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Abstract 

This paper offers the first comprehensive characterization of 
the cognitive diversity of individual brain regions. The results 
suggest that individual brain regions—even fairly small 
regions—contribute to multiple tasks across different 
cognitive-emotional domains, and moreover that there is little 
difference in diversity between cortical and sub-cortical 
circuits.   
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Introduction 
A common view in the cognitive neurosciences is that brain 
areas are highly selective and exhibit considerable 
specialization, with each neural region responding to a 
restricted class of inputs and contributing primarily to a 
single cognitive domain, such as language or motor control.  
However, over the past several years this principle has come 
under increasing critical scrutiny.  For instance, although 
Broca’s area is associated with language processing, it turns 
out to also be involved in many different action- and 
imagery-related tasks, including movement preparation 
(Thoenissen et al. 2002), action sequencing (Nishitani et al. 
2005), action recognition (Decety et al. 1997; Hamzei et al. 
2003; Nishitani et al. 2005), imagery of human motion 
(Binkofski et al. 2000), and action imitation (Nishitani et al. 
2005; for reviews, see Hagoort 2005; Tettamanti & Weniger 
2006). Similarly, visual and motor areas—long presumed to 
be among the most highly specialized in the brain—have 
been shown to be active in various sorts of language 
processing and other higher cognitive tasks (Damasio & 
Tranel 1993; Damasio et al. 1996; Glenberg & Kaschak 
2002; Hanakawa et al. 2002; Martin et al. 1995; 1996; 2000; 
Pulvermüller 2005). In light of such results, researchers 
have started to question the boundaries between cognitive 
domains once thought separate and distinct, such as 
perception and cognition (Barsalou 1999; 2008) and 
cognition and emotion (Pessoa 2008; 2010). 

Recent meta-analyses of imaging results have tended to 
support this emerging challenge.  For example, Russell 
Poldrack (2006) estimated the selectivity of Broca’s area by 
performing a Bayesian analysis of 3,222 imaging studies 
from the BrainMap database (Laird et al. 2005).  He 
concludes that current evidence for the notion that Broca’s 
area is a “language” region is fairly weak, in part because it 
was more frequently activated by non-language tasks than 
by language-related ones.  Similarly, a statistical analysis of 
1,469 experiments from the NICAM database (Anderson et 
al. 2010) demonstrates that most regions of the brain—even 

fairly small regions—appear to be activated by multiple 
tasks across diverse task categories (Anderson 2010).  The 
meta-results reported in that study also suggest that the brain 
achieves its variety of function by putting the same regions 
together in different patterns of functional cooperation, a 
finding that appears also to question the long-standing belief 
in the brain’s anatomical modularity (Coltheart 2001). 

Such results suggest several novel research directions for 
the cognitive sciences.  For instance, if regions of the brain 
are indeed put to many different cognitive uses, this 
suggests that cortical parcellation and function-to-structure 
mapping should be approached via multiple or cross-domain 
investigations (Penner-Wilger & Anderson 2008; 2011). 
This would be a contrast to current practice, in which 
cortical regions are assigned visual functions by vision 
researchers, memory functions by memory researchers, 
attention functions by attention researchers, and so on 
(Cabeza & Nyberg 2000). In addition, as we come to realize 
which brain regions, in what combinations, contribute to 
what tasks, the vocabulary of cognition—the way we 
categorize and label experiments and mental operations—is 
likely to need significant revision (Poldrack 2010). 

These are big projects that will occupy the attentions of 
many researchers for years to come. But the first, necessary, 
and crucial step is to begin to get some sense of the actual, 
specific diversity of various structures in the brain. Which 
regions are more, and which less specialized?  Are there 
differences in diversity between large cortical regions, or 
between cortical and sub-cortical structures?  The current 
paper begins to answer these questions by performing a 
meta-analysis of 1,138 neuroimaging experiments taken 
from 11 different task domains. 

Methods 

Materials 
The NICAM database (Anderson et al. 2010) currently 
contains information from 2,603 fMRI studies reported in 
824 journal articles. All the studies involve healthy adults 
and use a within-subjects, subtraction-based, whole-brain 
design. That is, for all the studies in the database, brain 
activity during an experimental task was observed over the 
whole brain (not just a region of interest), and then 
compared to and subtracted from activity observed in the 
same participant during a control task. The logic of 
subtraction method is such that it should uncover only the 
regions of activation that support the specific mental 
function that best captures the difference between the 
experimental and control task. The neural activations 
supporting the mental operation that the two tasks have in 
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common—the visual process allowing one to see the stimuli 
in a language task, for example—should be subtracted out. 
The database lists, among other things, the cognitive domain 
investigated in each study, using the BrainMap ontology 
(Fox & Lancaster 2002), and the locations in Talairach 
(Talairach & Torneau, 1988) and MNI (Evans, Collins & 
Milner, 1992) space of the 21,553 post-subtraction fMRI 
activation peaks observed during those 2,603 studies.  

Procedure 

The general methodology for this sort of study is simple and 
straightforward. First, choose a spatial subdivision of the 
brain, then choose a subset of experimental domains to 
investigate, and finally assign activations to each of the 
spatial regions according to whether the activation peak fell 
within the boundaries of that region. Spatial binning of 
activations offers some of the advantages of spatial 
smoothing, as well as providing orientation to accepted 
anatomical structures. See (Wager et al. 2009; Wager et al. 
2007) for further discussion. At this point the diversity of 
activity in each region can be calculated, as described 
below. 

The analysis was performed at two levels of spatial 
granularity.  First, the brain was divided into 78 standard 
anatomical regions based on Freesurfer data (Fischl et al. 
2004). These regions are listed in table 1. Then these 
regions were further sub-divided to form 1,052 smaller 
regions.  The cortical regions were sub-divided by breaking 
the brain into equally spaced spheres with a radius of 10mm 
by region; while the sub-cortical structures were divided 
according to known anatomical structures (e.g. basal ganglia 
was divided into caudate, claustrum, lentiform nucleus, 
etc.), again according to Freeesurfer data. 

The study was restricted to the following eleven task 
domains: three action domains—execution, inhibition, and 
observation—two perceptual domains—vision and 
audition—and six “cognitive” domains—attention, emotion, 
language (semantics), explicit memory, working memory, 
and reasoning. The result of this winnowing process left 
1,138 experiments collectively reporting 7,408 locations of 
peak activation falling within the brain regions defined 
above. The number of activations in each region was 
normalized to account for differences in the number of 
experiments per domain in the entire sample.   

Activation peaks are only one of many kinds of data that 
could be used in such a meta-analysis. They have the 
distinct advantage that large amounts of such data are 
readily available, and certainly activation peaks contain a 
great deal of useful information. See (Fox, Parsons & 
Lancaster 1998; Kober & Wager 2010; Wager et al. 2009; 
Wager et al. 2007) for further discussion of this and 
alternate methods.  

For each region, the diversity of activations was 
calculated using a measure of diversity variability, based on 
standard deviation, commonly used by to measure 
demographic diversity in populations and neighborhoods 
(Chang 1999; Byrne & Flaherty 2004). Diversity was only 
measured for regions activated by 5 or more experiments. 

In this equation, Cati refers to proportion of activations in 
each category; mean refers to the average proportion 

(always 0.091 with 11 categories) and k equals the number 
categories. Diversity is (1-DV), normalized such that the 
values range from 0 (all activations in one category) to 1 
(activations spread equally across all 11 categories). 

 
The diversity of a region can also be considered from a 

Bayesian perspective (Poldrack 2006).  Given the 
observation of activity in one of these regions, how 
confident can we be (what is the posterior probability that) 
the activation is the result of a task in a domain of interest? 
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Here Az means an observation of activity in region z, and 

Dx is the domain of interest. The posterior probability that 
an observation of activity in region z indicates engagement 
of a task in domain x depends on the probability of an 
activation in z given a task in x, the prior probability that a 
task in x is being engaged, the probability of an activation in 
z when the brain is engaged in a task not in domain x, and 
the general probability of engaging tasks not in x. For 
current purposes, we assume no prior knowledge of the 
likelihood of region z being activated by any domain, thus 
the prior probability P(Dx) is set at 1/11 (0.091). The other 
values are calculated in the standard way from the data. The 
final number of interest is the Bayes factor, which is the 
ratio of the posterior to the prior probability.  Here we 
calculate the Bayes factor assuming the domain of interest 
for each region is the domain having the highest proportion 
of activations in that region.  In other words, we will be 
calculating the degree of evidence for the best possible 
scenario. By convention, a Bayes factor between 0 and 3 
indicates weak evidence; between 3 and 10 moderate 
evidence, and above 10 strong evidence (Jeffreys, 1961). 

All values reported here were also calculated using an 
alternate spatial subdivision of the brain formed by dividing 
the brain into equally-spaced spheres of 10mm radius based 
on a randomly seeded initial location. As these results did 
not differ significantly from those reported here (indicating 
the results are not an artifact of the subdivision), we report 
only the results for the subdivision anchored to known 
anatomical structures.    

Results 
The overall average diversity of the 78 large anatomical 
regions was 0.70 (SD 0.12).  The overall average diversity 
of cortical regions was 0.71 (SD 0.11) and of subcortical 
was 0.63 (SD 0.17). The average Bayes factor for the 78 
large anatomical regions was 3.14 (SD 1.38).  The average 
Bayes factor for cortical regions was 3.08 (SD 1.23) and for 
subcortical regions was 3.57 (SD 2.02). Individual values 
are listed in table 1, and displayed in figure 1. Numbers in 
parentheses indicate the number of experiments activating 
the region. 
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Table 1: Diversity of some standard anatomical structures in 

the brain. 
 

Structure 

Diversity Bayes Factor 

Right Left Right Left 

Occipital Lobe         

cuneus 
0.71 
(19) 

0.71 
(47) 3.28 3.44 

lateral occipital 
cortex 

0.76 
(135) 

0.85 
(161) 2.49 2.19 

 lingual gyrus 
0.77 
(87) 

0.80 
(122) 2.21 1.82 

Temporal Lobe         

bank of the 
superior 
temporal sulcus 

0.70 
(32) 

0.72 
(74) 

2.61 2.91 
inferior temporal 
cortex 

0.82 
(52) 

0.70 
(278) 2.02 3.74 

fusiform gyrus 
0.81 
(174) 

0.78 
(219) 1.65 2.36 

middle temporal 
cortex 

0.80 
(80) 

0.75 
(84) 2.03 2.54 

superior 
temporal cortex 

0.67 
(164) 

0.57 
(159) 4 4.64 

temporal pole 
0.62 
(13) 

0.38 
(7) 2.98 6.57 

transverse 
temporal cortex 

0.36 
(23) 

0.44 
(26) 6.46 5.8 

Parietal Lobe         

entorhinal cortex 
0.63 
(18) 

0.63 
(6) 2.82 3.33 

inferior parietal 
cortex 

0.89 
(192) 

0.81 
(243) 1.62 2.61 

paracentral 
lobule 

0.75 
(27) 

0.65 
(73) 2.33 3.69 

parahippocampal 
cortex 

0.71 
(42) 

0.76 
(63) 3.16 2.12 

pericalcarine 
cortex 

0.58 
(58) 

0.68 
(44) 4.24 3.3 

postcentral gyrus 
0.68 
(110) 

0.65 
(200) 4.09 4.36 

superior parietal 
cortex 

0.70 
(222) 

0.70 
(344) 3.83 3.82 

supramarginal 
gyrus 

0.69 
(130) 

0.63 
(113) 4.05 4.44 

Frontal Lobe         

caudal middle 
frontal cortex 

0.79 
(132) 

0.84 
(144) 2.75 1.63 

rostral middle 
frontal cortex 

0.78 
(164) 

0.86 
(208) 2.68 1.78 

lateral 
orbitofrontal 
cortex 

0.81 
(76) 

0.78 
(69) 

2.39 2.15 

medial 
orbitofrontal 
cortex 

0.71 
(15) 

0.56 
(23) 

2.06 3.61 

precentral gyrus 
0.78 
(270) 

0.76 
(389) 2.98 2.7 

frontal pole n/a (1) n/a (0) n/a n/a 

pars opercularis 
0.80  
(65) 

0.80 
(133) 2.7 2.49 

pars orbitalis 
0.78 
(14) 

0.53 
(19) 2.73 6.01 

pars triangularis 
0.69 
(49) 

0.76 
(82) 3.2 2.41 

superior frontal 
cortex 

0.79 
(353) 

0.88 
(400) 2.73 1.52 

Cingulate         
caudal anterior 
cingulate cortex 

0.78 
(50) 

0.67 
(48) 2.23 2.34 

isthmus of the 
cingulate cortex 

0.72 
(46) 

0.62 
(43) 2.58 2.79 

posterior 
cingulate cortex 

0.53 
(41) 

0.69 
(47) 4.92 2.35 

precuneus 
0.78 
(135) 

0.74 
(146) 3.11 3.36 

rostral anterior 
cingulate cortex 

0.66 
(34) 

0.68 
(28) 2.96 3.05 

Subcortical         

basal ganglia 
0.86 
(134) 

0.83 
(120) 1.68 2.19 

hippocampus 
0.44 
(6) 

0.61 
(14) 4.1 3.39 

hypothalamus 
0.49 
(8) 

n/a  
(3) 4.1 n/a 

amygdala 
0.50 
(12) 

0.42 
(25) 4.99 6.64 

midbrain 
n/a  
(2) 

n/a  
(2) n/a n/a 

thalamus 
0.73 
(66) 

0.75 
(72) 2.52 2.42 

 
To better evaluate these numbers, consider left inferior 
temporal cortex, with a diversity of 0.70, equal to the overall 
average.  The proportion of activations in each of the task 
domains is shown in table 2. 

The overall average diversity of the 574 small cortical and 
21 small subcortical regions activated by 5 or more 
experiments was 0.52 (SD 0.13). Those 595 regions were 
activated by an average of 10.67 experiments. The overall 
average diversity of the cortical regions was 0.52 (SD 0.13) 
and of the subcortical regions was 0.59 (SD 0.12).  The 
average Bayes factor for the 595 regions is 4.45 (SD 1.67).  
The average Bayes factor for cortical regions is 4.43 (SD 
1.68) and for subcortical regions is 3.68 (SD 1.11). With 
595 regions, it is not possible to provide individual data 
here. However, the full results will be posted at 
http://www.agcognition.org/diversity.html 
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Left lateral 
Right lateral 

Left medial 
Right medial 

Frontal 
Caudal 

Dorsal Ventral 

Figure 1: Depiction of the diversity of activations for large anatomical regions. Grey indicates no 
information. Image prepared by Josh Kinnison and Srikanth Padmala, Indiana University. 
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Interestingly, only two of the 595 small regions had a 
diversity of zero: a sub-region of right precentral gyrus 
centered on Talairach coordinates [26, -22, 60] that was 
active only in five action execution tasks; and a sub-region 
of left postcentral gyrus centered on [-38, -31, 50] that was 
active only in nine action execution tasks. The most diverse 
small region, at 0.79, was a sub-region of left pars 
triangularis, centered on [-41, 27, 8], that was active in 15 
tasks across 8 of the cognitive domains (all except action 
execution, action inhibition, and vision). 

 
Table 2: Diversity of activations in left inferior temporal 

cortex. 
 

Domain Proportion of activations 
Action execution 0.06 
Action imagination 0.06 
Action inhibition 0.00 
Attention 0.02 
Language 0.34 
Explicit memory 0.12 
Working memory 0.12 
Reasoning 0.12 
Emotion 0.06 
Vision 0.07 
Audition 0.02 

 
To get some better sense of typical small region diversity, 
consider a sub-region of the right supramarginal gyrus, 
centered at Talairach coordinates [44, -35, 39], that was 
activated in nine experiments and had a diversity of 0.52. 
Action imagination accounted for 42% of the activations; 
27% were in action execution, 20% in reasoning and 11% in 
working memory. 

Although there do appear to be some interesting regional 
asymmetries in diversity, there is no significant difference 
between the average regional diversity of the left and right 
hemispheres. There is a significant positive correlation 
between diversity and the number of experiments activating 
a region (r=0.50, p<.001 for large regions; r=0.46, p<.001 
for small regions). 

Discussion 
Although there have been prior studies investigating the 
selectivity of individual brain regions (Poldrack, 2006; 
Tettamanti & Weniger, 2006; Gauthier et al., 2000) this is 
the first study to offer a comprehensive survey of regional 
selectivity in the brain. Overall, the results suggest that most 
regions of the brain—even fairly small regions—typically 
contribute to tasks across multiple cognitive-emotional 
domains. 

This reinforces the growing realization that reverse 
inference—inferring what class of mental operation is being 
engaged from observation of regional brain activity, e.g. 
inferring an emotional process from observation of 
amygdala activation—is an extremely uncertain practice 
(Poldrack 2006).  As we see from the Bayesian results, even 
in the best case scenario where we assume no prior 
knowledge, and consider only the strongest possible 
evidence, such observations typically offer only fairly weak 

to moderate support for such conclusions (Jeffreys, 1961).  
Nevertheless, there does appear to be variability in 

regional selectivity, and the full results will begin to allow 
us to differentiate between regions for which reverse 
inference might be appropriate, and those for which it is 
clearly not. However, there is also considerable variation in 
the amount of evidence for diversity in each region, 
especially for the smaller regions. The positive correlation 
between diversity and number of observed activations is not 
surprising, as diverse areas will naturally be active more 
often.  What is not known is whether further observations 
will tend to increase the measured diversity across the brain, 
thus decreasing regional variability and hemispheric 
asymmetries. Such matters deserve increased attention.   

Although most regions of the brain do not appear to be 
domain-selective, the current evidence is compatible with 
the possibility that brain regions each perform a single, 
specific mental operation that is used in performing many 
different tasks (Anderson, 2010). Knowing the set of tasks 
that activate each region will be an important source of 
information for discovering whether such a possibility 
obtains, and what the mental operations might be (Penner-
Wilger & Anderson, 2011).   

It is also possible that while individual regions are not 
domain-selective, specific networks of regions are domain- 
selective (Anderson et al. 2010; Sporns 2011).  This 
possibility, and the complementary possibility that it may be 
possible to predict general mental states from observations 
of network activation, will be one focus of future work. 

However, these are, as they say, empirical questions. For 
many researchers, the most natural interpretation of these 
results will be that local neural circuits and distributed 
networks can perform different operations under different 
circumstances (Lloyd 2000; Hardcastle & Stewart 2002). 
The cumulative results of years of functional neuroimaging 
invite us to (cautiously) revisit some fundamental questions 
about the functional organization of the brain. 
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