Using Inverse Planning and Theory of Mind for Social Goal Inference

Sean Tauber (sean.tauber@uci.edu)
Mark Steyvers (mark.steyvers@uci.edu)
Department of Cognitive Sciences, University of California, Irvine
Irvine, CA 92697 USA

Abstract

Previous research shows that people assign latent goals or
intentions to simple animated agents based on the motion behavior
of these agents. We propose that human observers can infer that an
animated agent has a partial state of belief about its environment
and that observers use this information — in combination with the
agent's observable behavior — to infer its goals. We conducted an
experiment that showed that observers used line-of-sight cues — an
agent's orientation relative to various objects in the environment,
and the presence or absence of visual obstructions — to determine
the content of an agent's state of belief about the location of
objects. Our results are consistent with the hypothesis that human
observers use line-of-sight cues to assign belief states to agents and
that these belief states can be used to interpret agent behavior. We
found that observer models that incorporated inferences about
agents’ beliefs outperformed an all-knowing observer model in
describing human responses. Additionally, we found that human
responses were most consistent with the behavior of a model that
incorporates information about both orientation and line-of-sight
obstructions.

Keywords: Theory of Mind; ToM; belief states; states of
belief; goal inference; social goal inference; inverse planning;
perceived animacy.

Introduction

Imagine that you are standing across the street from a bank
right before closing time. Suddenly, a car pulls up and four
bank robbers get out of the car and charge into the bank. A
minute later, another car pulls up and a man jumps out of
the car and runs towards the bank entrance. What is he
doing? Maybe he is trying to stop the robbery or help the
hostages; or maybe he is rushing to cash a paycheck before
the bank closes. As it stands, we are missing a key piece of
information that would help us understand the man’s
intentions — whether or not he knows that the robbers are in
the bank. We are often able to make inferences about the
intentions of others based on the context of the situation and
their behavior but, as our example shows, sometimes we
also need to know something about a person’s state of belief
about the world in order to interpret their actions with any
amount of certainty.

Theory of Mind

Much research on Theory of Mind (ToM) has focused on the
ability (or inability) of animals and human children to
represent others as having states of belief about the
environment that are different from their own. The general
assumption is that most human adults have this ability
(Premack & Woodroof, 1978; Doherty, 2008). ToM can

play an interesting role in our ability to engage in social
interaction. For instance, we have to keep track of the
information that individuals know or do not know and
combine this with contextual information in order to
understand the intentions of others. Others have argued that
ToM is much too complex to understand in terms of simply
having or lacking the ability to represent other's beliefs and
that evidence about the limitations in adult's ToM abilities
may provide insight about the cognitive process(es)
involved in ToM (Samson & Apperly, 2010). These
limitations in adults are only beginning to be explored and
may lead us to a better understanding of the process or
processes that underlie the phenomenon that has been
referred to broadly as ToM.

The perception of animacy

Studying ToM and social goal inference in realistic social
contexts is a difficult undertaking with many uncontrollable
variables. It is therefore useful to develop controlled
experiments that allow us to simulate social interactions that
are tractable. Heider and Simmel (1944) were the first to
demonstrate that humans perceived simple two-dimensional
shapes that were animated on a screen as having latent
motives, goals and intentions. The motion of these shapes
was designed by an animator — the shapes were not real
agents and did not have real latent intentions. Nevertheless,
human observers perceive these shapes as agents with
“minds.” This phenomenon is sometimes referred to as the
perception of animacy (for a technical description see
Feldman and Tremoulet, 2008)

Modern research that employed the perceived animacy
phenomenon showed that not only did human observers
perceive that the agents had goals; they also appeared to
perceive that the agents made inferences about the goals of
other agents (Baker, Goodman, & Tenenbaum, 2008; Baker,
Saxe, & Tenenbaum, 2009; Ullman et al., 2010). These
studies showed that not only can people perceive these
shapes as agents with minds, but they can also perceive
them as agents who can reason about the minds of other
agents.

Inverse planning

Baker, et al. (2008, 2009) showed that a Bayesian inverse
planning process provided inferences about the latent goals
of animated agents that were more similar to human
inferences than a simple cue-based model. In general, the
idea of an inverse planning process is that humans have
access to a generative process in which an agent's behaviors
can be generated rationally based on the state of the
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environment, their own goals, and their inferences about the
goals of other agents. Humans infer the goals of another
agent by inverting this generative process to infer an agent's
goals from its observed behaviors. It is important to note
that in the aforementioned experiments, the inverse planning
model assumed (and the human observers were instructed)
that the agents had complete knowledge of the environment
including the position of the other agent(s). This was
potentially important for the inferences that humans made
because they could assume that an agent had the same
knowledge about the other agent’s behavior as they had.

In our experiment, we eliminate this assumption so that
even though human observers have complete knowledge of
the environment, they have the opportunity to take into
consideration that the agents have incomplete knowledge of
the environment.

States of belief

As demonstrated in our bank robbery example, agents often
have incomplete or false beliefs about the state of the
environment and this can affect human judgments about the
goals of these agents. Our objective for the current study
was to build on the inverse planning and perceived animacy
literature to include situations in which humans would
assign relative or incomplete states of belief to animated
agents and combine this information with the agents’
observable behavior when inferring their goals. In order to
create the perception that agents had different states of
knowledge about the environment we instructed observers
to assume that agents did not know the location of other
agents or objects in the environment unless they “saw”
them. We predicted that the perception that agents did or did
not “see” portions of the environment would be mediated by
the presence or absence of obstructions (such as walls and
doors) and by orientation cues that would allow observers to
perceive that the agent was “looking” in a certain direction.
Taken together, we refer to these as line-of-sight cues.

The usefulness of orientation cues was inspired by
previous research that indicated that these cues influence the
way observers perceive the intentions of agents in perceived
animacy experiments (Gao, Newman, & Scholl, 2009). In
our case, we hypothesized that observers interpreted the
orientation of an agent as the direction in which it was
looking. In order for an agent to “see” another agent or
object in the environment it must have oriented towards that
agent or object and there must not have been any
obstructions (closed doors) blocking the line of sight. We
predicted that if these two conditions were met then an
observer would represent the agent as knowing with
certainty the location of the other agent or object. If the two
conditions were not met — either the agent did not look
towards the other agent or object; or it did look but there
was an obstruction blocking the line of sight — then an
observer would represent the agent as not knowing with
certainty the location of the other agent or object.

The Challenge of modeling ToM

It is challenging to design ToM experiments that involve the
dynamic interaction of multiple agents and are rich enough
for observers to perceive the agents as having goals,
preferences and states of belief, yet remain tractable for the
application of computational modeling.

Previous inverse planning research used a Markov
Decision Process (MDP) to model continuous agent
behavior as a function of its goals and the state of the
environment (Baker, et al., 2008, 2009). One way to extend
this framework to account for agents having states of belief
is to use Partially Observable Markov Decision Process
(POMDP). Both MDPs and POMDPs are complex models
of sequentially dependent agent behavior. Because we were
more interested in the role of belief states than in action
planning, we chose to simplify the generative action process
in such a way that we could avoid modeling sequentially
dependent action information. Specifically, we decided to
reduce agent action sequences down to a single discrete
multi-choice decision. The hope was that we would better
be able to isolate the effects of the belief state inference
process on observers' judgments from the effects of the
inverse action planning process.

Another issue that arises when attempting to isolate the
effect of different variables in this type of framework is the
confounding of goals and priorities. Once an observer has
inferred that an agent has a certain belief state and observes
the agent's behavior in light of that belief, the observer can
attempt to use this information to infer the agent's goal.
When there are multiple objects in the environment
however, the agent may have multiple goals — some of
which may be more important than others. An observer may
not be able to infer a unique set of goals/priorities to explain
an agent's behavior. We address this issue with our Cops
and Robbers paradigm by assuming that most people assign
the same constant set of goals and priorities to specific agent
types. Instead of asking observers to infer an unknown
agent's multiple goals and the priority of these goals, we ask
observers to identify the type of agent they are observing —
cop or robber. We eliminate the confounding of goals and
priorities by assuming that cops always want to get the
robber (primary goal), and robbers want to stay away from
the cop (primary goal) and get the loot (secondary goal).

Experiment

We designed an experiment that used perceived animacy to
simulate social interactions in which observers would
potentially use line-of-sight cues to track an agent's state of
belief about the environment and combine this information
with the agent's motion behavior in order to infer the
identity of the agent. The idea was that, given the same
motion behavior, different line-of -sight cues would affect
observers' perception of agents' states of belief, which
would in turn affect their inferences about the agents'
identities.

Human participants performed a task in which they
observed the interactions of two animated agents and had to
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determine the identity of a particular agent based on its
behavior and the state of the environment. We told
participants that one agent was a cop and the other was a
robber but they did not know which agent was which on
each of the trials. We also told participants that the agents’
knowledge of the environment depended on what the agents
could or could not see.

We varied the relative motion and orientation of one of
the agents with respect to the other agent and the loot; and
we varied the positions of the second agent and the loot, as
well as whether there were visual obstructions (walls)
between the agents and/or between the agents and the loot.

Method

Participants Participants were 28 undergraduate students
from The University of California, Irvine that each received
partial course credit for their involvement in our experiment.
Stimuli The stimuli consisted of 128 brief animations in
which there was an active agent (blue triangle), a static
agent (green triangle) and a static object called the loot (a
red square). For each trial the static objects were in one of
32 possible configurations (figure 1-a) and the active agent
had one of four possible motion sequences (figure 1-b).
Participants were instructed that the interior (gray) doors in
the environment blocked the sight of the agents when they
were closed, but that they always opened when an agent
moved towards them.

Procedure Participants were provided with a background
story for the experiment in which they were told that there
were two agents — a cop and a robber. The cop was trying to
catch the robber and the robber was trying to get the loot
without being caught by the cop. It was not known which
agent was the cop and which was the robber. The
experimental task was to identify the moving agent as either
the cop or the robber for each animation. On each trial
participants watched the animation and were presented with
a choice about the moving (blue) agent’s identity. The
options were “Cop”, “Robber” and “Don’t Know.” The
order of the trials was randomized for each participant and
the order of the options was randomized for each participant
on each trial.

Empirical Results

A comparison of several key trials (Fig. 2) demonstrates the
relative impact of motion, orientation, and visible
obstructions on human judgments and model predictions.
We will first outline the results of the human judgments
before moving on to the model predictions.
Figure 2-a demonstrates the effect of a wall between the
agents in a trial where the active agent moved towards the
other agent. Humans overwhelmingly gave cop responses
when there was no wall between the agents (fig. 2-a-2),
whereas the presence of a wall resulted in uncertainty in the
human responses (fig. 2-a-1).

Figure 2-b demonstrates the effect of walls and
orientation in a trial where the active agent moved away
from the other agent. Humans gave mostly robber responses
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Figure 1. Stimuli: a) shows the four possible positions
for the loot (red square) and static agent (green
triangle) — which was oriented either towards (as
shown) or away from the center room; b) each row
demonstrates one of the four possible motion
sequences for the active agent (blue triangle) — the
three columns depict the active agent’s starting
position, orientation behavior, and motion behavior; c)
A complete example trial as seen by a human observer
at 3 different points in time. The blue agent moves
from the left-most room into the intersection, “looks”
down towards the green agent, and then moves away
from the green agent and towards the loot (which is
behind a closed door). Gray doors always opened as
agent approached them—they obstructed line-of-sight
but not motion.

when the active agent had a clear line-of-sight to the other
agent and then moved away from it (fig. 2-b-3). When there
was no line-of-sight because of non-orientation (fig. 2-b-1)
or the presence of a wall between the agents (fig. 2-b-2)
human responses were more uncertain.

Computational Theory

Graphical models’ are a useful way to describe the
generative process by which human participants respond to

'For an introduction to graphical model notation, see Koller,
Friedman, Getoor, and Taskar (2007).
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experimental stimuli. We develop four graphical models of
observer behavior and compare the predictions of these
models to the human response data.

We assume that observers use an inverse planning process
that reverses an action-planning model to infer the identity
of an agent from observations of its actions.

In order to model the agent’s goal driven behavior as a

single multi-choice decision, we separate each trial into two
distinct phases. The information gathering phase consists of
the agent moving into the center of the maze and its
orientation behavior. All of our models assume that this
sequence of behavior is not generated by the agent’s goal-
directed action planning process, but rather by a random
information gathering process. This random process allows
an observer to infer the agent’s state of belief, but does not
provide any evidence about the agent’s identity. The
decision phase consists of the agent’s movement in one of
the three directions. Our models assume that this behavior
results from the agent’s goal-directed action planning
process and therefore provides evidence about the agent’s
identity. These assumptions allow us to model the agent’s
belief formation and action planning as two separate
processes.
Generative model (agent's perspective) In each trial, the
active agent makes a sequence of observations o about the
location of objects in the environment. Figure 3-a is a
graphical model representing the agent’s theory about how
these observations are formed from the true locations s of
objects in the environment, whether or not the agent
oriented towards each location 0 and the location of doors
w. From the agent's perspective, the true state s of the
objects is unobserved and the other variables are observed.

Step one: belief inference In the first step, the agent has a
prior belief that there is equal probability that each of the
objects is in each of the rooms. The agent then uses the
belief model (fig. 3-a) to update the probability that each
object is in each room based on its sequence of
observations, orientations, and its knowledge of the position
of walls. We refer to the posterior distribution of s* as the
agent's belief state about the location of object k. For
example, p(s! = 4|o?, 8,w) is the agent’s belief that the
other agent (object k = 1) is in location four. Applying
Bayes’ rule gives the posterior probability (from the agent's
perspective) that object k is in location x (Eq. 1). This
posterior distribution is proportional to the likelihood of the
observations o, given that x was the true location of object
k, multiplied by the prior probability that object k was in
location x.

p(s* = x|o*,0,w)

o 1_[ p(of|s* =x,0,w) - p(sk = x) 1)

i=1.L
Step two: action planning The belief state that the agent
inferred in step one becomes an observed variable in the
action planning model (fig. 3-b). The model assumes that
the agent has a goal g* with respect to each object and a
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Figure 2. Example trials with human results (H) and
model comparisons (LS, PR, XV and AK). For each
example trial: The agent always enters the center room
from the left (indicated by arrow); first frame shows
direction agent oriented after reaching center
(information gathering phase); second frame shows
agent motion (decision phase).

priority c* for that object of primary, secondary or
unimportant. There were two agent types (cop and robber)
and we assumed a constant configuration of goals and
priorities for each type. Based on its goals, priorities, and
belief state, the agent chooses an action a as a sample from
a distribution that is proportional to the expected utility u of
the actions (eq. 2).

u(a=m,g,cs)

Yuula=m,g,cs)

O]

P(a=m|s,g,c) x

Inverse model (observer's perspective) Figure 3-c depicts
the inverse planning model from the perspective of the
observer.
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Figure 3. a) Belief model, b) generative action model
(agent’s perspective), ¢) inverse-planning model
(observer’s perspective). Shaded nodes are observed
variables and unshaded nodes are unobserved
variables.

Step one: belief inference The observer knows the true
state of the environment s and infers the agent's belief state
using a version of eq. 1 where s* is replaced with s'*. We
use s’ to represent the agent's belief state as inferred by the
observer. We do not provide the graphical model for this
step because it is identical to fig. 3-a with the exception that
sk is replaced with s'%.

Step two: type inference In the second step (fig. 3-c) the
variables that are known to the observer are the agent's
belief state s’ from step one and its action a. The observer’s
inference about the agent’s type is represented by the
posterior joint distribution P(t, g, cla, s").

P(t,g.cla,s") «x P(alg, c,s)P(gIt)P(0) @)

Step three: response The observer chooses a response
(“cop”, “robber”, or “don’t know”) based on the posterior
probability of the agent’s type t.

See the online appendix® for a more detailed description
of the computational theory and modeling — including a
description of the agent's utility function and the observer
response model.

Modeling

We developed four observer models based on the inverse
planning framework—the first model provides a full
description of our hypothesis about the mechanism by
which human observers assign belief states to agents. Each
of the last three models is a version of the full model in
which we remove one of the constraints on belief inference.
Line-of-sight (LS) model This observer assumes that an
agent’s belief about the location of objects is a function of
its orientation and the presence or absence of visual
obstructions (doors) between the agent and the objects. For

*https://webfiles.uci.edu/stauber/Tauber_Steyvers CogSci2011_
Appendix.pdf

an agent to “see” an object it must orient towards the object
and there must not be a closed door in front of the object.
Proximity (PR) model This observer does not require
orientation for the formation of belief states. It assumes that
an agent can “see” an object if it is in an adjacent room and
not behind a closed door even if the agent does not orient
towards the object.

X-ray vision (XV) model This observer assumes that an
agent’s belief about the location of objects is a function of
its orientation only. For an agent to “see” an object it must
orient towards the object — closed doors do not block its
line-of sight.

All-knowing (AK) model This model corresponds to an
observer that has no ToM. The observer represents the agent
as having the same belief state about the environment that it
has — in this case, complete and correct knowledge of the
environment. It implements only steps two and three of the
inverse model where the agent's belief state is equal to the
actual state of the environment.

Model Comparison

Figure 4 shows the negative log-likelihood of model
predictions for each participant based on a cross validation
analysis. We used the responses from all but one participant
to optimize a single parameter (o) that relates to the
response mechanism for each of the four observer models.
We then used this learned parameter value when predicting
the responses of the participant that was held out of the
training data. We did this for every participant. The line-of-
sight model made the best predictions for every participant,
followed by the proximity model, x-ray model and finally
the all-knowing model.

Qualitative model comparison Figure 2 provides a
comparison of model behavior and human judgments in
several illustrative conditions. All of the models tended to
correspond to the human responses on trials in which the
active agent had a clear line-of-sight to the other agent (figs.
2-a-2 & 2-b-3). When there was not a clear line of sight
between the agent and the objects, the LS model, and to
some extent the PR model, tended to perform better than the
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AK and XV models.

Figure 2-a demonstrates the effect of a closed versus open
door between the agents when the target agent is
approaching the other agent. The LS and PR models, along
with the humans, tended to respond with more uncertainty
when there was a closed door (fig. 2-a-1) than the AK and
XV models did. When there was an open door (fig. 2-a-2),
the humans and all of the models gave predominantly cop
responses.

Figure 2-b shows the effects of orientation and doors on
human and model behavior when the target agent moves
away from the other agent. When there is an open door but
no orientation (fig. 2-b-1) the LS model and humans are
uncertain, and the other three models give primarily robber
responses. When the target agent orients towards the other
agent but there is a closed door between them, the humans,
LS and PR model responded with uncertainty. The AK and
XV models gave robber responses. When the target agent
oriented towards the other agent and there was an open door
between them, the humans and all of the models gave
primarily robber responses.

Discussion

We propose that observing an agent's actions in the
context of the true state of its environment does not always
provide enough information for an observer to infer its
goals. Often, an observer needs to know something about
the agent's state of belief in order to interpret its actions. We
designed an experiment where observers watched a series of
animations — in each of which it appeared that an agent
moved in a certain direction in order to achieve its goals.
Even though there were sets of multiple trials that had
equivalent environmental states and agent actions, observers
interpreted the agents' actions differently depending on what
they thought the agent knew about the environment at the
time that it made its decision.

Our results are consistent with the hypothesis that human
observers infer an agent's belief state by using information
about whether it has a clear line-of-sight to relevant aspects
of the environment; and that these inferred belief states
affect observers' interpretations of the agent's behavior.

We developed four graphical models that each make
predictions about the structure of the process that humans
use to infer the identity of agents in our experiment. We
found that observer models that incorporated inferences
about agents’ beliefs outperformed an all-knowing observer
model in describing human responses. Additionally, we
found that all human responses were most consistent with
the predictions of a line-of-sight model that required agents
to both orient and have an obstruction-free line of sight
towards a location in order to observe it. The
correspondence between model predictions and human data
was progressively worse when we 1) assumed agent's
observed adjacent locations without orienting towards them
(proximity model); 2) assumed visual obstructions did not
impede observations (x-ray vision model); 3) assumed

agents had complete knowledge of the environment (all-
knowing model).

Our assumptions about the independence of the
information gathering and decision phases simplified the
model process. However, it is reasonable to argue that in
more realistic situations the information gathering process
would depend on the agent’s goals and priorities. In this
case an agent’s information gathering behavior depends on
where it has already looked, what it saw, and what its goals
are.

Finally, there is a growing body of empirical evidence
suggesting that ToM abilities may involve a combination of
processes that are each used more or less effectively by
human children and adults in different situations (Samson &
Apperly, 2010). A new direction for future research is the
development of a computational description of the cognitive
process(es) involved in ToM that accounts for the wide
range of failures and successes on ToM tasks by children
and adults described in the empirical literature.
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