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Abstract

Parallel Distributed Processing (PDP) models have always
been considered a particularly likely framework for
achieving neural-like simulations of cognitive function. To
date, however, minimal contact has been made between
PDP models and physiological data from the brain
performing cognitive tasks. We present an implemented
PDP model of Event-Related Potential (ERP) data on visual
word recognition. Simulations demonstrate that a novel
architecture with improved neural plausibility is critical for
successfully reproducing key findings in the ERP data.
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Introduction

From their initial development, PDP models have been
considered an especially promising framework for
building simulations which perform cognitive tasks with a
mechanism similar to that employed in the brain (e.g.,
McClelland, Rumelhart, & Hinton, 1986). This optimism
derives in large part from the fact that the basic
processing units in PDP models are neuron-like, in that
the models typically employ many interconnected units,
each performing relatively simple computations, and
represent information in a distributed fashion (c.f.,
Bowers, 2009; Plaut & McClelland, 2010).

The sense that PDP models should lend themselves well
to simulating data from cognitive neuroscience—that is,
brain data relating to cognitive function—is not only
historical. Indeed, especially in the domain of single
word reading, it is currently common for descriptions of
prominent models to suggest that improvements over
existing models could and should be made by increased
contact with data from cognitive neuroscience (e.g., Harm
& Seidenberg, 2004; Perry, Ziegler, & Zorzi, 2007).
Correspondingly, as theories of how reading works based
on neuroimaging data have become increasingly well-
specified, a consensus is emerging—especially in the
Event-Related Potential (ERP) literature—that
interpretation of brain data could benefit from the
guidance of formal computational models (e.g., Banquet
& Grossberg, 1987; Barber & Kutas, 2007; Van Berkum,
2008). For example, one currently viable theory of the

functional significance of the N400 ERP component (a centro-
posterior component peaking around 400 ms post stimulus
onset, and thought to reflect lexical-semantic access: see
Kutas & Federmeier, in press, for review) suggests that N400
activity represents the continuous activation of semantic
features associated with an orthographic input at either a
whole or partial item level (e.g., the activation of the semantic
features associated with both FORK and PORK in response to
presentation of the word FORK; Laszlo & Federmeier, 2011).
Under this so called obligatory semantics view, contact with
semantics is made automatically by every orthographic input,
and interaction between levels of representation is continuous
(explaining, for example, sentence context effects on illegal
nonwords; Laszlo & Federmeier, 2009).

Two features of this theory are particularly relevant for
implementation in a computational model. First, the proposal
that orthographic sub-parts of items can activate the semantic
features of orthographically similar items extends to
nonwords, such that pseudowords (e.g., GORK) and even
consonant strings (e.g., XFQ) are allowed to contact semantics
—explaining robust N400 effects observed for these items
(e.g., Laszlo & Federmeier, 2009).  This feature of the
obligatory semantics view implicates a word recognition
system that is not strongly lexicalized, and as such would
seem to be more appropriate for simulation in a distributed
PDP framework than in competing frameworks with explicit
lexical representations (cf., Perry, Ziegler, & Zorzi, 2007).
Though it would be possible for lexicalized models to account
for these data by simply allowing very un-wordlike nonwords
to activate their neighbors weakly, such a system is no longer
strongly lexicalized in that its internal response to each input
involves the activation of a number of units, with that
activation graded by similarity to the input-- a system that is
essentially distributed. Second, the continuous, interactive
nature of the obligatory semantics view stronly contrasts with
staged models of word recognition (e.g., Borowsky & Besner,
1993). Thus, the obligatory semantics view posits a
mechanistic account of visual word recognition resonant with
the PDP approach, but the question remains: would an
implemented PDP model exhibit the patterns of effects in the
ERP data suggestive of a non-lexicalized, continuous system
(e.g., N400 effects for illegal consonant strings)?
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Figure 1: Architecture of the ERP model. Lines with
empty circles indicate excitatory connections, lines with
filled circles indicate inhibitory connections. INH stands
for “inhibitory”. Note that no units have both excitatory
and inhibitory outgoing connections, and that inhibition
is always within, never between, levels of representation.

It seems clear, then, that converging evidence for the
obligatory semantics view could be provided by
simulations of a model instantiating its key theoretical
constructs.  In addition to the added support for a
particular view of N400 processing that could be provided
by a successful simulation, the effort to model the
continuous, internal dynamics of reading as reflected in
the psychophysiology could be beneficial for improving
reading models as well. The types of measures with
which reading models are typically concerned—for
example, reaction time (RT) and accuracy—provide
important information about the reading system.
However, RT and accuracy are fundamentally end-state
measures, and therefore do not provide direct evidence
about the continuous, internal processing involved in
reading between when an item is presented and when a
response is made. ERPs provide information about
exactly such processing, and thus have the potential to
provide important constraints on the internal functioning
of reading models.

There are both empirical and computational challenges
to producing a large-scale reading model that can simulate
the ERP data. In the empirical domain, although it would
be advantageous to simulate item-level effects, until very
recently no ERP data suitable for modeling were
available, as the low numbers of participants typically run
in ERP reading studies prohibited the formation of stable
item ERPs. However, the recent advent of a massive
corpus of single-item ERP data (Laszlo & Federmeier,
2011) collected specifically for the purpose of informing a
computational model has effectively addressed this issue.

In particular, one largely theoretical and one
implementational challenge are fundamental to an attempt
to build a model of the ERP reading data. At the
theoretical level, it is necessary to determine what

parameter of the model should be linked with the dependent
measure in the ERP data: amplitude of the N400 component.
Implementation-wise, because ERPs fundamentally reflect
synchronous excitatory and inhibitory post-synaptic potentials
in the cortex, it is especially important to handle excitation and
inhibition in the network in a manner true to the way they are
handled in the brain. We next discuss our approach to each of
these challenges, before summarizing the critical ERP data,
describing the ERP model, and presenting simulations.

A Linking Hypothesis: N400 to Model

Past computational models of reading have been solely
concerned with simulating behavioral RT or accuracy data
(e.g., Harm & Seidenberg, 2004; Perry, Ziegler, & Zorzi,
2007; though see also Banquet & Grossberg, 1987 for joint
ERP and computational work in another domain). Thus,
parameters of past models selected for comparison with the
empirical data have been linked to RT or accuracy—for
example, number of processing cycles to settling in the case of
RT. However, RT or accuracy measures are not appropriate
for testing theories about the ERP data, as the critical measure
in the relevant ERP studies is N400 mean amplitude, often in
the absence of any explicit response to the eliciting stimulus.

The determination of what parameter of the model to link
with N400 mean amplitude was guided largely by a pervasive
pattern of effects in the single item ERP corpus suggesting that
N400 amplitudes are larger for items which might reasonably
be thought to elicit more overall activity in semantics. That is,
items with larger orthographic neighborhood sizes, higher
frequency of orthographic neighbors, more lexical associates,
and higher frequency lexical associates all elicited larger
N400s than did items with lower values on these measures
(Laszlo & Federmeier, 2011). In addition to being pervasive
in the single-item ERP corpus, this pattern of results is
generally consistent with past work in factorial ERP designs
(e.g., Holcomb, Grainger & O’Rourke, 2002; Laszlo &
Federmeier, 2007), all of which point to N400 mean amplitude
as a rough indicator of amount of semantic activation elicited
by a target item-- at least when items are presented in random
lists.  Thus, we chose to link mean amount of semantic
activation across the entire time course of processing in our
network with N400 mean amplitude.

Excitation and Inhibition

ERPs reflect the synchronous firing of excitatory and
inhibitory post-synaptic potentials in open-field configurations
in the cortex. Thus, the neuroanatomy of excitation and
inhibition is highly relevant to the final morphology of ERPs
measured at the scalp. We considered two critical
characteristics of excitation and inhibition in the cortex when
planning the architecture of the ERP model. First, neurons in
the cortex are either excitatory or inhibitory, but not both (e.g.,
Crick & Asanuma, 1986). Second, inhibitory connections are
relatively short-range, with connections between cortical areas
being largely excitatory (Crick & Asanuma, 1986). Neither of
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Left, item aggregated ERPs from the middle parietal electrode site representing the response to words,
The N400 window is boxed. Right, scatter plot depicting the relationship

between N400 mean amplitude and orthographic neighborhood size for all 300 single item ERPs. Lexical items (words and

acronyms) are in filled circles, nonlexical items (pseudowords and illegal strings) are in empty circles.

negative is plotted up.

these characteristics have been implemented in past PDP
reading models, as the typical architecture of such models
allows for individual units to have both excitatory and
inhibitory outgoing connections, and for inhibitory
connections to exist between levels of representation (e.g.,
Plaut, McClelland, Seidenberg, & Patterson, 1997; Harm
& Seidenberg, 2004). In the ERP model, we sought to
move towards a more neurally plausible architecture by
separating excitation and inhibition, and by only allowing
excitatory connections between levels of representation (a
strategy which has also been suggested for cognitive
models; see for example Grossberg, 1984).

As can be observed in Figure 1, which displays the
architecture of the ERP model, this was accomplished by
pairing each bank of excitatory-only units within a level
of representation with a bank of inhibitory-only units
within that same layer. Thus, no unit had both excitatory
and inhibitory projections: only one or the other. Only
the excitatory units were allowed projections between
layers of representation, meaning that the range of
inhibitory connections was limited to within a level of
representation. Each inhibitory layer included far fewer
units than its matching excitatory layer (there were only
6.6% as many inhibitory units as excitatory units, over
all), in accordance with the fact that the large majority of
neurons in the cortex are excitatory (e.g., White, 1989).
As we shall see, separating excitation and inhibition in
this fashion is critical for successfully simulating the ERP
data.

Method: ERPs

In both panels,

ERPs were acquired from 120 participants (58 female, age
range 18-24, mean age 19.1) who viewed an unconnected
stream of text consisting of words (e.g., HAT, MAP),
acronyms (e.g., VCR, AAA), pseudowords (e.g., TUL, KAK),
illegal strings (e.g., CKL, KKB), and names (e.g., SARA,
DAVE). Words, acronyms, pseudowords, and illegal strings
were used as the single-item study was a replication of a
previous study using these same item types (Laszlo &
Federmeier, 2007) and we wanted to be certain before
collecting 120 participants worth of data that our items and
task were already well studied. Names were of no
experimental interest but served as the putative targets in the
experiment: Participants were required to press a button each
time a name appeared (this was the case in Laszlo &
Federmeier, 2007, as well). Single item ERPs were formed by
averaging, across participants but not items, at each electrode
time-locked to the onset of each word, pseudoword, acronym,
or illegal string. Three-hundred single item ERPs were thus
formed at each electrode, 75 in each of the 4 critical item
types. In addition, more traditional ERPs representing the
averaged within-subject response to, for example, all words,
were also computed. For a more detailed description of the
ERP methods, see Laszlo & Federmeier, 2011.

Results: ERPs

Automated large scale multiple regression analyses conducted
on N400 mean amplitudes for all 300 single item ERPs
revealed that when all items were included (i.e., not just
lexically represented items such as word and acronyms) by far
the largest predictor of N400 amplitude was orthographic
neighborhood size (Coltheart’s N, the number of words that
can be produced by changing 1 letter of a target item): N
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Figure 3: Left, mean semantic activation in the constrained network over time, for pseudowords, words, illegal strings, and
acronyms. Note that high N items (words, pseudowords) tend to elicit more activation than low N items (acronyms, illegal
strings), regardless of lexicality. Right, scatter plot depicting the relationship between mean semantic activation and
orthographic neighborhood size for all 441 individual items in the model’s testing set. Lexical items (words and acronyms)
are in filled circles, nonlexical items (pseudowords and illegal strings) are in empty circles.

explained 30.6 % of unique variance in N400 amplitude,
followed by summed frequency of orthographic
neighbors, which explained only 1.2 % of additional
variance. A 2 x 2 items analysis of variance (ANOVA)
with factors of N (high or low) and lexical type (lexical:
words and acronyms, nonlexical:  pseudowords and
illegal strings) revealed a main effect of N (F206 = 159.7,
p <.0001) but no effect of lexical type (¥ = .19), and no
interaction between the two (F = 1.1) Figure 2 displays
the N effect in the single item ERPs for both individual
items and categories of items—the N effect manifests
itself in the item aggregated ERPs as words and
pseudowords (i.e., high N items) eliciting larger N400s
than acronyms and illegal strings (i.e., low N items). In
these data, as in past studies with similar items (e.g.,
Laszlo & Federmeier, 2007; 2009), individual lexical
characteristics--such as N--are considerably stronger
predictors of N400 amplitude than categorical labels such
as lexical class (e.g., words v. acronyms).

The prominence of the N effect, combined with
previous results demonstrating that, unlike effects of other
lexical variables such as frequency or concreteness, N
effects on the N400 are not eliminated by either repetition
(Laszlo & Federmeier, 2007), or sentence context (Laszlo
& Federmeier, 2009), suggests that N effects in the ERPs,
in addition to being quite large, are also potentially of
fundamental importance. For these reasons, and because
of space considerations, we focus on N effects in the
simulations presented below.

Method: Simulations

The architecture of the ERP model is depicted in Figure 1.
A 15-unit visual input layer represents the visual features

of each of three letters in 5 non-overlapping slots. The visual
input layer feeds into an orthographic autoencoder, which was
trained to reproduce the visual input. The autoencoder feeds
through a 20-unit hidden layer to a 50-unit semantic layer,
where relatively sparse representations (i.e., either 3 or 7
units) were trained to be associated with each visual input.
Connections between level of representation are positive-only.
Each level of representation (input, autoencoder, hidden layer,
and semantics) has an associated inhibitory bank, connected as
depicted in Figure 1. The logistic function is used to compute
unit activations.

Training was accomplished by back-propagating cross-
entropy error through time. The network was trained on 77
items (62 words and 15 acronyms). On each training trial, the
visual input for one of the 77 items was clamped on, and
activation was allowed to propagate through the network for
12 time steps with no accumulation of error. Targets were
then presented for an additional 4 time steps. When training
was complete, the network was tested on 441 items: the 62
words and 15 acronyms it was trained on, in addition to 279
illegal strings and 85 pseudowords which the network was not
exposed to during training. The target for all illegal strings
and pseudowords was for all semantic units to remain off.

Results: Simulations

At the end of training, the network was tested for its accuracy
in producing the correct outputs in response to both the 77
inputs it was trained on (62 words, 15 acronyms), and the 364
additional nonwords that it was not exposed to in training (85
pseudowords, 279 illegal strings). An item was judged correct
if the Euclidean distance between its actual output vector and
its target vector was less than the distance between its actual
output and any other target. Under this criterion, the network
was 85% accurate (376 / 441 items correct).  Errors largely
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consisted of units being too weakly active for words and
acronyms—this was a result of inhibition needing to be
very strong in order to correctly turn all units off for
pseudowords and illegal strings. Of critical importance
was comparing the internal dynamics of the model to the
ERP data. Figure 3 displays the simulation data
corresponding to both the single item and item-aggregated
ERP data. Regression analysis revealed that, just as in the
ERPs, there was a strong relationship between N and
mean semantic activation in the model (» = .34, p < .
0001). Because there were not equal numbers of items in
each lexical type cell in the simulations, it was not
possible to perform ANOVA analyses corresponding to
those performed on the ERP data.  However, non-
paramentric rank sum tests were able to confirm that, as it
appears in Figure 3, words elicited more semantic
activation than did acronyms or illegal strings (for
acronyms, p < .0001; for illegal strings, p < .0001), but
not more than did pseudowords (p = .82). Similarly,
pseudowords elicited more semantic activation than did
acronyms or illegal strings (for acronyms, p < .0001; for
illegal strings, p < .0001). Acronyms and illegal strings
also did not differ in the mean amount of semantic
activity elicited (p = .80). Thus, the same pattern of
effects was observed in the model as in the ERPs.

A second goal of the simulations was to determine
whether the separation of excitation and inhibition was
critical for producing the appropriate internal dynamics in
the model. Therefore, a second simulation was run which
was identical to the first but which did not place
constraints on the sign of any connections (thus allowing
units to have both excitatory and inhibitory connections
simultaneously, and allowing between level of
representation inhibition.) In what follows, we will refer
to this as the unconstrained network, while the original
network will be referred to as the constrained network.
Figure 4 displays the item-aggregated results of this
simulation.

After an identical amount of training, the
unconstrained network was approximately as accurate as
the constrained model, producing correct outputs for 83%
of items (367 / 441). However, despite the similar level of
overall performance, the internal dynamics of the
unconstrained network did not resemble the critical ERPs.
While there was still a relationship between N and mean
amount of semantic activation in this simulation (r = .26,
p < .0001), the pattern of this effect across lexical types
did not match the empirical findings. For example, while
words and pseudowords still elicited more activity than
did acronyms (for words, p < .0001; for pseudowords, p
<.0001), so did illegal strings (p = .035.), and it is clear
that differences among item types, where they exist at all
in this simulation, exist in relatively late tonic activation
levels, as opposed to in the early sweep of over-activation
observed in both the ERP data and the constrained

simulation. Thus, a network which satisfactorily reproduces
key dynamics of the ERP data when constrained to handle
excitation and inhibition in a neurally plausible fashion does
not do so when those constraints are removed.

Discussion

In our attempt to begin to bring computational formalism to a
theory of visual word recognition from the ERP literature, we
were able to successfully simulate critical findings from the
single item ERP corpus in a PDP model which instantiated
components of the obligatory semantics view of N400
processing.  This success was at least in part due to the
attention paid in the simulation to the neuroanatomy of
excitation and inhibition, without which the successful model
was not able to correctly reproduce the dynamics observed in
the ERPs. The work consists of a proof of the concept that
ERP data can successfully be simulated within the PDP
framework, and provides a foundation for more
comprehensive modeling of psychophysiological processes.

Though an encouraging initial attempt, it is clear that many
refinements to the model are necessary avenues for future
work. Two seem especially important: on the physiological
side, extending the neural plausibility of the model, and on the
behavioral side, making use of extensive past cognitive
simulations to improve the model’s contact with behavioral
data.

While the architecture of the ERP model does represent an
improvement in neural plausibility over past models, there are
further improvements to be made. For example, as was
described in the methods, the ERP model employs back-
propagation through time to effect error reduction during
training, despite the fact that back-propagation is considered
unlikely as a mechanism of neural learning (e.g., O’Reilly,
1996). In response to this issue, current work with the ERP
model focuses on successfully completing training with the
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Contrastive Hebbian Learning algorithm (Ackley, Hinton,
& Sejnowski, 1985), which at least in some cases
provides similar solutions to back-propagation (e.g., Xie
& Seung, 2003), while avoiding many of back-
propagation’s biologically implausible properties.

The future development of the ERP model will also be
guided by the strengths of past, related models of
cognitive phenomena. The ERP model’s direct
predecessors, the so-called “triangle” models (e.g., Plaut,
McClelland, Seidenberg, & Patterson, 1996; Harm &
Seidenberg, 2004), have provided significant insight into
the representations and flow of information in use in
fundamental cognitive tasks such as lexical decision,
semantic categorization, and the word superiority effect.
Further development of the ERP model will make use of
those insights, as in ongoing work we will consider the
simultaneous simulation of ERP and behavioral data an
important success criterion.
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