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Abstract
Parallel Distributed Processing (PDP) models have always 
been considered a particularly likely framework for 
achieving neural-like simulations of cognitive function.  To 
date, however, minimal  contact has  been made between 
PDP  models and physiological data from the brain 
performing cognitive tasks.  We present an  implemented 
PDP  model of Event-Related Potential (ERP) data on visual 
word recognition.  Simulations demonstrate that a novel 
architecture with improved neural plausibility is  critical for 
successfully reproducing key findings in the ERP data.
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Introduction
From their initial development, PDP models have been 
considered an especially promising framework for 
building simulations which perform cognitive tasks with a 
mechanism similar to that employed in the brain (e.g., 
McClelland, Rumelhart, & Hinton,  1986).  This optimism 
derives in large part from the fact that the basic 
processing units in PDP models are neuron-like, in that 
the models typically employ many interconnected units, 
each performing relatively simple computations, and 
represent information in a distributed fashion (c.f., 
Bowers, 2009; Plaut & McClelland, 2010).
 The sense that PDP models should lend themselves well 
to simulating data from cognitive neuroscience—that is, 
brain data relating to cognitive function—is not only 
historical.  Indeed, especially in the domain of single 
word reading, it is currently common for descriptions of 
prominent models to suggest that improvements over 
existing models could and should be made by increased 
contact with data from cognitive neuroscience (e.g., Harm 
& Seidenberg, 2004; Perry, Ziegler, & Zorzi, 2007).  
Correspondingly,  as theories of how reading works based 
on neuroimaging data have become increasingly well-
specified, a consensus is emerging—especially in the 
Event-Related Potential (ERP) literature—that 
interpretation of brain data could benefit from the 
guidance of formal computational models (e.g., Banquet 
& Grossberg, 1987; Barber & Kutas, 2007; Van Berkum, 
2008).  For example, one currently viable theory of the 

functional significance of the N400 ERP component (a centro-
posterior component peaking around 400 ms post stimulus 
onset, and thought to reflect lexical-semantic access:  see 
Kutas & Federmeier, in press, for review) suggests that N400 
activity represents the continuous activation of semantic 
features associated with an orthographic input at either a 
whole or partial item level (e.g.,  the activation of the semantic 
features associated with both FORK and PORK in response to 
presentation of the word FORK; Laszlo & Federmeier, 2011).  
Under this so called obligatory semantics view, contact with 
semantics is made automatically by every orthographic input, 
and interaction between levels of representation is continuous 
(explaining,  for example, sentence context effects on illegal 
nonwords; Laszlo & Federmeier, 2009).

Two features of this theory are particularly relevant for 
implementation in a computational model.  First, the proposal 
that orthographic sub-parts of items can activate the semantic 
features of orthographically similar items extends to 
nonwords, such that pseudowords (e.g., GORK) and even 
consonant strings (e.g., XFQ) are allowed to contact semantics
—explaining robust N400 effects observed for these items 
(e.g., Laszlo & Federmeier, 2009).  This feature of the 
obligatory semantics view implicates a word recognition 
system that is not strongly lexicalized, and as such would 
seem to be more appropriate for simulation in a distributed 
PDP framework than in competing frameworks with explicit 
lexical representations (cf., Perry, Ziegler, & Zorzi, 2007).  
Though it would be possible for lexicalized models to account 
for these data by simply allowing very un-wordlike nonwords 
to activate their neighbors weakly, such a system is no longer 
strongly lexicalized in that its internal response to each input    
involves the activation of a number of units, with that 
activation graded by similarity to the input-- a system that is 
essentially distributed.  Second, the continuous, interactive 
nature of the obligatory semantics view stronly contrasts with 
staged models of word recognition (e.g., Borowsky & Besner, 
1993).  Thus, the obligatory semantics view posits a 
mechanistic account of visual word recognition resonant with 
the PDP approach, but the question remains:  would an 
implemented PDP model exhibit the patterns of effects in the 
ERP data suggestive of a non-lexicalized, continuous system 
(e.g., N400 effects for illegal consonant strings)?
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 It seems clear, then, that converging evidence for the 
obligatory semantics view could be provided by 
simulations of a model instantiating its key theoretical 
constructs.   In addition to the added support for a 
particular view of N400 processing that could be provided 
by a successful simulation, the effort to model the 
continuous, internal dynamics of reading as reflected in 
the psychophysiology could be beneficial for improving 
reading models as well.    The types of measures with 
which reading models are typically concerned—for 
example, reaction time (RT) and accuracy—provide 
important information about the reading system.  
However, RT and accuracy are fundamentally end-state 
measures, and therefore do not provide direct evidence 
about the continuous, internal processing involved in 
reading between when an item is presented and when a 
response is made.  ERPs provide information about 
exactly such processing, and thus have the potential to 
provide important constraints on the internal functioning 
of reading models.    

There are both empirical and computational challenges 
to producing a large-scale reading model that can simulate 
the ERP data.  In the empirical domain,  although it would 
be advantageous to simulate item-level effects, until very 
recently no ERP data suitable for modeling were 
available, as the low numbers of participants typically run 
in ERP reading studies prohibited the formation of stable 
item ERPs.  However, the recent advent of a massive 
corpus of single-item ERP data (Laszlo & Federmeier, 
2011) collected specifically for the purpose of informing a 
computational model has effectively addressed this issue.
 In particular, one largely theoretical and one 
implementational challenge are fundamental to an attempt 
to build a model of the ERP reading data.  At the 
theoretical level, it is necessary to determine what 

parameter of the model should be linked with the dependent 
measure in the ERP data:  amplitude of the N400 component.  
Implementation-wise, because ERPs fundamentally reflect 
synchronous excitatory and inhibitory post-synaptic potentials 
in the cortex, it is especially important to handle excitation and 
inhibition in the network in a manner true to the way they are 
handled in the brain.   We next discuss our approach to each of 
these challenges, before summarizing the critical ERP data, 
describing the ERP model, and presenting simulations.

A Linking Hypothesis:  N400 to Model
Past computational models of reading have been solely 
concerned with simulating behavioral RT or accuracy data 
(e.g., Harm & Seidenberg, 2004; Perry, Ziegler, & Zorzi, 
2007; though see also Banquet & Grossberg, 1987 for joint 
ERP and computational work in another domain).   Thus, 
parameters of past models selected for comparison with the 
empirical data have been linked to RT or accuracy—for 
example, number of processing cycles to settling in the case of 
RT.  However, RT  or accuracy measures are not appropriate 
for testing theories about the ERP data, as the critical measure 
in the relevant ERP studies is N400 mean amplitude, often in 
the absence of any explicit response to the eliciting stimulus.     
 The determination of what parameter of the model to link 
with N400 mean amplitude was guided largely by a pervasive 
pattern of effects in the single item ERP corpus suggesting that 
N400 amplitudes are larger for items which might reasonably 
be thought to elicit more overall activity in semantics.  That is, 
items with larger orthographic neighborhood sizes, higher 
frequency of orthographic neighbors, more lexical associates, 
and higher frequency lexical associates all elicited larger 
N400s than did items with lower values on these measures 
(Laszlo & Federmeier, 2011).   In addition to being pervasive 
in the single-item ERP corpus, this pattern of results is 
generally consistent with past work in factorial ERP designs 
(e.g., Holcomb, Grainger & O’Rourke, 2002; Laszlo & 
Federmeier, 2007),  all of which point to N400 mean amplitude 
as a rough indicator of amount of semantic activation elicited 
by a target item-- at least when items are presented in random 
lists.  Thus, we chose to link mean amount of semantic 
activation across the entire time course of processing in our 
network with N400 mean amplitude.  

Excitation and Inhibition
ERPs reflect the synchronous firing of excitatory and 
inhibitory post-synaptic potentials in open-field configurations 
in the cortex.   Thus, the neuroanatomy of excitation and 
inhibition is highly relevant to the final morphology of ERPs 
measured at the scalp.  We considered two critical 
characteristics of excitation and inhibition in the cortex when 
planning the architecture of the ERP model.  First, neurons in 
the cortex are either excitatory or inhibitory, but not both (e.g., 
Crick & Asanuma, 1986).  Second, inhibitory connections are 
relatively short-range, with connections between cortical areas 
being largely excitatory (Crick & Asanuma, 1986).  Neither of 

Figure 1:  Architecture of the ERP model.  Lines with 
empty circles indicate excitatory connections, lines with 
filled circles indicate inhibitory connections.  INH stands 
for “inhibitory”.  Note that no units have both excitatory 
and inhibitory outgoing connections, and that inhibition 
is always within, never between, levels of representation. 
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these characteristics have been implemented in past PDP 
reading models,  as the typical architecture of such models 
allows for individual units to have both excitatory and 
inhibitory outgoing connections,  and for inhibitory 
connections to exist between levels of representation (e.g., 
Plaut,  McClelland, Seidenberg,  & Patterson, 1997; Harm 
& Seidenberg,  2004).  In the ERP model,  we sought to 
move towards a more neurally plausible architecture by 
separating excitation and inhibition, and by only allowing 
excitatory connections between levels of representation (a 
strategy which has also been suggested for cognitive 
models; see for example Grossberg, 1984).  
 As can be observed in Figure 1, which displays the 
architecture of the ERP model,  this was accomplished by 
pairing each bank of excitatory-only units within a level 
of representation with a bank of inhibitory-only units 
within that same layer.   Thus,  no unit had both excitatory 
and inhibitory projections:  only one or the other.  Only 
the excitatory units were allowed projections between 
layers of representation, meaning that the range of 
inhibitory connections was limited to within a level of 
representation.  Each inhibitory layer included far fewer 
units than its matching excitatory layer (there were only 
6.6% as many inhibitory units as excitatory units, over 
all), in accordance with the fact that the large majority of 
neurons in the cortex are excitatory (e.g., White,  1989).  
As we shall see, separating excitation and inhibition in 
this fashion is critical for successfully simulating the ERP 
data.

Method:  ERPs

ERPs were acquired from 120 participants (58 female, age 
range 18-24, mean age 19.1) who viewed an unconnected 
stream of text consisting of words (e.g., HAT, MAP), 
acronyms (e.g.,  VCR, AAA), pseudowords (e.g., TUL, KAK), 
illegal strings (e.g., CKL, KKB), and names (e.g., SARA, 
DAVE).  Words, acronyms, pseudowords, and illegal strings 
were used as the single-item study was a replication of a 
previous study using these same item types (Laszlo & 
Federmeier, 2007) and we wanted to be certain before 
collecting 120 participants worth of data that our items  and 
task were already well studied.  Names were of no 
experimental interest but served as the putative targets in the 
experiment:  Participants were required to press a button each 
time a name appeared (this was the case in Laszlo & 
Federmeier, 2007, as well).  Single item ERPs were formed by 
averaging, across participants but not items, at each electrode 
time-locked to the onset of each word, pseudoword, acronym, 
or illegal string.  Three-hundred single item ERPs were thus 
formed at each electrode, 75 in each of the 4 critical item 
types.  In addition, more traditional ERPs representing the 
averaged within-subject response to, for example, all words, 
were also computed.   For a more detailed description of the 
ERP methods, see Laszlo & Federmeier, 2011.  

Results:  ERPs
Automated large scale multiple regression analyses conducted 
on N400 mean amplitudes for all 300 single item ERPs 
revealed that when all items were included (i.e., not just 
lexically represented items such as word and acronyms) by far 
the largest predictor of N400 amplitude was orthographic 
neighborhood size (Coltheart’s N, the number of words that 
can be produced by changing 1 letter of a target item):  N 

Figure 2:  Left, item aggregated ERPs from the middle parietal electrode site representing the response to words, 
pseudowords, acronyms, and illegal strings.  The N400 window is boxed.  Right, scatter plot depicting the relationship 
between N400 mean amplitude and orthographic neighborhood size for all 300 single item ERPs.   Lexical items (words and 
acronyms) are in filled circles, nonlexical items (pseudowords and illegal strings) are in empty circles.  In both panels, 
negative is plotted up.
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explained 30.6 % of unique variance in N400 amplitude, 
followed by summed frequency of orthographic 
neighbors, which explained only 1.2 % of additional 
variance.  A 2 x 2 items analysis of variance (ANOVA) 
with factors of N (high or low) and lexical type (lexical:  
words and acronyms,  nonlexical:  pseudowords and 
illegal strings) revealed a main effect of N (F1,296 = 159.7, 
p < .0001) but no effect of lexical type (F = .19),  and no 
interaction between the two (F = 1.1)  Figure 2 displays 
the N effect in the single item ERPs for both individual 
items and categories of items—the N effect manifests 
itself in the item aggregated ERPs as words and 
pseudowords (i.e., high N items) eliciting larger N400s 
than acronyms and illegal strings (i.e., low N items).  In 
these data, as in past studies with similar items (e.g., 
Laszlo & Federmeier,  2007; 2009), individual lexical 
characteristics--such as N--are considerably stronger 
predictors of N400 amplitude than categorical labels such 
as lexical class (e.g., words v. acronyms).
 The prominence of the N effect, combined with 
previous results demonstrating that,  unlike effects of other 
lexical variables such as frequency or concreteness, N 
effects on the N400 are not eliminated by either repetition 
(Laszlo & Federmeier, 2007),  or sentence context (Laszlo 
& Federmeier, 2009), suggests that N effects in the ERPs, 
in addition to being quite large,  are also potentially of 
fundamental importance.  For these reasons, and because 
of space considerations,  we focus on N effects in the 
simulations presented below.

Method:  Simulations
The architecture of the ERP model is depicted in Figure 1.  
A 15-unit visual input layer represents the visual features 

of each of three letters in 5 non-overlapping slots.  The visual 
input layer feeds into an orthographic autoencoder, which was 
trained to reproduce the visual input.  The autoencoder feeds 
through a 20-unit hidden layer to a 50-unit semantic layer, 
where relatively sparse representations (i.e., either 3 or 7 
units) were trained to be associated with each visual input.  
Connections between level of representation are positive-only.  
Each level of representation (input, autoencoder, hidden layer, 
and semantics) has an associated inhibitory bank, connected as 
depicted in Figure 1. The logistic function is used to compute 
unit activations.  

Training was accomplished by back-propagating cross-
entropy error through time.  The network was trained on 77 
items (62 words and 15 acronyms).  On each training trial, the 
visual input for one of the 77 items was clamped on, and 
activation was allowed to propagate through the network for 
12 time steps with no accumulation of error.   Targets were 
then presented for an additional 4 time steps.  When training 
was complete, the network was tested on 441 items:  the 62 
words and 15 acronyms it was trained on, in addition to 279 
illegal strings and 85 pseudowords which the network was not 
exposed to during training.  The target for all illegal strings 
and pseudowords was for all semantic units to remain off.

Results:  Simulations
At the end of training, the network was tested for its accuracy 
in producing the correct outputs in response to both the 77 
inputs it was trained on (62 words,  15 acronyms), and the 364 
additional nonwords that it was not exposed to in training (85 
pseudowords, 279 illegal strings).  An item was judged correct 
if the Euclidean distance between its actual output vector and 
its target vector was less than the distance between its actual 
output and any other target.  Under this criterion, the network 
was 85% accurate (376 / 441 items correct).   Errors largely 

Figure 3:  Left, mean semantic activation in the constrained network over time,  for pseudowords, words, illegal strings, and 
acronyms.  Note that high N items (words, pseudowords) tend to elicit more activation than low N items (acronyms,  illegal 
strings), regardless of lexicality.  Right, scatter plot depicting the relationship between mean semantic activation and 
orthographic neighborhood size for all 441 individual items in the model’s testing set.   Lexical items (words and acronyms) 
are in filled circles, nonlexical items (pseudowords and illegal strings) are in empty circles.
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consisted of units being too weakly active for words and 
acronyms—this was a result of inhibition needing to be 
very strong in order to correctly turn all units off for 
pseudowords and illegal strings.  Of critical importance 
was comparing the internal dynamics of the model to the 
ERP data.  Figure 3 displays the simulation data 
corresponding to both the single item and item-aggregated 
ERP data.  Regression analysis revealed that, just as in the 
ERPs, there was a strong relationship between N and 
mean semantic activation in the model (r = .34, p < .
0001).  Because there were not equal numbers of items in 
each lexical type cell in the simulations, it was not 
possible to perform ANOVA analyses corresponding to 
those performed on the ERP data.  However, non-
paramentric rank sum tests were able to confirm that, as it 
appears in Figure 3, words elicited more semantic 
activation than did acronyms or illegal strings (for 
acronyms, p < .0001; for illegal strings, p < .0001), but 
not more than did pseudowords (p = .82).  Similarly, 
pseudowords elicited more semantic activation than did 
acronyms or illegal strings (for acronyms, p < .0001; for 
illegal strings, p < .0001).  Acronyms and illegal strings 
also did not differ in the mean amount of semantic 
activity elicited (p = .80). Thus, the same pattern of 
effects was observed in the model as in the ERPs.

A second goal of the simulations was to determine 
whether the separation of excitation and inhibition was 
critical for producing the appropriate internal dynamics in 
the model.  Therefore, a second simulation was run which 
was identical to the first but which did not place 
constraints on the sign of any connections (thus allowing 
units to have both excitatory and inhibitory connections 
simultaneously, and allowing between level of 
representation inhibition.)  In what follows, we will refer 
to this as the unconstrained network,  while the original 
network will be referred to as the constrained network.  
Figure 4 displays the item-aggregated results of this 
simulation. 

 After an identical amount of training, the 
unconstrained network was approximately as accurate as 
the constrained model, producing correct outputs for 83% 
of items (367 / 441). However, despite the similar level of 
overall performance, the internal dynamics of the 
unconstrained network did not resemble the critical ERPs.  
While there was still a relationship between N and mean 
amount of semantic activation in this simulation (r = .26, 
p < .0001), the pattern of this effect across lexical types 
did not match the empirical findings.  For example, while 
words and pseudowords still elicited more activity than 
did acronyms (for words, p < .0001; for pseudowords, p 
< .0001), so did illegal strings (p = .035.), and it is clear 
that differences among item types, where they exist at all 
in this simulation, exist in relatively late tonic activation 
levels, as opposed to in the early sweep of over-activation 
observed in both the ERP data and the constrained 

simulation.  Thus, a network which satisfactorily reproduces 
key dynamics of the ERP data when constrained to handle 
excitation and inhibition in a neurally plausible fashion does 
not do so when those constraints are removed.

Discussion
In our attempt to begin to bring computational formalism to a 
theory of visual word recognition from the ERP literature, we 
were able to successfully simulate critical findings from the 
single item ERP corpus in a PDP model which instantiated 
components of the obligatory semantics view of N400 
processing.  This success was at least in part due to the 
attention paid in the simulation to the neuroanatomy of 
excitation and inhibition, without which the successful model 
was not able to correctly reproduce the dynamics observed in 
the ERPs.  The work consists of a proof of the concept that 
ERP data can successfully be simulated within the PDP 
framework, and provides a foundation for more 
comprehensive modeling of psychophysiological processes. 

Though an encouraging initial attempt, it is clear that many 
refinements to the model are necessary avenues for future 
work.   Two seem especially important:  on the physiological 
side, extending the neural plausibility of the model, and on the 
behavioral side, making use of extensive past cognitive 
simulations to improve the model’s contact with behavioral 
data.  
 While the architecture of the ERP model does represent an 
improvement in neural plausibility over past models, there are 
further improvements to be made.  For example, as was 
described in the methods, the ERP model employs back-
propagation through time to effect error reduction during 
training, despite the fact that back-propagation is considered 
unlikely as a mechanism of neural learning (e.g., O’Reilly, 
1996).  In response to this issue, current work with the ERP 
model focuses on successfully completing training with the 

Figure 4:  Mean semantic activation over time in the 
unconstrained network for pseudowords, words, illegal 
strings, and acronyms.    
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Contrastive Hebbian Learning algorithm (Ackley, Hinton, 
& Sejnowski, 1985), which at least in some cases 
provides similar solutions to back-propagation (e.g., Xie 
& Seung, 2003), while avoiding many of back-
propagation’s biologically implausible properties. 
 The future development of the ERP model will also be 
guided by the strengths of past,  related models of 
cognitive phenomena.  The ERP model’s direct 
predecessors, the so-called “triangle” models (e.g., Plaut, 
McClelland, Seidenberg,  & Patterson, 1996; Harm & 
Seidenberg, 2004), have provided significant insight into 
the representations and flow of information in use in 
fundamental cognitive tasks such as lexical decision, 
semantic categorization, and the word superiority effect.  
Further development of the ERP model will make use of 
those insights, as in ongoing work we will consider the 
simultaneous simulation of ERP and behavioral data an 
important success criterion.  
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