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Symposium Overview

One central goal of cognitive science is to understand
how the brain supports cognition. Toward this end, a
great deal of effort is devoted toward computational
modeling and brain imaging. The former effort is well
represented at the Annual Conference, whereas the
latter effort is neglected. One common criticism of
brain imaging research from the cognitive science
community is that it is overly focused on the "where" of
cognition, as opposed to the "how" (i.e., process-level
questions linking brain and behavior). Model-based
analysis of fMRI data links models to the interpretation
of imaging data, allowing process-level questions to be
asked. The basic approach involves fitting models to
behavioral data and then using internal quantities from
the models as regressors in the imaging analysis. In
this symposium, a broad assortment of leading
researchers demonstrate the value of this approach in
several domains.
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Speakers

We have assembled top speakers with extensive expertise
in computational modeling of behavioral and neural data:
Nathaniel Daw, Assistant Professor, New York
University. Dr. Daw’s research concerns reinforcement
learning and decision making from a computational
approach, and particularly the application of computational
models to the analysis of behavioral and neural data.
Bradley C. Love, Professor of Psychology, University of
Texas. Dr. Love is expert in experimental and
computational explorations of learning and decision making.
John O'Doherty, Professor, Caltech. His main research
focus is on the neural mechanisms underpinning
reinforcement-learning and value-based decision making.
John P. Spencer (Panel Moderator), Professor,
University of Iowa. Dr. Spencer is an expert in the use of
dynamic neural fields to capture behavioral and neural data.

Speaker Abstracts

The abstracts provide broad coverage of topics, including
working memory, reinforcement learning, category learning,
and social inference. This diversity of problem domains
will make clear the commonalities and general applicability

of model-based analysis of brain data. At the same time, the
particularly challenges faced in each domain will be
informative and raise discussion topics.

Testing a dynamic neural field model of visual
working memory with fMRI (Spencer, Buss &
Magnotta)

Efficient visually-guided behavior depends on our ability to
form, retain, and compare visual representations that may be
separated in space and time. This ability relies on visual
working memory (VWM). Although research has begun to
shed light on the neuro-cognitive systems subserving this
form of memory, few theories have addressed these
processes in a neurally-grounded framework.

Here, we describe a layered neural architecture that
captures the cortical population dynamics that underlie
VWM, including the encoding, maintenance and
comparisons operations involved in change detection. We
then test this model using functional neuroimaging. Recent
work has shown that the BOLD response is strongly
correlated with local field potentials (LFPs). An analog of
LFPs can be estimated from dynamic neural field models.
This estimate can be convolved with an impulse response
function to yield time-dependent hemodynamic predictions.

Using this approach, we show that the DFN model
quantitatively captures fMRI data from recent studies
probing changes in the BOLD response in the intraparietal
sulcus (IPS) as set size increases in change detection, as
well as data showing stronger activation on change trials
versus same trials. We also test a novel prediction of the
model that BOLD responses should be greater on false
alarms versus misses. These data run counter to common
explanations of the origin of errors in change detection.

Computational models as neural hypotheses:
Reinforcement learning (Daw)

The predominant methods for analyzing neuroimaging data
center on assessing explicit statistical models of the neural
response. | consider how this approach can be extended to
test more psychological or functional level models of neural
computation. The function I focus on is learned trial-and-
error decision making. Computational algorithms for this
function — known in computer science as reinforcement
learning -- can be viewed as explicit hypotheses about how
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subject behavior and associated neural responses (e.g.,
BOLD signals related to reward predictions or prediction
errors) may change, trial by trial, with feedback. These
hypotheses can be tested and refined using standard model
comparison and parameter estimation techniques. I first
discuss, methodologically, how to frame these tests in the
context of fMRI analysis, dealing with problems such as
model selection in the random effects setting and free
parameters that affect the data nonlinearly. Second, I present
recent results from our laboratory in which we use these
techniques to study the trial-by-trial time course of learning
in computationally challenging decision tasks. In particular,
we consider how and whether different types of information
-- about experienced and foregone rewards, their variance
and covariance, and sequential task structure -- differentially
impact choice behavior and BOLD signals in decision-
related areas such as striatum.

Learning the exception to the rule: Model-based
fMRI reveals specialized representations for
surprising category members (Love, Davis, &
Preston)

Formal models have proven critical in understanding the
cognitive psychology of category learning. Here, we use
these cognitive models to advance the cognitive
neuroscience of category learning.

Category knowledge can be explicit, yet not conform to a
perfect rule. For example, a child may acquire the rule “If it
has wings, then it is a bird,” but then must account for
exceptions to this rule, such as bats. The current study
explored the neurobiological basis of rule-plus-exception
learning by using quantitative predictions from a category
learning model, SUSTAIN, to analyze behavioral and
functional magnetic resonance imaging (fMRI) data.
SUSTAIN predicts that exceptions require formation of
specialized representations to distinguish exceptions from
rule-following items in memory. By incorporating
quantitative trial-by-trial predictions from SUSTAIN
directly into fMRI analyses, we observed medial temporal
lobe (MTL) activation consistent with two predicted
psychological processes that enable exception learning: item
recognition and error correction. SUSTAIN explains how
these processes vary in the MTL across learning trials as
category knowledge is acquired. Importantly, MTL
engagement during exception learning was not captured by
an alternate, exemplar-based model of category learning, or
by standard contrasts comparing exception and rule-
following items. The current findings thus provide a well-
specified theory for the role of the MTL in category learning
where the MTL plays an important role in forming
specialized category representations appropriate for the
learning context.

Computational model-based fMRI of social
inference and learning (O’Doherty)

In model-based functional magnetic resonance imaging
(fMRI), signals derived from a computational model for a

specific cognitive process are correlated against fMRI data
from subjects performing a relevant task to determine brain
regions showing a response profile consistent with that
model. In this talk I will illustrate the merits of this
approach in the light of recent studies in the domain of
social cognition.

A fundamental capacity underlying much of human social
processing is the ability to “mentalize” or infer the thoughts
or intentions of others. Human neuroimaging studies have
shown that specific brain structures are engaged during
mentalizing such as the dorsomedial prefrontal cortex and
posterior superior temporal sulcus. However, very little is
known about the putative computational processes being
implemented in these regions in order to underpin such a
capacity. Here I will demonstrate how the application of a
formal computational model capable of learning to make
predictions based on the mental states (or beliefs) of others
can when combined with neuroimaging data, reveal specific
computational roles for each component of the mentalizing
network. I will further review evidence for the existence of
computational signals in the brain capable of mediating
learning about the value of stimuli in the world through
observation of the experiences of others. Collectively these
studies illustrate how model-based fMRI can potentially
provide insights into how a particular cognitive process is
implemented in a specific brain area as opposed to merely
identifying where a particular process is located.
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