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Abstract

We introduce a connectionist model of cued multimodal
learning in infants. Its architecture is inspired by
computational studies coming both from the fields of infant
habituation and of visual attention. The model embodies in its
simplest form the notion that the attentional system involves
competitive networks (Lee et al., 1999). Using this model, we
reproduce infant behavioral results from Wu and Kirkham
(2010), which found different learning effects with social,
non-social, and no attentional cueing. We show that these
learning differences can be explained by the amount of
information let through from non-cued locations. We discuss
these results and future lines of research on this
computational work.
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development; attentional cueing.

Introduction

In a busy multimodal world, infants must parse useful
information from a swirl of perceptual events. One way to
accomplish this is relying on attention cues to guide them to
relevant learning events. Many attention cues can guide infants’
attention, but which ones help infants learn what to learn?

Recent work has shown that following social cues can shape
learning: Some studies have focused on word mapping (e.g., Gliga
& Csibra, 2009; Houston-Price, Plunkett, & Duffy, 2006; Pruden,
Hirsh-Pasek, Golinkoff, & Hennon, 2006; Yu, Smith, & Pereira,
2008) and learning phonological patterns (Goldstein & Schwade,
2008; Thiessen, Hill, & Saffran, 2005). For example, 15-month-
olds are able to follow a turning face to an object, and then map a
spoken word onto that object rather than a non-cued object
(Houston-Price, Plunkett, & Duffy, 2006).

Wu and Kirkham (2010) — hereafter W&K — measured gaze
behavior when infants were presented with dynamic audio-visual
events (i.e., cats moving to a bloop sound and dogs moving to a
boing sound) in white frames in the corners of a black background.
An object’s appearance in a spatial location consistently predicted
a location-specific sound. On every familiarization trial, infants
were shown identical audio-visual events in two diagonally
opposite corners of the screen (i.e., two valid binding locations).
To test the effects of attentional cueing on audio-visual learning,
either a social cue (i.e., a central turning face that used infant-
directed speech, Social Cue condition) or non-social cue (i.e., red

flashing squares that shifted attention to the target location, Square
condition) shifted infants’ attention to one of the two identical
events on every trial. For the social cue, a face appeared, spoke to
the infant, and turned to one of the lower corners containing an
object. For the non-social cue, a red flashing square wrapped
around the target frame appeared and disappeared at a regular
interval (i.e., flashed continuously) without a central stimulus
throughout the familiarization trial. In the No Cue condition, the
two objects appeared without any attentional cues. During the test
trials, only the four blank frames were displayed on the screen
while one of the sounds played. Infants were shown four blocks of
stimuli. The main finding of W&K was that by 8 months of age,
different cues produced different learning effects: social cues
produced specific spatial learning of audio-visual events (i.e.,
infants looked where cued multimodal events had played during
test trials) by the second half of the experimental session (Blocks
3-4), while non-social cues produced only general spatial learning
(i.e., infants looked only at cued locations regardless of multimodal
information) throughout all four blocks. Without any cues, infants
did not display any learning (i.e., looked equally to all locations)
throughout all four blocks.

The purpose of this article is to characterize the neural
mechanisms at work in infants when they are performing this task
(where the presence and type of cue produced different types of
learning), without losing the interaction between infants and their
environment throughout the task. In other words, the model’s
outputs (where it is going to “look™) should determine its next
inputs (what it will “see” next).

Previous computational work has dealt with isolated aspects of
the paradigm used in W&K. The HAB model (Sirois & Mareschal,
2004) can successfully account for robust non-linearities in infant
preferential looking data, using two interacting auto-associator
networks that learn under opposite principles. However, HAB
neither incorporates multimodal learning nor attentional cueing,
and its outputs do not determine its inputs. On the other hand,
Mozer and Sitton (1998) proposed a computational model of visual
attention that embodies the notion of an attentional “spotlight” and
accounts for several cueing effects. In order to prevent interference
when multiple objects are processed in a single hierarchical
network, the authors used a winner-take-all network (WTA) that
‘attended” to one input region while filtering the others.
Importantly, the amount of information filtered in unattended
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regions was critical to determine attentional shifts. However,
explaining the differences between social and non-social cues in a
multimodal learning paradigm such as used in W&K was beyond
the scope of this model, since it was trained exclusively in the
visual modality.

In an attempt to bridge this gap between the two fields we
introduce a neuro-computational model that generates a proper
sequence of saccades to learn from cued multimodal events. The
main challenge in this endeavour was to connect different
computational models without producing an intractable model.

Model

The model (illustrated in Figure 1) is essentially an adaptation
of Sirois and Mareschal's architecture for infant habituation (Sirois
& Mareschal, 2004), combined with Mozer and Sitton's model of
visual attention (Mozer & Sitton, 1998). However, the model
departs from the former in that it is capable of multimodal learning
among distractors, and from the latter in that the WTA network is
thought to model overt rather than covert attentional shifts. One
novel and critical feature of the model is that it is wired in a
feedback loop, whereby its last output determines its current
inputs. In this way, we can attempt to simulate the processes taking
place in the infant's brain as the sequence of visual and audio
events unfolds during training and test trials. Figure 1 illustrates
the W&K experiment and the proposed model, which we now
describe in detail.

Simulations begin with the presentation of one of two possible
multimodal pairs at the model's input level. In W&K, the target
events consisted of identical toy animals (cats or dogs) that moved
synchronously at diagonally opposite corners of the screen, while
accompanied by a repetitive sound. In the model, these inputs are
simplified as patterns of activations distributed over visual and
auditory units that remain clamped throughout the trial. There are
five sets of N visual input units, each corresponding to an Area of
Interest (AOI hereafter) in W&K’s eye-tracking study, and a single
set of N auditory units (N = 4 in the figure and the simulations).
The pattern of activation attributed to the cat toy is presented both
in the bottom left and top right visual banks, while another pattern
in the center corresponds to the face cue, which in the Social Cue
condition was presented with the target events during training. The
activation pattern corresponding to the sound is presented in the
auditory input bank.

Next, it is important to motivate these input assumptions. In
many computational studies of multimodal learning (Althaus &
Mareschal, in press; Mayor & Plunkett, 2010), input patterns are
derived from actual pixilated images and Mel-scale filtered voices,
whereas our inputs are simple arbitrary patterns in the spirit of the
HAB model (Sirois & Mareschal, 2004). In addition (and at odds
with the dynamical nature of the actual stimuli), our input patterns
are randomly generated only once at the beginning of the
simulation, and they remain clamped for every trial. These choices
were made considering that the actual similarity between

representations and the representational changes elicited by
moving stimuli were not thought to be essential in the simulated
experiment. Rather, our computational model focuses on
understanding which information is being sent forward to
associative structures, and on testing the nature of the attentional
mechanisms involved.
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Figure 1: Architecture of the model. Two auto-associator networks
are trained to store (left network, Hopfield Network [HN]) or
suppress (right network, Novelty Detector [ND]) the activation
pattern elicited by some attended part of a multimodal input event
(filtered input level). The states to which these networks converge
are fed into a winner-take-all network of location units (WTA
network, upper network). The winning unit determines the next
saccade of the model: which object will be attended to and which
one will be filtered.

Indeed, not all visual inputs are forwarded to the associative
networks: we assume that some attentional filtering is exerted by
the WTA network (dynamics explained in the next section). Every
time a saccade is made, this filtering lets information about the
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attended AOI pass through undisturbed, whereas in other AOIs
only a fraction of the activation is forwarded. This filtering
mechanism and the WTA network that produces it come from
Mozer and Sitton's model of visual attention (Mozer and Sitton,
1998), except for the default amount of filtering exerted on
unattended regions which was of 90% in Mozer and Sitton,
compared to 50% in our model. This difference reflects the fact
that attentional systems are subject to cortical maturation (Johnson,
1990), although its precise value was arbitrary and needs to be
investigated further. The filter only operates on visual inputs, and it
is initialized in a state that depends on the cue and target condition.
At the beginning of a trial, central patterns are less likely to be
filtered, following experimental data showing that babies are more
likely to look at the center (because of the attention getter that was
just presented centrally). Filtered and unfiltered inputs are then
forwarded to the auto-associator networks.

Auditory and visual patterns then arrive in the core of the model,
which consists of two auto-associator networks: the Hopfield
network (HN in Figure 1) and the novelty detector (ND in Figure
1). This dual system comes from the HAB model (Sirois and
Mareschal, 2004), and like HAB, this is the only part of our model
that learns by modifying connection weights during every cycle in
each trial of the training phases. HN and ND are fully connected
networks of 6N units each, with small connection weights initially
generated at random. Each network is presented with full auditory
and filtered visual patterns. However, the networks differ in the
associative learning rule they use: whereas HN uses Hebbian
learning to strengthen connections between active units, ND uses
anti-Hebbian learning to decrease these same connections. Over
the course of training, HN comes to memorize the patterns it was
exposed to by virtue of repeated auto-associations between
coactive parts, so much so that eventually presentation of a part
(for instance the audio part) is sufficient to retrieve the entire
trained pattern. Meanwhile ND progressively learns to suppress the
activation elicited by the patterns it is being trained with, so that
eventually trained patterns are perfectly suppressed and new
patterns produce large activities; they are, in this sense, detected.
Finally, HN and ND do not gate each other's inputs and outputs, as
they do in HAB, but rather the visual units in each network sends
their activation forward to the WTA network.

The WTA network (Figure 1, top network) is the structure of the
model that determines where it will "look" next. It is a standard
WTA network (as in Mozer and Sitton, 1998) of five units, one for
each AOI. WTA units increase their own activity by way of auto-
excitation, and also receive activation from units of the same AOI
in HN and ND. Critically, WTA units are wired so as to compete
with one another via inhibitory connections. The net effect of this
entire set-up is that the unit that receives the most input will build
activation faster and win the competition, by which we mean that
its activity crosses a .95 threshold and triggers an ocular saccade to
the corresponding AOIL. Triggering a saccade in the model means
changing the filter's values so as to change the flow of information
from input to auto-associator networks. Consistent with the

phenomenon of inhibition of return that can last for several
seconds (Klein, 2000), we suppress activation in the winning unit
until the next saccade is made, which favors foraging of the visual
scene.

Simulations

Procedure

The simulations procedure followed the paradigm used in
W&K. After checking that each sub-network (HN, ND and WTA)
was operational, 20 models were generated, similar to the average
number of infants in each of the three conditions. Models were
generated at random and thus differed in their input representations
and initial connection weights. Each model was trained over four
familiarization blocks, where one block contained six trials of
target events (three trials per event type). Target events were
randomized, but the same target could not be presented for more
than two trials in a row. A trial was limited to 10 cycles, during
any of which the connection weights in HN and ND were updated.
Testing took place at the end of each block, and consisted of two
trials, where the auditory pattern for each target event was
presented alone for 10 cycles. Mean proportional looking times
and standard errors were then calculated from output saccades to
the five AOlIs.

We simulated 4 cueing conditions: No Cue (50% filter), Square
Cue (70% filter), Social Cue (90% filter), and Social Cue (70%
filter). In all conditions, the information from the attended location
was entirely sent forward. However, in the No Cue condition,
models were initialized with unattended filters set to 50%, meaning
that only 50% of activation from unattended locations could
propagate to the associative systems. By contrast, Social Cue and
Square Cue conditions had more stringent filters for unattended
locations (either 70% or 90% depending on the cue and the
hypothesis being tested), meaning that less information from these
locations was let through. The Social Cue (70%) condition acted as
a control for our hypothesis that social cueing increases attentional
filtering. If the improvement in learning observed for the Social
Cue 90% relative to the Square Cue condition was not due to the
increased filter but rather to the central presence of a visual
stimulus, then the same improvement should be expected when the
filter is lowered down to 70%, which was used for the Square Cue
condition. Apart from the manipulation of this single parameter for
the purposes of hypothesis testing, exactly the same set of
parameters was used for all models and for all conditions (an
exhaustive list of equations and simulation parameters is not
specified here for lack of space, but is available upon request to the
first author).

Results

We now report simulated mean percent looking time, as well as
standard errors for the model. For each test trial (10 cycles), we
calculated the proportion of cycles where the model attended to
each AOI, and averaged on all networks and all trials. We believe
this is sufficient for the purpose of showing that the model exhibits
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a pattern of results consistent with the differences observed in
W&K with or without cues, and between types of cues.

Cued versus non-cued learning

Over the four blocks in W&K’s No Cue condition, infants were
equally likely to look at all locations when presented with the
auditory cue. In particular, the authors failed to find any significant
advantage of lower locations (labeled “cued” in Figure 2, for
consistency with other conditions) over upper locations (labeled
“non-cued”) that could have accounted for a bias in the other
conditions. This finding is mirrored in our simulations, where cued
and non-cued locations are indistinguishable. However, the model
was slightly more likely to look at the center than at any other
locations.

By contrast, when multimodal training events were cued in
W&K’s study, infants looked significantly more at cued locations
(in the Square condition) or cued correct locations (in the Social
condition, last two blocks) during test trials. The middle right and
bottom right graphs in Figure 2 show the same advantage in the
model for cued locations over non-cued locations.

Infant Test Trials Model Test Trials
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Figure 2: Mean proportional looking times for the model (right)
and for infants (center), with the corresponding typical stimuli
used in each experiment during training (left screenshots, note that
no visual stimuli were provided during test) in No Cue, Square
Cue, and Social Cue conditions (resp. top, middle and bottom
panels). Figure adapted from Wu & Kirkham (2010).

Differences between cues

The main finding from W&K was that different cues produced
different types of learning. What we might call “shallow learning”
was observed in the Square Cue condition, where infants looked
preferentially at locations that had been cued during training (in

Figure 2, middle, black bars were superior to white bars), while
disregarding the multimodal information (black bars are of equal
height). By contrast, “deep learning” was observed in the Social
Cue condition, but only in the last two blocks, where infants
looked significantly more at the correct cued location than at any
other peripheral location (in Figure 2, bottom, the correct black bar
is higher than the incorrect black bar and both white bars).

Table 1: Proportional looking times (Means and SE) for
Infants and Model in the simulated conditions.

Condition Infants Model
Mean (SE)  Mean (SE)
No Cue (50%)
Cued, correct 0.21 (.03)  0.14(0.04)
Non cued, correct 0.18 (.02) 0.22(0.05)
Cued, incorrect 0.17 (.02) 0.18(0.04)
Non Cued, incorrect 0.22 (.03) 0.18(0.04)
Central 0.23 (.03)  0.27(0.05)
Square Cue (70%)
Cued, correct 0.23 (.03)  0.31(.04)
Non cued, correct 0.15 (.03) 0.11 (.02)
Cued, incorrect 0.26 (.03) 0.33 (.04)
Non Cued, incorrect 0.18 (.03) 0.11 (.03)
Central 0.19 (.03)  0.14 (.03)
Social Cue (90%)
Blocks 1 & 2
Cued, correct 0.15 (.03) 0.24 (.02)
Non cued, correct 0.18 (.03) 0.14 (.02)
Cued, incorrect 0.25(.03)  0.23 (.02)
Non Cued, incorrect 0.16 (.03) 0.06 (.02)
Central 0.25(.03)  0.33(.03)
Blocks 3 & 4
Cued, correct 0.26 (.04)  0.26 (.03)
Non cued, correct 0.11 (.02) 0.10 (.02)
Cued, incorrect 0.17 (.03)  0.20 (.02)
Non Cued, incorrect 0.14 (.03) 0.13 (.02)
Central 0.32(.04)  0.32(.03)
Social Cue (70%)
Blocks 1 & 2
Cued, correct - 0.19 (.04)
Non cued, correct - 0.16 (.03)
Cued, incorrect - 0.17 (.04)
Non Cued, incorrect - 0.14 (.02)
Central - 0.33 (.04)
Blocks 3 & 4
Cued, correct - 0.15 (.04)
Non cued, correct - 0.14 (.03)
Cued, incorrect - 0.18 (.04)
Non Cued, incorrect - 0.15 (.03)
Central - 0.37 (.04)

The “Social 90%” entry in Table 1 is divided in Blocks 1&2 and
Blocks 3&4, to be compared to the block analysis carried out in
W&K. We see that the model can reproduce the same late but deep
learning effect: it is more likely to look at the correct cued location

4

2380



only in the last two blocks, thereby showing a learning curve. The
agreement between infants and the model on Blocks 3&4 is
illustrated in Figure 2, bottom panel. However, note that in the first
two blocks, the model exhibits the same pattern of results as in the
Square Cue condition (preferential looking to both cued locations,
in equal proportion), whereas infants tended to look at cued
incorrect locations.

This behavior can be contrasted with the looking times observed
in the “Social Cue 70%” condition, which was a control for our
hypothesis that social cueing increases attentional filtering (as
shown in Table 1, these simulations do not have a counterpart in
infant data). Table 1 shows that no preference for cued object
locations was apparent in the Social Cue 70% condition, and cued
locations were only marginally superior to non-cued locations.
This suggests that the improvement in learning observed for the
Social Cue 90% condition relative to the Square Cue 70%
condition was due to the increased filter, rather than the presence
of a central stimulus.

General Discussion

Although a true understanding of this model can only be
achieved through a detailed enquiry into training saccades and the
mechanisms behind them, here we wish to provide the reader with
elements of explanation that might shed some light on our main
results.

Explaining the impact of cueing

Cueing in the model is achieved by letting through more
activation from the location that is being cued, than would
normally be allowed. That is, if the model is “looking”, say, at the
upper right location while the lower right location is cued, 70%
activation from the lower right is forwarded to the associative areas
rather than the usual 50% when there is no cue.

This simple mechanism means first, that in the auto-associator
networks, some learning will occur for cued locations even if the
model actually never “looks” at them, and second, that the model
in fact will be biased to look at these cued locations. This is
because the increase of activity drives the HN auto-associator into
a state that resembles more and more the cued location, so that the
corresponding unit in the WTA network would be fed more
activation and would tend to win the competition more often. As
training proceeds, these two effects reinforce each other and help
the model associate auditory patterns to cued objects, which
explains how it is able to account for experimental differences
between cued and non-cued conditions. However this mechanism
alone cannot explain why the model fails to distinguish between
cued correct and cued incorrect locations in the Square condition
and succeeds only in the last two blocks of the Social condition.
Instead, with only this mechanism, the model treats all cues
equally.

Explaining social cues versus square cues

We have tested the hypothesis that the superior learning
observed with social cues resulted from a kind of narrowing of the
infant’s receptive fields. While maintaining the original cueing
mechanism, this narrowing was modeled by more stringent filters
for every other location than the fixated and the cued locations
(that could possibly differ). Instead of the usual 50%, only 30%
activation would be forwarded in the Square Cue 70% condition,
against 10% in the Social Cue 90% condition.

The net effect of this assumption is to minimize interference in
HN: the network is equally biased to attend to the cued locations in
the Square Cue and the Social Cue conditions (as in W&K) during
familiarization, but only in the latter can it associate precisely the
cued visual information to the auditory patterns during test. In the
former condition, the unfiltered activation that comes from the
non-cued location gets involved in the association, so that during
test trials, part of the activation pattern for the non-cued correct
location is retrieved, which disturbs the WTA network.

Role of different parts of the model in this account

In this account, it would appear that the best part is played by
the HN network, while ND appears to have no explanatory power.
This is not so, but the role of the ND is obscured by the fact that in
this model ND is much more active in early phases of training.
When training begins, ND has not yet learned how to suppress
activation for training input patterns. Thus, through ND every
unfiltered piece of information can contribute to the competition in
the WTA. As training unfolds, however, ND learns to suppress
activation for known patterns, thereby ensuring that unfiltered
information cannot use this path anymore to drive the model’s
output. This difference between early and late training might be the
reason for the learning effect observed in the Social Cue 90%
condition, although this cannot explain why the same effect was
not found in the Square condition.

Size of auditory input

One unexpected clue to understanding the network that might be
of significance is the size of the auditory input pattern. The tuning
phase of the network revealed that large auditory formats were
detrimental to the model’s learning capacity, while the best
performance was obtained when it was equal to N (the size of one
set of visual units). The reason for this is as follows. Auto-
associator networks are known to be very sensitive to the
correlation between the patterns to be stored, and this is especially
true of the kind of Hebbian learning rule used in HAB and in this
model. When the patterns of activity that are to be memorized are
too close from one another, as they are when the auditory units
vastly outnumber the set of active visual units, interference occurs,
and the network can converge to wild configuration states, often
called “spurious attractors” (Hopfield et al., 1983). Therefore,
limiting auditory inputs to the same format as a single visual
location makes multimodal patterns more different to one another
and makes for better learning. It would be interesting to investigate
how this prediction of the network could be tested in the lab.
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Conclusion

We have presented a neuro-computational model that builds on
two successful predecessors coming from different fields of
cognitive science. The model can account for new infant data
involving cued multimodal learning in the presence of distractors.
In particular, we have found a candidate mechanism that might
underlie largely observed differences between social and non-
social cues in infancy. This mechanism holds that infants make use
of more stringent attentional filters when they are exposed to social
cues than to non-social cues.

Prospects

Future research should aim to better understand how the
network behaves, presumably by tracking down the evolution of
proportional looking times as training unfolds, and by lesioning
parts of the network one at a time to assess whether and how its
behavior is affected. In the long term, the model could also be
improved by strengthening its links to the brain. For instance,
Sirois and Mareschal related HN and ND to the cortex and the
hippocampus, respectively, and the model might be improved by
reinstating the interaction that was originally present between these
two systems in HAB. More generally, the cortex, hippocampus,
and superior colliculus all perform more than one function that
might well be relevant in this model, for instance coding for
auditory maps in the case of the colliculus (King et al,, 1996), or
input recoding (Levy et al, 2005), and interleaved learning
(McClelland et al., 1995) in the case of the hippocampus. A model
that could recode input patterns for better storage and present them
repeatedly to the infant during less active periods could offer new
perspectives into how infants succeed universally in learning what
to learn.
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