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Abstract

This paper is about higher-order theory of mind such as “I
think that you think that I think ...”. Previous studies have
argued that using higher-order theory of mind in the context
of strategic games is difficult and cognitively demanding. In
contrast, we claim that performance depends on task
properties such as instruction, training, and procedure of
asking for social reasoning. In an experiment based on a two-
player game, we manipulated these task properties and found
that higher-order theory of mind improved by providing step-
by-step instruction and training. It also improved during the
experiment when participants were explicitly asked to predict
the opponent’s next move.
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Theory of Mind

Whenever the outcomes of our actions depend on the
decision of others, and vice versa, we need to reason about
one another. For example, if a researcher wants her paper to
be accepted, she not only needs to have interesting empirical
results, she also needs to get her story across. She needs to
reason about what an intended reader knows beforehand and
about what he will infer from reading her story. She may
even wonder whether a particular reviewer knows that she
knows that he was the one who wrote that glowing review.
The ability to reason about the knowledge, beliefs, desires
and intentions of others, in this case the reader, is often
referred to as Theory of Mind (Onishi & Baillargeon, 2005;
Wimmer & Perner, 1983; Premack & Woodruft, 1978).

So far, empirical findings have shown theory of mind to
be far from optimal, especially in more complex social
interactions (Flobbe, Verbrugge, Hendriks, & Kramer,
2008; Keysar, Lin, & Barr, 2003; Hedden & Zhang, 2002;
McKelvey & Palfrey, 1992; but see Goodie, Doshi, &
Young, 2010). The conclusion often drawn from these
findings is that theory of mind is difficult and cognitively
demanding (e.g., Verbrugge & Mol, 2008). In contrast, we
claim that performance depends on the task. For example,
participants seemed to have little difficulties applying theory
of mind in false-belief story tasks (Flobbe, et al., 2008).

We claim that suboptimal performance due to task
difficulties can be overcome by providing appropriate
instruction and training. Social reasoning involves interplay
of multiple serial and concurrent cognitive processes, and
learning to apply theory of mind in a particular task might
benefit from instruction and training that structure this
interplay of processes. Besides instruction and training, the
procedure of asking for social reasoning can also contribute

to providing a supporting structure, so-called scaffolding,
for the interplay of processes that underlie social reasoning.
In the current study, we show that providing supporting
structure that maps with the reasoning steps required by the
task facilitates social reasoning and improves performance.

Orders of Reasoning

Complex social interactions such as rescue operations and
negotiations are cognitively demanding because of the
depth, or order, of reasoning they require (Verbrugge,
2009). To illustrate orders of reasoning, imagine a social
interaction between Ann, Bob, and Carol, and that Bob’s
birthday is tomorrow. Furthermore, Ann knows: “Bob’s
birthday is tomorrow”. This is an example of zeroth-order or
non-social reasoning, because Ann is not yet reasoning
about someone else’s mental state. She merely recalls a fact.

If Bob thinks: “Ann knows my birthday is tomorrow”, he
is applying first-order reasoning, because he ascribes
knowledge to Ann. First-order reasoning covers a great deal
of social interactions. Another example of a first-order
attribution is Bob’s thought: “Ann intends to throw me a
surprise party, because she always throws surprise parties”.
In this example Bob ascribes an intention to Ann.

A social interaction between Ann, Bob, and Carol may
demand reasoning of one order deeper: Suppose that Ann
will not throw Bob a surprise party and expressed this to
Carol. Now, Carol knows that “Bob falsely believes that
Ann intends to throw him a surprise party”.

Carol applied second-order reasoning, which is a complex
skill that starts developing around the age of 6 to 9 years
and apparently remains challenging throughout the later
lifespan (Perner & Wimmer, 1985). Second-order reasoning
is the main focus of the current study.

Hedden and Zhang’s Experiments

So far, most studies showed suboptimal application of
second-order theory of mind in social interactions that
involved the perspective of a participant and one other
player (Flobbe, et al., 2009; Hedden & Zhang, 2002,
McKelvey & Palfrey, 1992). For example, McKelvey and
Palfrey (1992) presented participants with games in which
they had to reason about an opponent’s decisions.
Participants’ behavior in these games was not optimal. Also,
Hedden and Zhang (2002) presented participants with so-
called matrix games in which they had to apply second-
order theory of mind. Performance started at approximately
25% and gradually increased to approximately 65%.

Figure 1 depicts examples of matrix games, which are
two-player sequential-move games. Each cell of a matrix
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Figure 1: Five example matrix games. Each cell in a game contalns two payoffs. The first payoff is Player I’s, the second

Player II’s. Each game starts in cell A. For both players, the goal is that the game ends in a cell that contains their highest

possible payoff. In example game a, a rational Player I should decide to continue the game to cell B, as a rational player

11 should decide to stop in cell B, because Player I should decide to continue from cell C to cell D. Example games b to e

were excluded because they did not require second-order reasoning, or a correct second-order prediction or decision was
equal to a first-order prediction or decision.

game contains a pair of rewards, so-called payoffs, that both
range from 1 to 4 (Figure 1). The left payoff of a pair is
Player I’s payoff and the right payoff of a pair is Player II’s.
Both players alternately decide whether to stop the game in
the current cell or continue it to the next. Each game starts
in cell A, where Player I decides. For each player, the goal
is that the game ends in a cell that contains their highest
possible payoff. This is common knowledge to both players.
From the rules of matrix games it follows that the outcomes
of one player depend on the decisions of the other player.

For example, the game in Figure la starts in cell A, and
Player I has to decide whether to stop the game in that cell
or continue it to cell B, where Player II decides. Player I's
payoff in cell B, namely a 4, is higher than in cell A, namely
a 3, but what will Player II decide in cell B? Player II may
want to continue the game to cell C, as Player II’s payoff in
cell C, 3, is higher than in cell B, 2, but what will Player I
decide in cell C? Player I would continue the game to cell
D, as Player I’s payoff in cell D, 2, is higher than in cell C,
1. Thus, Player II should stop the game in cell B, as Player
II’s payoff in cell B, 2, is higher than in cell D, 1.
Consequently, Player I should decide to continue the game
from cell A to B, and receive a payoff value of 4 instead of
3.

Participants were always assigned to the role of Player I,
and the computer played the role of Player II, unbeknownst
to some of the participants. However, knowing that the
computer played the role of Player II did not affect
participants’ performance. Matrix games such as the one in
Figure 1 required second-order reasoning because a
participant had to reason about the computer’s decision in
cell B, and thus reason about what the computer thinks that
a participant’s decision should be in cell C.

Participants had difficulties playing matrix games
(Hedden and Zhang, 2002), which was reflected in
suboptimal performance. We argue that participants had
difficulties understanding the task, instead of difficulties
applying theory of mind. Hedden and Zhang explained the
rules of matrix games and provided training, however we
think that their training could be improved by providing
supporting structure in instruction and training. More

specifically, we expect to facilitate higher-order social
reasoning by closely mapping the structure of instruction
and training with the reasoning steps required by matrix
games.
We also think that Hedden and Zhang’s training may have
been misleading. During the training phase, they presented
participants with so-called trivial games that allowed for
both first- and second-order reasoning (e.g., Figure 1b). In
these games, Player II did not have to reason about Player
I’s last decision, because Player II’s payoffs in cells C and
D were both either lower or higher than Player II’s payoff in
cell B. Consequently, it would suffice for a participant
(Player 1) to apply first-order reasoning about a
hypothesized zeroth-order opponent that does not consider
what Player I’s last decision should be. If a participant had
adopted first-order reasoning, she or he had to unlearn that
in similar-looking non-trivial second-order games during the
experiment, resulting in a gradual increase in performance.
Participants’ performance indeed improved over time
(Hedden & Zhang, 2002). The proportion of games in which
participants successfully applied second-order reasoning
started at approximately 25% and monotonically increased
to approximately 65%. We think that performance could
have started at a higher level if training consisted of games
that unambiguously required second-order reasoning.
Whereas Hedden and Zhang’s did not provide supporting
structure in their training, they did in their procedure of
asking for social reasoning: In each game, Hedden and
Zhang asked participants for two responses: (1) predict the
opponent’s decision in cell B, and after the prediction, (2)
decide what to do in cell A. This procedure provided
supporting structure by closely mapping the reasoning steps
required by matrix games with the responses asked for, as
predicting the opponent’s move precedes making a decision.

Supporting Structure

We hypothesized that performance in matrix games could
be improved by providing supporting structure in instruction
and training, besides supporting structure in the procedure
of asking for social reasoning.
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Incrementally explaining and training orders of reasoning
can provide supporting structure. By first presenting zeroth-
and first-order games, participants not only learn that social
reasoning can involve multiple orders, they also learn the
rules of the matrix game: a participant first makes a
decision; if given a choice (in first-order games), the
opponent decides second; if given a choice in second-order
games, the third decision is the participant’s. Figure 2
depicts example zeroth- and first-order games.

Hedden and Zhang did provide supporting structure in
their procedure of asking for social reasoning by asking
participants to predict the opponent’s move before making a
decision. We explicitly tested whether such a procedure had
a positive effect on performance.

Method

Participants

Ninety-five first-year psychology students participated in
this study in exchange for course credit. Each participant
gave informed consent prior to admission into the study.

Materials

Game Forty-eight participants played matrix games as
described above, and forty-seven participants played game-
theoretically equivalent games called Marble Drop. The
latter games adhered to exactly the same rules as the former,
but differed in appearance'. We have described the effects
of game representation elsewhere (Meijering, Van Maanen,
Van Rijn, & Verbrugge, 2010). As the focus of this study is
supporting structure in instruction, training, and procedure
of asking for social reasoning, we collapsed the data across
the two levels of game representation (i.e., matrix game and
Marble Drop). It is important to note that the main and
interaction effects reported here did not change with or
without the inclusion of the factor game representation.

Design We manipulated two factors: (1) structure in
instruction and training, and (2) structure in the procedure of
asking for social reasoning. We labeled these factors
training and asking. Both factors had two levels: we either
did or did not provide supporting structure for social
reasoning, which we explain below.

Training in which we provided supporting structure
consisted of stepwise instruction and training. We
successively presented 4 zeroth-, 8 first-, and 8 second-order
games (Figure 2). Furthermore, each zeroth-, first-, and
second-order game unambiguously required reasoning of
the corresponding order: simpler less demanding strategies
would not yield correct decisions. Training that lacked
supporting structure consisted of 24 trivial games (e.g.,

! Matrix games and Marble Drop games are game-theoretically
equivalent because they have the same extensive form (Osborne &
Rubinstein, 1994), namely that of the Centipede game (Rosenthal,
1981). See http://www.ai.rug.nl/~leendert/Equivalence.pdf for an
informal proof.

Figure 1b), similar to Hedden and Zhang’s training. Trivial
games allowed for both first- and second-order reasoning,
and therefore could not be diagnostic of second-order
reasoning. We think that these games biased participants to
apply the simpler less demanding first-order reasoning
strategy.
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Figure 2: A zeroth-order (a) and first-order (b) matrix game.
These example games unambiguously require zeroth- and
first-order reasoning.

We want to stress that our manipulation of instruction and
training was not about more or less instruction and training,
but about instruction and training being more or less
appreciative of the reasoning required by the task at hand. In
fact, the training in which we provided supporting structure
consisted of 20 games, including just 8 second-order games,
whereas our training that lacked supporting structure
consisted of 24 games.

Asking for social reasoning was manipulated as follows.
During the experiment (i.e., two test blocks), we either did
or did not ask participants to predict the opponent’s move in
cell B before deciding what to do in cell A. By asking
participants to predict the opponent’s move, we provided
supporting structure for social reasoning in matrix games:
Predictions precede decisions. Supporting structure was
absent when participants were not explicitly asked to predict
the opponent’s move.

Payoff Combinations The trivial games described earlier
demonstrated that payoff combination determines which
order of reasoning is required. A lot of the total number of
combinations (i.e., 4! x 4! = 576) do not require second-
order reasoning, or yield the same response for second-order
reasoning and other strategies (e.g., first-order reasoning).
We had to exclude these.

Combinations of which Player I’s payoff in cell A was a 1
or a 4 were not included as stimuli, because zeroth-order
reasoning would suffice. It is obvious that Player I should
continue the game in the former case and stop in the latter.
The game in Figure Ic is an example of a game in which
Player I should decide to stop in cell A.

Of the remaining payoff combinations, we excluded the
trivial ones in which Player II’s payoffs in cells C and D
were both either lower or higher than Player II’s payoff in
cell B. Figure 1b depicts an example of such a game: Player
IT does not need to reason about Player I’s decision, as
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Player II’s payoffs in cells C and D are both more preferable
than Player II’s payoff in cell B.

We also had to exclude payoff combinations that yield the
same decision for a zeroth- and first-order Player II, as these
would yield the same prediction (of Player II’s move) for a
first- and second-order Player 1. Figure 1d depicts an
example of such a game: a Zeroth-order Player II would
continue the game because the Player II’s payoff in cell C is
higher than in cell B. A first-order Player II would also
continue the game to cell C because Player I should stop the
game in that cell. The prediction of Player II’s move would
be the same for a first- and second-order Player 1.

Besides payoff combinations such as in the game in
Figure 1d, we excluded payoff combinations that yield the
same decision for a first- and a second-order Player I (e.g.,
Figure le). Hedden and Zhang did not exclude these payoff
combinations as long as the prediction of Player II’s move
would be opposite for a first- and second-order Player II.
However, due to our manipulation of the procedure of
asking for social reasoning, half of the participants were not
explicitly asked to predict what the opponent’s next possible
decision would be.

In line with Hedden and Zhang, we distinguished between
so-called 2- and 3-starting games with payoff combinations
of which Player I’s payoff in cell A was either a 2 or a 3,
respectively. For the final set of stimuli, we double-balanced
for both the number of stop and continue decisions of Player
I and the number of stop and continue decisions of Player I1.
As this was not possible for the 2-starting games, we
excluded those. That left us with 16 unique payoff
combinations, all 3-starting games, to present during the
experiment.

Procedure

The experiment consisted of three blocks: one training block
and two test blocks. In the training block, we familiarized
participants with the rules of the game. Furthermore, we told
participants that they were playing against the computer, as
knowing whether the computer played the role of Player II
did not have an effect on performance in Hedden and
Zhang’s (2002) study.

Participants were assigned to instruction and training
having or lacking supporting structure. This was
counterbalanced between participants. Each game was
played until either the participant or the computer decided to
stop, or until the last decision was made. After each game in
the training block, participants were presented feedback that
indicated whether the decision was “correct” or “incorrect”.

In Test Block 1, participants were presented with second-
order games, and had to decide what to do in cell A. After
entering a decision, the game stopped immediately and
feedback was presented. Feedback indicated whether the
decision was “correct” or “incorrect”. Participants assigned
to the condition asking with supporting structure were first
explicitly asked to enter their prediction of the opponent’s
move in cell B, before making a decision in cell A.
Feedback was presented after entering a prediction. This

block consisted of 32 trials; each payoff combination was
presented twice. The items were presented randomly.

Test Block 2 was similar to Test Block 1 except that
participants assigned to the condition asking with
supporting structure were not explicitly asked to predict the
opponent’s move anymore. This block also consisted of 32
trials.

Results

Accuracy of Decisions

To account for random effects of individuals and payoff
combinations, we performed linear mixed-effects (LMEs)
analyses (Baayen, Davidson, & Bates, 2008). Our analysis
of participants’ decisions consisted of a logistic LME model
that included the fixed factors training, asking, and block
and random effects of participants and payoff combinations.
The mean accuracy of the decisions is depicted in Figure 3.
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Figure 3: Mean proportions of decision scores in Test Block
1 and 2, depicted separately for participants that were
explicitly asked to predict the opponent’s move (grey bars)
and those that were not (white bars), and separately for
participants that were assigned to training without
supporting structure (a) and participants assigned to training
with supporting structure (b). The error bars depict standard
erTors.

Scaffolding (i.e., supporting structure) in training had a
positive effect. Participants that were assigned to training
without scaffolding performed significantly worse than
participants that were assigned to training with scaffolding:
B=-1.23,z=-3.34, p <.001. Mean accuracy was 80% (SE
= 1.9%) in the former group, 89.8% (SE = 1.3%) in the
latter.

Scaffolding in the procedure of asking for social
reasoning also had a positive effect. The probability of
making a correct decision was significantly higher if
participants that had already predicted the opponent’s move:
B=1.28,z=3.32,p <.001. Mean accuracy was 88.7% (SE
= 1.6%) for these participants. Mean accuracy was 81.1%
(SE = 1.7%) for participants that were not explicitly asked
to predict the opponent’s move.

The probability of making a correct decision significantly
increased over block: B = 1.03, z = 6.55, p < .0001. This
effect was mainly due to learning of participants that were
not explicitly asked to predict the opponent’s move, which
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was reflected in a significant interaction between the factors
asking and block: B = -.90, z = -5.14, p < .0001. Figure 3
shows that the difference in performance between
participants that were asked to predict the opponent’s move
and those that were not became smaller in Test block 2.

The effects of scaffolding in the procedure of asking for
social reasoning did not (significantly) differ between
participants assigned to training with scaffolding and those
assigned to training without scaffolding: p = .25, z = .49, p
=.63.

Accuracy of Predictions

Hedden and Zhang’s (2002) analyses mainly focused on
participants’ predictions. We analyzed accuracy of
decisions, because each participant had made decisions
whereas only half of the participants were explicitly asked
to predict the opponent’s move (i.e., in the condition asking
with scaffolding). To make informal comparisons with
Hedden and Zhang, we analyzed the predictions of
participants in the condition asking with scaffolding (in Test
Block 1) in more detail.

Figure 4 shows an increase in performance that is
qualitatively different from the gradual and linear increase
that Hedden and Zhang observed (from 25% to
approximately 70%).
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Figure 4: Mean accuracy of predictions in Test block 1,
plotted separately for participants assigned to training
without supporting structure (grey line) and training with
supporting structure (black line).

Mean Accuracy Predictions
0.0 02 04 06 08 1

o

We fitted a logistic LME that consisted of training as a
fixed factor, the logarithm of trial as a covariate, and
random effects of participants and payoff combinations.

Supporting structure in training had a positive effect on
the accuracy of predictions. Participants assigned to training
without supporting structure performed significantly worse
than participants assigned to training with supporting
structure: B =-2.49,z=-3.36, p <.001.

The effect of trial was significant: B = .69, z = 2.90, p <
.01. The probability of correctly predicting the opponent’s
move increased with time. This effect was stronger for
participants that were assigned to training without
supporting structure instead of training with supporting
structure: B = .72, z = 2.43, p < .05. This finding supports
our hypothesis that training without supporting structure,
which consisted of trivial games, biased participants to
apply first-order reasoning. As first-order reasoning did not

yield correct decisions during the test blocks, participants
had to unlearn this strategy.

Discussion

We investigated effects of scaffolding (i.e., supporting
structure) in instruction, training, and procedure of asking
for social reasoning. We hypothesized that scaffolding
would facilitate social reasoning by structuring the interplay
of serial and concurrent cognitive processes that underlie
social reasoning. The results corroborated our hypotheses.

First of all, the participants successfully applied second-
order reasoning in a large proportion of the games,
especially if supporting structure was provided in both
training and procedure of asking for social reasoning. Mean
accuracy was 92% (SE = 1.7%) in those conditions. In
contrast, mean accuracy in Hedden and Zhang’s (2002)
matrix games started at approximately 25% and increased to
approximately 65%, which is not far above chance level.

Supporting structure in training had a positive effect on
social reasoning in matrix games. We assigned half of the
participants to training similar to Hedden and Zhang’s
training, which consisted solely of trivial (second-order)
games that allowed for both first- and second-order
reasoning. We assigned the other half to training in which
we provided supporting structure. Supporting structure
consisted of zeroth-, first-, and second-order games that
unambiguously required reasoning of corresponding orders.
We hypothesized that participants assigned to training that
lacked supporting structure preferred the simpler and less
demanding first-order reasoning strategy over second-order
reasoning and erroneously tried using that during the test
blocks. Our results corroborated this hypothesis. Over the
entire experiment, the probability of making a correct
decision was higher for participants assigned to training
with supporting structure instead of training that lacked
supporting structure.

Besides a positive effect on performance of supporting
structure in training, we found a positive effect of
supporting structure in the procedure of asking for social
reasoning. Supporting structure closely mapped the
reasoning steps required in matrix games with the responses
asked for. Participants that were asked to predict the
opponent’s move before making a decision had a higher
probability of making a correct decision than participants
that were not asked to make predictions. This finding
corroborated our hypothesis that performance improves by
providing supporting structure in the procedure of asking for
social reasoning.

Supporting structure in training and in the procedure of
asking for social reasoning both had positive effects on
social reasoning. However, there was no interaction. Given
the disadvantageous effect of missing supporting structure
during training, one might expect that participants in this
condition would benefit more from supporting structure in
the procedure of asking for second-order reasoning than
participants assigned to training with supporting structure.
The results did not corroborate this idea, as the interaction
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between training and asking was not significant: Whichever
training participants were assigned to, the probability of a
correct decision was greater for participants that were
provided with supporting structure in the procedure of
asking for social reasoning.

The probability of correctly deciding whether to stop or
continue a game increased over block. However, this was
mainly due to participants that were not explicitly asked to
predict the opponent’s move, as the difference with
participants that were asked to make a prediction became
smaller (Figure 3). In other words, participants that were
asked to predict the opponent’s move initially benefitted
from supporting structure that closely mapped the reasoning
steps required by matrix games with the responses asked
for, but eventually participants that were not asked to make
predictions were catching up.

Hedden and Zhang analyzed changes over time in second-
order reasoning and found profound learning effects. In line
with their analyses, we analyzed predictions as a function of
trial, in addition to the effect of supporting structure in
training and procedure of asking for social reasoning. The
analyses showed that the probability of correctly predicting
the opponent’s move increased over time, which implies a
positive relation between proficiency in applying higher-
order theory of mind and experience with social reasoning
in matrix games. This effect was stronger for participants
assigned to training without supporting structure than for
participants assigned to training with supporting structure.
This finding corroborated our hypothesis that training
without supporting structure, which consisted solely of
trivial games, biased participants to apply first-order
reasoning. They had to unlearn that strategy during the test
blocks, resulting in a gradual increase in performance.

In sum, we found effects of supporting structure in
instruction, training and procedure of asking for social
reasoning. Participants that were assigned to training that
provided supporting structure performed better during the
experiment than participants assigned to training that lacked
supporting structure. Also, participants that were asked to
predict the opponent’s move were better at making a
decision than participants that were not asked to make
predictions. These effects were more pronounced in the first
of two test blocks.

General Conclusions

We found that applying higher-order theory of mind in
strategic games is not too difficult to learn as long as it is
introduced appropriately, that is, with stepwise instruction
and training. Moreover, we found that higher-order theory
of mind improves if participants are explicitly asked to
predict the opponent’s possible future behavior. Thus, task
structure can help participants predict what someone else
thinks that they think and maximize their outcome in
strategic games.
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