
Finding neural correlates of drift diffusion processes in EEG oscillations
Marieke K. van Vugt (m.k.van.vugt@rug.nl)
Department of Artificial Intelligence, Nijenborgh 9

9747 AG Groningen, The Netherlands

Patrick Simen (psimen@math.princeton.edu) and

Jonathan D. Cohen (jdc@princeton.edu)
Princeton Neuroscience Institute, Green Hall

Princeton, NJ 08540 USA

Abstract

Recent studies have begun to elucidate the neural correlates
of evidence accumulation in perceptual decision making. Few
of them have used a combined modeling-electrophysiological
approach to studying evidence accumulation. We introduce a
novel multivariate approach to EEG analysis with which we
can perform a comprehensive search for neural correlates of
dynamics predicted by the drift diffusion model. We show that
the dynamics of evidence accumulation are correlated with de-
creases in the 4–9 Hz theta band over the course of a trial. The
rate of decrease in this band correlates with individual differ-
ences in fitted drift diffusion model parameters.
Keywords: EEG; drift diffusion model; decision making

Introduction
Every day we make thousands of decisions, and modeling
work has attempted to describe the nature of these decision
processes. With the advent of cognitive neuroscience, there
has been a growing interest in its neural correlates. This pa-
per introduces a novel approach to studying decision dynam-
ics with human electrophysiology. By using model-predicted
decision dynamics as regressors, we perform a comprehen-
sive search for oscillatory features of electroencephalography
(EEG) activity that could reflect evidence accumulation.

The presence of oscillations in EEG measurements indi-
cates that neurons in a region have an increased level of
spiking relative to their baseline (Fries, Nikolić, & Singer,
2007). Through being synchronized, the oscillations become
strong enough in power to be visible on the scalp. This syn-
chronization is thought to allow groups of neurons to com-
municate with each other (Fries, 2009; Womelsdorf et al.,
2007). The brain also appears to use oscillations in conjunc-
tion with spikes to encode information, for example phase
coding, where the phase of an oscillation at which a neuron
fires encodes the spatial location of an animal (Fries et al.,
2007; O’Keefe & Recce, 1993).

The most well-known oscillations are those in the 28–90
Hz gamma band, which have been studied extensively in the
context of attention tasks. A prominent finding is that atten-
tion increases the amplitude of occipital 28–90 Hz gamma
oscillations (e.g., Fries et al., 2007). Yet some studies have
shown that also oscillations of lower frequency are important
for attention. Busch and VanRullen (2010) found that stimuli
are better perceived at certain phases of the on-going 4–9 Hz
theta oscillation than at other phases. This has led to the idea

that sustained attention is not actually sustained, but rather
has an oscillating quality. Moreover, it suggests that 4–9 Hz
theta oscillations, which until recently have primarily been
associated with memory (Kahana, Seelig, & Madsen, 2001)
and spatial navigation (e.g., O’Keefe & Burgess, 1999), are
also relevant to perception.

On a more abstract level, it has been suggested that
theta oscillations are crucial for the coordination of multi-
ple sources of activity at decision points (Womelsdorf, Vinck,
Leung, & Everling, 2010), and combining various pieces of
evidence (van Vugt, Sekuler, Wilson, & Kahana, in revision).
Theta oscillations have also been found to covary with de-
cision certainty (Jacobs, Hwang, Curran, & Kahana, 2006)
and prediction errors in decision making (Cavanagh, Frank,
Klein, & Allen, 2010). This suggests that theta oscillations
could in fact have a more fundamental role in decision mak-
ing, namely the accumulation of evidence.

Evidence accumulation plays a fundamental role in accu-
mulator models of decision making like the Drift Diffusion
Model (DDM; Ratcliff, 1978). This model posits that to make
a decision, a person accumulates information until they reach
a threshold. Their response times (RTs) can be predicted by
adding a fixed non-decision time to the time it takes to reach
the threshold. The model has thresholds belonging to each
response alternative, and reaching the correct threshold leads
to a correct response. The speed with which one accumu-
lates evidence on average is referred to as the ’drift rate’ of
the accumulation process. This model is capable of explain-
ing complete RT distributions, not just average RTs like most
models of cognition.

In our study, we examine the hypothesis that theta oscil-
lations, but not oscillations at other frequencies, reflect evi-
dence accumulation as predicted by the DDM. We will also
test whether the dynamics of theta oscillations covary with
DDM parameters estimated from a participant’s behavioral
data. This will not only further our understanding of human
decision making, but may eventually allow us to distinguish
different implementations of the DDM that cannot be disen-
tangled solely based on behavioral data (Ditterich, 2010).

Methods
Task: Participants performed a perceptual decision mak-
ing task in which they judged the direction of motion (left
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or right) of a display of randomly moving dots of which a
percentage moved to the left or the right. These random
dot kinematograms were similar to those used in a series of
psychophysical and decision making experiments with mon-
keys as participants (e.g., Britten, Shadlen, Newsome, &
Movshon, 1992; Gold & Shadlen, 2001; Shadlen & New-
some, 2001). Stimuli consisted of an aperture of approxi-
mately 3 inch diameter viewed from approximately 100 cm
(approximately 4 degrees visual angle) in which white dots
(2 x 2 pixels) moved on a black background. A subset of dots
moved coherently either to the left or to the right on each trial,
whereas the remainder of dots were distractors that jumped
randomly from frame to frame. Motion coherence was de-
fined as the percentage of coherently moving dots. Dot den-
sity was 17 dots/square degree, selected such that individual
dots could not easily be tracked.

We had a control task in which participants did not need to
integrate evidence (non-integration condition). In this condi-
tion, each trial started with random dot motion, followed by
an arrow indicating the direction to which a participant should
respond. The arrow onset time was calibrated (based on RTs
in previous blocks of the non-integration condition) such that
the dot-motion-viewing times in these trials mirrored the re-
sponse time distribution of the dots trials.

The experiment presentation code was written in Psych-
Toolbox (Brainard, 1997). Dots were presented with Psy-
chToolbox extensions written by J. I. Gold (http://code.
google.com/p/dotsx/).

Participants: Twenty-three participants (12 female; 21
right-handed, mean age 25, range 18–38) participated in our
experiment in exchange for payment. The experiment was
approved by the Internal Review Board of Princeton Univer-
sity. Participants engaged in 3 separate hour-long training
sessions in which they became familiar with the task. At the
end of these training sessions, performance on a psychomet-
ric block was used to determine the coherences at which they
performed at approximately 70 and 90% correct. These co-
herence levels were used for the two EEG sessions.

Recording Methods: We recorded EEG data from 128
channels using Neuroscan EEG caps with a Sensorium EPA-
6 amplifier. Data were digitized at 1000 Hz and band-pass
filtered from 0.02–300 Hz; all impedances < 30 kΩ. Ac-
quisition was controlled by Cogniscan. All data were ref-
erenced to the nose or chin-electrode and off-line rerefer-
enced to an average reference after automatic bad channel re-
moval (Friederici, Wang, Herrmann, Maess, & Oertel, 2000;
Hestvik, Maxfield, Schwartz, & Shafer, 2007).

General Linear Model for EEG
We developed a General Linear Model (GLM) method to cor-
relate the predicted DDM dynamics with the EEG time se-
ries. For every trial, we modeled a ramp of activity starting
at stimulus onset and ending at the response. We contrasted
this ramp with a down-going ramp that began with a tran-
sient initial jump at stimulus onset. The sum of the up- and
downramps forms a “boxcar,” or step function. modeling the

alternative hypothesis of a generic “task-on” state. We cre-
ated a set of parallel up-ramps, down-ramps and boxcars for
the arrow control task.

In addition to these, we created a set of nuisance regres-
sors, modeling transient neural responses to stimulus onset
and button press, and eye activity. To determine the canon-
ical stimulus-locked response, we computed for every par-
ticipant individually the stimulus-related average in electrode
Cz and inserted this average waveform (from 0–300 ms post-
stimulus) in the regressor at any timepoint where a stimu-
lus was presented. Similarly, we used the average response-
locked waveform from -200–0 ms relative to the response in
CPz as the response regressor.1 The eyeblink regressor was
created from the activity of the eye channel.2

The regressors of interest consisted of ramps, which started
at stimulus onset for each trial, and ramped up to a value of 1
at the time of the response. To test our hypotheses regarding
ramping activity, we created separate ramp regressors for dots
(integration) and arrows (non-integration) trials. We com-
pared the fits of these regressors to regressors reflecting the
alternative hypotheses of neural activity that is “on” during
the trial (“boxcar”) and neural activity that reflects a transient
initial response slowly decreasing over the trial duration.

A major problem in GLM analyses of EEG data is the poor
signal-to-noise ratio (SNR). To increase the SNR we created
features (independent variables in the regression) that only
consisted of the trials themselves, padded with 300 ms before
the stimulus and after the response, pasted together into a sin-
gle time series. We created features both from the raw EEG
time series, and from wavelet-convolved signals in the delta
(2–4 Hz), theta (4–9 Hz), alpha (9–14 Hz), beta (14–28 Hz),
low gamma (28–48 Hz) and high gamma (48–90 Hz) ranges.
After construction, we downsampled these features to 50 Hz,
and z-transformed them.

We ran the GLM in two steps. In the first step we modeled
all the nuisance regressors. The regressors of interest were
then modeled on the residuals of this first regression, which
ensured that the nuisance regressors could not influence the
fits for the regressors of interest. In addition to computing the
regression coefficients for each feature, we also computed the
variance explained by correlating the feature with the fitted
regressors (Tabachnick & Fidell, 2005).

Results
Before turning to the electrophysiological results, we discuss
our behavioral data. Participants were engaged in a random
dot motion discrimination paradigm, where the level of mo-

1Response-related ERP peaks typically show their maximum
more posteriorly than stimulus-related ERP peaks. Cz and CPz are
two central electrodes that show peak responses to stimulus presen-
tation and button presses, respectively.

2We set this regressor to zero outside the eyeblink episodes de-
tected with an amplitude threshold to ensure that no random fluc-
tuations in the eye channel would distort our results. We focused
exclusively on eyeblinks and not on horizontal eye movements be-
cause we only had a single eye electrode placed underneath the left
eye.
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(a) (b) (c)

Figure 1: Mean accuracy (a), reaction time (b) and coher-
ences (c) across subjects.

(a)

(b)

(c)

Figure 2: Topographical overviews of the most significant
electrodes for the (a) eye blink, (b) stimulus and (c) re-
sponse regressors. Red and blue reflect positive and negative
weights, respectively, and the shading indicates the magni-
tude of the weights.

tion coherence was set such that they performed at roughly
70 and 90% correct (Figure (c)). These results are consistent
with a DDM parametrization in which thresholds are roughly
constant and the rate of evidence accumulation is high for the
high coherence condition, and low for the low coherence con-
dition.

Before running the GLM on the ramp regressors, we ver-
ified our method by plotting the main loadings of the eye
blink, stimulus and response regressors. Figure 2 shows
that as expected, eyeblinks have a frontopolar topography,
whereas stimulus and response regressors (which were gen-
erated based on electrodes Cz and CPz, respectively) have
a more central distribution centered around their respective
generator electrode.

Having established that the GLM3 is a viable method to an-

3Which predicts the time series of a single electrode by a linear

Figure 3: Validation of the subset method: within-subject
correlation of weighted regressors with EEG data divided
by the across-subject CCs. A perfect validity of the subset
method would yield a fraction of one (within-subject correla-
tions equal to across-subject CC).

(a) (b)

Figure 4: CC as a function of frequency, with the DDM-
modulated model in blue and additional correlation achieved
by the RT-modulated model in red, shown separately for the
ramp regressor of (a) dots and (b) arrows.

alyze EEG data, we used canonical correlation (CC), a mul-
tivariate technique, to search for the hypothesized ramp dy-
namics in our data. The advantage of CC is that it allows
linear combinations of channels to predict linear combina-
tions of regressors. Because it is more difficult to interpret
linear combinations of regressors, we initially restricted our
attention to single regressors. Nevertheless, preliminary data
indicate that ±40% larger CCs can be obtained by allowing
linear combinations of regressors.

To be able to do group analysis, we had to take a subset
of the data for every participant to further reduce computa-
tional load. We then performed a CC between the regressors
and the EEG time series for every channel, and at every fre-
quency. We did a separate CC for every frequency band, be-
cause we sought to make inferences about which would show
most evidence of ramping activity.

One may wonder whether a CC based on a subset of each
subject’s data is valid. To address this concern, we compared
the correlation value of the canonical correlate of interest
with the predicted correlations within each subject (i.e., us-
ing the complete data for each subject). Figure 3 shows that
the within-subject correlations based on a subject’s complete

combination of regressors.
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data, weighted by the coefficients obtained from the CC, have
very similar correlations to the across-subject CC based on a
subset of a subject’s data [sign-test comparing median corre-
lation to 1: p = 0.214].

Figure 4(a) shows for every frequency range (as well as
non-wavelet-transformed EEG) the CC of the upramp. This
correlation is largest in the 2–4 Hz delta and 4–9 Hz theta
bands. The CC in the theta band is specific to the dots con-
dition, whereas the CC in the delta band occurs also for the
non-integration (arrows) condition (Figure 4(b)). This sug-
gests that theta oscillations are a more likely candidate for
a neural correlate of evidence accumulation than delta oscil-
lations. The downramp and boxcar regressors show a much
lower correlation [in the theta band the CCs are 0.11 for the
boxcar, 0.076 for downramp dots, and 0.15 for downramp ar-
rows]. All CCs have highly significant p-values because of
the large number of datapoints [all ps < 0.001].

We then asked to what extent the DDM, free from trial-to-
trial variations in RT, could predict the same EEG data. To
do this, we compared the CCs for a regressor that was ramp-
ing up or down exactly in concordance with RT to that of
a regressor that was more stereotyped: it had a fixed length
(time-locked to the response) but was modulated by an in-
dividual’s DDM parameters.5 Because the DDM-modulated
regressor is not yoked to RT, it fails to capture the stochastic
noise in RT. Although as would be expected, the CCs are uni-
formly heigher for the RT-based regressor than for the DDM-
modulated regressor, it is remarkable that the DDM explains
a large fraction from the variance that the RT-yoked regressor
can. In other words, the model is able to account for a large
portion of the neural variance in ramp-like behavior.

Table 1: Mean (sem) DDM parameters for best-fitting model,
separately for low and high coherence (integration condition),
and arrows (non-integration conditions). cond: condition.
T0: non-decision time. z: starting point. Model fits were
obtained from the DMA toolbox (VandeKerckhove & Tuer-
linckx, 2008)

cond drift threshold T0 z
low 0.060 (0.0041) 0.157 (0.008) 0.428 (0.012) 0.078 (0.0042)

high 0.162 (0.0132) 0.147 (0.009) 0.421 (0.020 ) 0.078 (0.0042)

arrows 0.784 (0.069) 0.210 (0.036) 0.219 (0.009) 0.094 (0.027)

Figure 5 shows the time courses of the canonical correlate
in the theta band that has the heighest (negative) weight on the
dots upramp regressor. The time course of the ramp regressor
is much larger for the integration condition (green) than for
the arrow trials, the non-integration condition (magenta). The
discontinuities close to the stimulus and response are caused
by the subtraction of the nuisance regressors.

4Of course one should keep in mind that it’s impossible to prove
the null hypothesis

5Regressor height was modulated by the threshold parameter; its
slope by the drift parameter and the ramp onset was delayed by the
non-decision time.

(a) (b)

(c)

Figure 5: Stimulus-locked (a) and response-locked (b) time
courses of the canonical correlate in the 4–9 Hz theta band,
correlating with the dots upramp, and (c) its topography (blue
indicates a negative correlation between oscillatory power
and the regressor). The shade of the color indicates the mag-
nitude of the correlation.

We next asked whether the dynamics of this ramp co-
varied with individual differences in DDM parameters. Ta-
ble 1 shows the mean DDM fits across subjects. The mean
(sem) Maximum Likelihood fit value across subjects was
3466 (167) and the mean BIC (Bayesian Information Cri-
terion) was 3508 (167). We found a significant correlation
[r(22) = 0.36, p = 0.019] between an individual’s drift rate
and the slope of the average theta-band time course for that
same person. There was no significant correlation between
the level the time course reached at the end of the response
interval and the threshold [r(22) = -0.11, n.s.].

If our putative neural ramp correlate indeed reflects the
drift rate, then it should be possible to divide trials into those
with a short and long RT based on the thus-defined neural
drift rate. Figure 6 shows that this can indeed be done for a
subset of the participants (four examples are given). Subse-
quent fits of the DDM on the subsets of trials for these par-
ticipants verified that higher neural drift was associated with
a higher behavioral drift (Figure 7). The fact that this is not
possible for all participants might be related to (1) problems
with their EEG data quality or (2) non-optimal task perfor-
mance where participants engage in different cognitive pro-
cesses (distraction) in a large fraction of the trials. A further
investigation of this is left for later work.

Discussion
We have confirmed our hypothesis that 4–9 Hz theta oscilla-
tions exhibit dynamics consistent with evidence accumulation
in a perceptual decision making task more so than oscillations
at other frequencies. In addition, the magnitude of the differ-
ence between the slopes of these potential “neural accumu-
lators” covaries with individual differences in the drift rates
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(c) (d)

Figure 6: Neural estimates of the drift rate (binned in tertiles),
based on the slope in the period of 500–100 ms before the
response, can be used to predict RT bins (slow, medium, fast).
Four examples of participants are shown, with the top row of
each panel reflecting low coherence and the bottom row high
coherence.

obtained from the behavioral data.
These results support previous findings of the involvement

of theta oscillations in decision making (e.g., Cavanagh et al.,
2010; Jacobs et al., 2006). Although the ramp regressor also
loads fairly strongly on activity in the delta range, this fre-
quency also shows a significant correlation with activity in the
non-integration control task. This suggests that while theta
may be specific to evidence accumulation, delta may reflect a
more generic “on-task” process. The fairly large loading on
the alpha regressor may reflect bleeding-in of theta activity
because there are individual differences in the ranges of alpha
and theta oscillations (Klimesch, Schirnke, & Pfurtscheller,
1993). One may wonder what is particular about the theta
frequency that would make it suitable for a function in de-
cision making. A modeling study by Smerieri, Rolls, and
Feng (2010) suggests a possible answer. They showed that
in simulated spiking neural networks of two populations of
mutually-inhibiting neurons, RTs decreased and drift rates in-
creased with increasing theta power. This effect was specific
to the theta range because higher frequencies are too fast to
modulate the cell’s membrane potential, which acts as a low-
pass filter.

What is quite surprising in our neural correlate of evi-
dence accumulation is that instead of it increasing, oscilla-
tory power actually decreases over the course of the decision
interval. It may be that decreases in oscillatory power actu-
ally reflect increases in functional brain activity. This is con-
sistent with Lorist et al. (2009), who found that oscillatory
power increases with fatigue, implying it increases with pro-
ductive task performance. It may also be the case that over
the course of evidence accumulation, one moves from a more

Figure 7: Fits of the DDM drift rate parameter to trials that
were grouped based on the neural drift (slope 500–100 ms
pre-response).

global mode of processing, in which information is combined
from a large number of neurons, to combining information
from a much smaller set of neurons (associated with less syn-
chronization and lower oscillatory power). Both of these hy-
potheses could be tested with more localized neural record-
ings obtained from e.g., intracranial EEG. A third possibility
is that theta may reflect the amount of uncertainty rather than
the evidence accumulation process per se.

One may also wonder why the correlations between the
neural accumulators and EEG data, although significant, are
fairly low. In fact, the order of magnitude of correlations that
we obtained are not unlike those obtained in GLMs applied
to fMRI data. This is caused by the large amount of noise
in neural data. Future studies should investigate whether this
can be improved by applying e.g., independent component
analysis (Delorme, Makeig, & Sejnowski, 2001). Also reg-
ularization, which focuses on the informative features in the
data, could possibly help to increase the correlation between
model dynamics and EEG data.

Our findings have several implications for future research.
First, the correlates of the DDM that are observable in EEG
can be used to assess the effect of task manipulations (such
as speed-accuracy trade-off or reward rate) on accumulation
dynamics. Second, there are large individual differences in
task performance. EEG signatures of neural accumulators
may allow us to distinguish different types of participants
or strategies, given that individual differences in DDM pa-
rameters covaried with the slope of the neural accumulation
signal. The “neural accumulators” thereby soak up some por-
tion of the noise in the model. These “neural accumulators”
may also capture individual trial noise, such as attentional
fluctuations, although that remains to be proven. Third, we
can use the same multivariate methods to clarify the topo-
graphical location of possible neural accumulators in fMRI
data. Finally, it is important to consider what implications
our results have for models of decision making. For exam-
ple, the non-linearity of the accumulator time courses sug-
gests that evidence accumulation may better be described by
a competitive evidence integration than by a linear ballistic
accumulator (Brown & Heathcote, 2008). Yet, it is diffi-
cult to distinguish between the remaining accumulator mod-
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els based solely on their dynamics in two-alternative forced
choice tasks (Ditterich, 2010).

In short, we have provided evidence for a neural correlate
of the dynamics of evidence accumulation in decision mak-
ing measured in human EEG. Accumulation dynamics were
captured best by 4–9 Hz theta oscillations in a set of superior
parietal channels, and covaried with individual differences in
DDM parameters.
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