets
independently: she may encounter three apples, or three
bears, but she will never encounter a “set of three” on its
own (Wittgenstein, 1953). To further complicate matters, it
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is virtually impossible to ascertain the meaning of a given
number word from a single encounter (Fig. 1). For
example, for a child faced with two apples and three
oranges, the cues to the words “2” and “less” and “3” and
“more” will initially be identical. This creates a
discrimination problem: over time, a child must learn to
discriminate which features appropriately match a given
word in a given context.

In both natural and computational models of learning,
this kind of discrimination is usually achieved by adjusting
the degree to which various features in the environment are
valued in predicting a relationship: highlighting those
features which are most informative, and downgrading those
which are not (Rosenblatt, 1959; Rescorla & Wagner, 1972;
Gallistel, 2003). This suggests that over the course of
number learning, the value of the features that successfully
predict number words should increase, while the value of
those that prompt erroneous expectations should
correspondingly decrease.  This process will produce
competition for value between features, enabling the most
reliable feature(s) to win out.

Given that in number learning, the best predictor of a
given number word is set-size, the ‘goal’ of number learning
is one of homing in on, and valuing, set-size over other
competing features. So long as a given set-size — say, three
— is the most reliable predictor of “3” in the environment,
this goal will naturally be met as a result of the process of
competitive reinforcement learning (Rosenblatt, 1959;
Rescorla & Wagner, 1972; Gallistel, 2003), which will
allow a child to discover and form a strong association
between set-size three and the word “3,” while
simultaneously weakening any spurious associations to “3”.
With the correct association in place (and with ever-
reducing interference from competitors), a child will then be
able to accurately use and comprehend “three” (Fig. 2).

Figure 2. Here, we illustrate how the number t/iree is learned over time.
Learning is facilitated both by positive evidence (hearing the word “3” after
seeing sets of three) and negative evidence (not hearing “3” when it is
expected). Initially, several cues potentially predict “3,” including
uninformative features like round and red (Left Panel). However, these
uninformative features will later erroneously cause “3” to be expected
(Center). Because these unhelpful cues will result in prediction-error
when, e.g., “2” is heard instead, they will lose value as cues to “3,” both in
this instance, and in any other cases where they erroneously predict “3.”
Further, because discrimination learning is competitive, they will lose
associative value to more reliably informative cues. As set-size three
continues to accrue positive evidence (Right), it will steadily gain value
with respect to the initial set of cues. Provided that the relationship
between the labels and the set-sizes is reliable, set-size three will eventually
be learned as the meaning of “3” (see Ramscar et al., 2010).

However, given that this kind of learning is driven by
prediction, the temporal structure of information will play a
critical role in whether or not competitive learning actually
occurs. Indeed, the effects of competitive learning can be
isolated by comparing learning when complex (multi-
feature) stimuli predict a series of discrete classes, to the
inverse process (Ramscar et al., 2010). As Figure 2 shows,
learning to predict a discrete Label — such as “2” or “3” —
from a complex set of Features (FL-learning) allows for
competitive learning amongst features, causing value to
shift from features that produce more error to those that
produce less. However, when this arrangement is temporally
reversed, and the process becomes one of learning to predict
a complex set of Features from a discrete Label (LF-
learning), competition between cues cannot occur, since the
label is the only cue present (value cannot transfer to other
cues when there are none). Although these two processes
appear similar, the differences in their temporal sequencing
result in their having markedly different information
structures, which produce very different patterns of learning
(Ramscar et al., 2010). Color, another aspect of vocabulary
that children master only after a noticeable delay (Darwin,
1877), offers an apt illustration of this.

Children’s pattern of delay in learning colors words bears
a striking resemblance to the pattern observed in number
learning.  Although color words appear in children’s
vocabularies from a very young age, sighted children’s early
use of them is comparable to that of blind children: i.e., they
can produce them in familiar contexts (“yellow banana”),
but cannot pick out novel objects by color, or reliably apply
color words in unfamiliar contexts (Landau & Gleitman,
1985). Here again, children do not appear to grasp how
specific words match to specific hues. Colors and numbers
share several notable characteristics that may help explain
the common pattern.  First, like numbers, colors are
properties of the environment, and cannot be encountered
independently. Second, as with set-sizes, many different
shades of color are present in any given context (Fig. 1).
This means that in order to learn to map colors to their
labels, a child must somehow discriminate the range of hues
that best predict a specific color label from an environment
in which color is ubiquitous (Ramscar et al., 2010).
Fortunately, the difficulty of this problem can be
significantly reduced if a child is encouraged to localize
mappings — e.g., by seeking to extract color matches from
known objects. This situation will allow the environment to
be sampled in way that is far more informative (Landau &
Gleitman, 1985). (Unfortunately, the structure of many
languages proves largely unhelpful to learners in this regard;
Ramscar et al., 2010).

To understand why, consider a child learning about the
relationship between the features of a ball and various color
labels, as depicted in Fig. 3. There are two possible ways
this process can be structured temporally: either the various
Features of the ball can predict the color Label (Feature-to-
Label-learning) or the color Label can predict the ball’s
Features (Label-to-Feature learning; Ramscar et al., 2010).
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Critically, the results of learning from these information
structures  differs markedly, which has important
consequences for other sequential processes, such as
language (Ramscar et al., 2010; Ramscar, Yarlett & Dye,

2009).
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Figure 3. Learning can be dramatically affected by how information is
presented to a learner in time (Elman, 1990; Ramscar et al., 2010). In this
scenario, a child learns about the relationship between the features of a ball
and various color labels. There are two ways this process can be structured
temporally: either the child hears the color word used postnominally, which
promotes FL-learning (the Features of the ball predict the color Label), or
the child hears the color word used prenominally, which promotes LF-
learning (the color Label predicts the ball’s Features; Ramscar et al., 2010).
Prior research on color learning indicates that only postnominal (FL) usage
facilitates accurate category learning, whereas prenominal (LF) usage does
not. Unfortunately, color words occur prenominally around 70% of the
time in English (e.g., “the red ball;”), which may help explain English-
speaking children’s typically delayed pattern of acquisition (Rice, 1980).

Because children track events in their environment as
speech unfolds (Tanenhaus et al., 1995; Kamide et al., 2003;
Dahan & Tanenhaus, 2005; Fernald et al.,, 2006), the
sequencing in an English sentence employing a postnominal
construction (“Look! The ball is blue,”) will present the
feature information a child needs for color-label
discrimination prior to the label that needs to be learned
about. If the child has already learned “ball,” her attention
will be drawn to the ball before the word “blue” is heard.
This means that postnominal constructions will typically
result in FL-learning. However, this will not hold true for a
prenominal construction (“Look at the blue ball”), where the
label to be learned is heard prior to the known label. In this
case, LF-learning will result.

The outcome of these two processes differs dramatically.
In FL-learning, all of the features of the ball will be
highlighted as potential cues to “blue,” and with experience,
the unreliable features (such as shape, size and texture) will
lose value to the most reliable feature (color). Over time,
and learning trials, this will result in representations in
which features are valued relative to their informativity —
that is, how well they predict the relevant label, given both
positive and negative evidence. This will allow a child to
learn the meanings of each of the color labels perfectly. By
contrast, in LF-learning, there is no opportunity for
competitive learning amongst features, and as a
consequence, the child will develop a simple, probabilistic

representation of the relationship between the label and
object features, which captures co-occurrence information
rather than informativity. This representation will impair
category discrimination, since the overlapping, unreliable
features will never fully be ‘unlearned’ (for a review, see
Ramscar et al., 2010). Consistent with this, a prior study
found that training with postnominal constructions
significantly improved the accuracy and consistency of two-
year olds’ color word application, whereas a similar
schedule of prenominal training had no effect on
performance at all (Ramscar et al., 2010).

This raises the question of whether information structure
plays a similar role in the acquisition of number words.
Number words in English — and many other languages — are
far more likely to occur in a prenominal position (e.g.,
“those three chairs™), than in a postnominal position (e.g.,
“those chairs, all three of them”). If our analysis is correct,
hearing a number word postnominally should facilitate
competitive  discrimination learning, as the child
discriminates what it is about, say, ‘those chairs,” that
predicts the word ‘three.” However, so long as number
words occur prenominally, the child will have no way of
isolating the semantic cues (set-sizes) that best match
number words.

Simulating Number Learning

To formally illustrate the problems involved in
learning number, we conducted three sets of simulations.
The first simulated the effects of prenominal and
postnominal presentation on number learning; the second
examined the effects that the peculiar information structure
of number sets has on number learning; and the third
integrated these factors, to examine predicted learning
outcomes.

The effects of learning were simulated using the Rescorla-
Wagner model (1972), a widely used learning rule that has
been applied to numerous learning effects in animals and
humans, and for which there is strong neurobiological
evidence (Waelti, Dickinson & Schultz, 2001; Schultz,
2006; Niv & Schoenbaum, 2008). While it cannot account
for all the phenomena observed in associative learning, the
model provides an accessible formalization of the basic
principles of error-driven learning, and is sufficiently
detailed to allow a straightforward testing of the analysis we
present here.

Simulation 1 modeled the learning of the association of
sets of 2, 4 and 6 objects (with color, shape and size
dimensions) with the labels “2,” “4” & “6.” Two
simulations were implemented, one in which the sets and
object features served as cues to the number labels (Feature-
to-Label, FL), and one in which the number labels served as
cues to the sets of objects and their features (Label-to-
Feature, LF). Figure 4 illustrates why learning where object
Features predict Labels (FL-learning) should result in far
better learning of number words than when Labels predict
Features (LF-learning).

2516



color
——shape

size

set size 2
——set size 4

set size 6

Associative Value
«
S

20
. W

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91

Associative Value

color
shape
size

set size 2
——set size 4

set size 6

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91

Figure 4. Simulations of number learning in which object Features predict Labels (FL-learning; left panel), and in which Labels predict Features (LF-
learning; right panel). The models learned to associate sets of two, four and six objects to the labels “2,” “4” and “6.” In addition to number, each object set
had size, shape and color cues that competed as cues with set-size as predictors of number words. These graphs depict the value of mappings between the
object features, set-sizes and the label “6” learned in each simulation. As can be seen, FL-learning resulted in considerably greater discrimination of the
appropriate cue-label mapping (set-size six to “6”) than LF-learning, where competing activations continued to cause interference.

In Simulation 1, all set-sizes and numbers were
experienced with equal frequency. However, it is unlikely
that this is the case in real life. To get an estimate of the
distribution of different set-sizes children might actually be
expected to encounter and learn from, we examined the
spoken distribution of number words in two languages
(English and Spanish), taking frequency of mention as an
index of the relevance of various set-sizes in children’s
lives. Both languages revealed the same distributional
pattern, with the rank frequency of number words
decreasing by quantity, following an inverse power function
(Benford, 1938): “one” was the most frequent number word,
followed by “two,” “three,” and so on (Fig. 5). This means
the larger the set, the less frequently it is experienced.

At the same time, cue-competition should increase
steadily with set-size: while the cue to set-size one is present
in every set, the cues to “two” are only in every set greater
than one, the cues to “three” are only in every set greater
than two, and so on. Greater cue competition will demand a
greater error signal to successfully resolve itself. However,
since the extra competitors to larger sets will themselves be
ever larger and less-frequent, larger sets will generate less
and less of the error that makes discrimination learning

unequally distributed in number sets, and leads to a
intriguing situation with regards learning: as set size
increases, the problem of discrimination gets successively
harder, requiring increasing amounts of information to
facilitate learning, just as the information available to the
learner is shrinking.

To examine how the distribution of error in different sets
might interact with the environmental relevance of different
set-sizes, Simulation 2 was trained on sets in proportion to
their spoken frequency. Specifically, the simulation
modeled how the features of sets of 1-7 objects were
associated with the labels 1 to 7. The simulation assumed
that learners can discriminate objects from one another, and
can contextually discriminate objects that are part of larger
sets from objects that are not part of a larger set (i.e., that a
learner can use context to discriminate a person standing
alone from the same person standing with someone else).
These elementary assumptions were reflected in the cue
structure available for learning.

As Figure 6 illustrates, while learning to discriminate
sets 1, 2 and then 3 and 4 was relatively straightforward,
discriminating sets 5 and 6 required markedly more training,
and discrimination of set size 7 remained poor, even after
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Figures 5 (Left Panel). The proportional frequency with which the numbers 1-7 are used to describe nouns in spoken English and Spanish (r=.999)
(Davies, 2009; 2010). The distribution of number words by size and frequency follows an inverse power function: “one” is the most frequent number word,
followed by “two,” “three,” etc. In the simulations, frequency of mention (the frequency of number word — noun sequences in a corpus) was used to estimate
the relevance of different set-sizes in a learner’s environment.
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Figure 6 (Middle Panel). Learning to discriminate between set-sizes 1-7 after training on sets 1 - 20 according to their spoken frequency in English and
Spanish (Davies, 2009; 2010). Sets 1-4 are discriminated straightforwardly, 5 and 6 require markedly more training, and 7 is discriminated only very slowly.

Figure 7 (Right Panel) . An illustration of how learning set-size could be impacted by training. In this simulation, training reflected the usual distribution of
set sizes as suggested by English spoken frequency (Davies, 2009) for 110 trials, after which training either continued to reflect this distribution (the dashed
lines represent the average of 5 such simulations) or else simulated exposure to six groups of 2, 4 or 6 objects learned FL (solid lines). The model trained on
2, 4 and 6 showed a marked improvement in its discrimination of 5 (solid green) and 7 (solid orange) despite not being trained on those items (Ramscar et al.
2010). This change was a result of the increase in the amount of error generated by 4 and 6, which in turn acted to increase the discriminability of 5 and 7.

The pattern of learning this produces appears to conform
neither to the incremental nature of number sets, nor to
Weber’s law, which states that fixed levels of discrimination
should occur between proportional set-sizes (i.e., 1:2 and
5:10 should be equally discriminable). Given that the input
to this simulation comprised straightforward assumptions
about the representation of sets and the environment in
which they are learned, this result is striking. There has been
much debate in the number literature over whether the
differences in the way that smaller and larger sets are
processed is evidence for a specific, capacity-limited system
for representing small sets (Revkin et al., 2008), or whether
the representation of smaller and larger sets is continuous
(Cordes et al., 2001).This simulation reveals how, once the
environment and the representational requirements of sets
are taken into consideration, a continuous system for
learning, representing and discriminating set-sizes can give
rise to effective discontinuities in processing. This finding
suggests one way in which these opposing perspectives
might be formally reconciled, while leaving open the
question of whether these differences are purely the result of
learning (Cordes et al., 2001), or whether these constraints
may begin to account for why the discrimination of smaller
sets is hard-wired (Revkin et al., 2008).

Finally, Simulation 3 extended Simulation 1 by adding
representations of size and shape to the sets of objects, as
competing cues. Like Simulation 2, however, this
simulation examined the effect that FL-training would have
on a model previously trained on a more ‘natural’
distribution of sets: i.e., that observed in English and
Spanish. The simulation was trained for 110 trials on the
usual distribution with which numerical terms are related to
sets in spoken English and Spanish (i.e.,the frequency with
which number words are used to describe sets of nouns in
each language) and then for 18 trials on a repeated pattern of
sets of 2, 4 and 6 objects, to replicate the FL-training blocks
of the three-year olds in our experiment. Figure 7 shows
how six FL-training blocks of even sets (2,4,6) actually
improved discrimination of untrained, odd sets (5,7). (This
is a natural consequence of error-driven learning, see
Ramscar et al., 2010 for a review).

As part of Simulation 3, we also ran five further
simulations in which the last 18 trials were trained on the
usual distribution of numerical terms in spoken English, and
an average of the associative strengths learned between the
cues and labels in these trials was taken for the purposes of
comparing learning under “normal conditions” with the
training simulation (see broken lines, in Fig. 7).

Training Experiment

We have described how a child might learn number
words. The question is, do children learn in this way? Can
manipulating the typical information structure of words in
English — by teaching numbers in postnominal contexts —
improve children’s understanding of number?

Participants

Participants were 56 typically developing, monolingual
English learners from 30 to 40 months old (M = 35.7
months, 30 females, 26 males) recruited from the Stanford
area. Testing was conducted by an experimenter blind to the
hypotheses.

Procedure and design

To test our predictions, we asked 56 children, aged 30 to
40 months, to identify twelve sets of objects on the basis of
the numerosity. This established a baseline of competence
for the numbers 2 through 7. Half of the pre-test questions
were phrased pre-nominally (“Look! Can you show me four
hearts?”’), and half postnominally (“Look! Hearts. Can you
show me four?”).

Children were then randomly assigned to two training
groups. In both conditions, children learned about the
numbers 2, 4 and 6, with six familiar objects, which differed
both in type and arrangement of presentation from those
used in testing. The sets and labels employed in training
were identical across conditions, with the critical distinction
that the order of presentation was reversed. In the Feature-
to-Label (FL) condition, a picture of the object set was
shown first, and then the label was provided after the picture
was shown (“What can you see? Balls. There are two”). By
contrast, in the Label-to-Feature (LF) condition, the
experimenter stated the number while the children looked at
a blank page (“What can you see? There are two balls™),
and immediately flipped to a picture depicting the object set
as it was named. Thus, in the FL condition, children saw
the object set and then heard the number label presented
postnominally, while in the LF condition, children heard the
number label presented prenominally, then saw the object
set.

Children in each condition were then given a post-test
identical to the pre-test.
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Figure 8. Performance in the identical pre-and post training-tests in the two groups of children (a) and average change in performance between the pre-and
post-tests in the two groups (b). Graph (c¢) shows performance in the trained (even) and untrained (odd) pre-and post training-tests in the FL-trained children
Because the untrained numbers were always tested together—separately from the trained numbers—the improvement on these items cannot be a result of

children’s improved performance on the trained items. (Error bars are SEM).

Results

Children’s performance in these tests overwhelmingly
supported our predictions about how the structure of
information in training would affect children’s ability to
appropriately match set-sizes to their corresponding
numerical labels. While there were no significant
differences between the groups on pre-test performance
(FL-trained M=47% correct; LF-trained (M=48% correct),
the FL-trained children showed a marked improvement in
the post-test (M=56%), whereas the LF-trained children
(M=46%) did not (Figure 8a).

A 2 (item type: trained or untrained) x 2 (test type: pre
versus post test) repeated measures ANOVA of children’s
performance (with training type—FL versus LF—as a
between subjects measure) revealed that while overall
performance had increased (there was a marginal effect of
test type, F(1,54)=3.399, p=0.07), there were significant
interactions between testing type and training-type
(F(1,54)=5.751, p<0.02) and training-type and item type
(F(1,54)=4.44, p<0.04), supporting the idea that FL-training
was responsible for this improvement.

Planned tests revealed both that the FL-children’s overall
improvement in performance was significant (paired
t(27)=3.757, p<0.001), and that this was true both on tests of
the trained even numbers (pre-test M= 55%; post-test
M=65%; t(27)=2.447, p<0.025) and the untrained odd
numbers (pre-test M= 39%; post-test M=47%; t(27)=2.555,
p<0.01); see Fig. 8c. LF-trained children’s performance
showed no change on either the trained (even) or untrained
(0odd) number tests (all tests p>.3). Overall, the FL-trained
children performed 30% better on the post-test than the pre-
test, whereas the change in the LF trained children was just
4% (unpaired t(54)=2.242, p<0.05); see Fig. 8b.

The different effects of training were further underlined
by analyses of the consistency of the children’s responses:
First, the rate at which the LF-trained children provided
consistent responses to tests of the same set-label mapping
in the post-test (M=27%) was unchanged from the pre-test
(M=28%), whereas the FL-trained children’s post-test
consistency again improved considerably (pre-test

consistency M=30%, post-test M=38%), t(27)=1.948,
p<0.05) (see Fig 8c); Second, FL-trained children’s average
performance improved across all of the items (t(6)=2.824,
p<0.05), whereas the LF-trained children’s average
improved only for 3 and 6, and actually decreased slightly
for 2, 4, 5 and 7 (this effect was not significant, p>.4).

Discussion

These data reveal that children as young as 2 ' have
begun to acquire an understanding of number words, and
that this can be given a boost when the information structure
in training supports competitive discrimination learning.
FL-trained children, who saw the sets of objects before
hearing labels presented postnominally, were significantly
better both in terms of the accuracy and consistency of their
reponses, both as compared to baseline measures, and in
terms of their performance gains over LF-trained children.
The performance of our FL-subjects was particularly
remarkable given that longitudinal studies of 2 and 3-year-
olds have demonstrated that improvements of this
magnitude usually take place over months (Wynn, 1992),
and not, as in our experiment, over half an hour.

Consistently using postnominal phrasing in child-directed
speech, and introducing the object set (visually) before
labeling it, may dramatically shorten the time-course of
number word acquisition. Since a growing body of research
suggests that understanding counting is predicated on a
basic understanding of number (Wynn, 1990; Fuson, 1988;
Branon & Van de Walle, 2001) and that mastery of this kind
of numerical aptitude at a young age dictates later learning
outcomes (Booth & Sigler, 2008; Jordan et al., 2010;
Clements & Sarama, 2007) employing such an intervention
may have a long lasting impact on children’s mathematical
aptitude and advancement.
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