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Abstract: Behavior in conflict situations can be 

influenced by the social information that individuals have 

about their opponents. This paper tests whether an 

existent Instance-based Learning (IBL) model, built using 

the Instance-based Learning Theory (IBLT) to explain 

behavior in a single-person binary-choice task (BCT), can 

predict behavior in a two-player iterated prisoner’s 

dilemma (IPD) game. The same IBL model is generalized 

to two conditions in the IPD: Social, where individuals 

have information about their opponents and their choices; 

and Non-social, where individuals and opponents lack this 

information. We expect the single-person IBL model to 

predict behavior in the Non-social condition better than in 

the Social condition. However, due to the structural 

differences between BCT and IPD, we also expect only 

moderately good model predictions in the Non-social 

condition. Our results confirm these expectations. These 

findings highlight the need for additional cognitive 

mechanisms to account for social information in conflict 

situations.  
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Introduction 

One objective of a participant in 2x2 games (between two 

players, each of whom has two available choice options), 

is to maximize personal economic benefit by cooperating 

or competing with an opponent. A popular game called 

the prisoner's dilemma (PD) (Axelrod, 1980; Rapoport & 

Chammah, 1965) has been widely used to investigate 

such conflict situations. In the PD, each of two 

participants chooses simultaneously whether to cooperate 

(C) or defect (D). If both cooperate, they obtain an equal 

outcome that is larger than if both had chosen to defect. 

(In Figure 1, each player’s outcomes are higher for C-C 

than for D-D.) 

 

 
Figure 1. The matrix of outcomes in the prisoner’s dilemma game. 

“Your Action” and “Opponent’s Action” refer to the actions of the two 

players. “D” and “C” are labels used for “defection” and “cooperation,” 
respectively.  

 

However, if one participant defects while the other 

cooperates, the defector obtains an even larger outcome 

while the cooperator suffers a loss (shown by the C-D and 

D-C outcomes in Figure 1). In a one-trial PD, the standard 

finding is a larger proportion of D choices than C choices 

when aggregated over several participants (Rapoport & 

Chammah, 1965). However, in the iterated PD (IPD), 

where people are asked to repeatedly make C or D 

decisions, the proportion of D choices are shown to 

decrease over time (Rapoport & Chammah, 1965). Thus, 

the PD represents a tradeoff between short-term 

individual gain of defection and long-term individual gain 

of sustained mutual cooperation (Baker & Rachlin, 2002).  

 

Despite the general focus on maximizing personal 

benefits in the PD, researchers have argued that the 

economic perspective alone is oftentimes insufficient to 

capture the social aspects of such games, including the 

amount of information that is shared between participants 

(Dawes, Van De Kragt, & Orbell, 1988; Gonzalez & 

Martin, 2011; Schuster & Perelberg, 2004). For example, 

if a participant does not know that he is actually playing 

with another human opponent in the IPD, is not provided 

with the matrix in Figure 1, and is asked to maximize his 

benefits by repeatedly choosing between the C and D 

buttons from experience (Non-social condition), then he 

might strive to strictly maximize his own observed 

outcomes. However, when the participant knows that he is 

playing a human opponent and has descriptive 

information about how his own and opponent’s choices 

will affect one another’s outcomes (e.g., Figure 1) (Social 

condition), he might be inclined to take the other’s 

perspective. In the Social condition, he chooses to 

cooperate or defect not only to maximize his own 

outcomes, but also to uphold his preferences regarding 

fairness and trust (Baker & Rachlin, 2002; Gonzalez & 

Martin, 2011).  

 

Furthermore, recent literature in decisions from 

experience has shown that human behavior is primarily 

driven by experience when people are presented with both 

the descriptive and experiential information (like that in 

the Social condition in the form of knowledge of human 

opponents and outcomes in Figure 1 along with repeated 
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choices to defect and cooperate) (Jessup, Bishara, & 

Busemeyer, 2008; Lejarraga & Gonzalez, 2011). This 

human behavior could be evaluated in the form of 

alternations from a choice in the current trial (to defect or 

cooperate) to the choice in the next trial. One expects that 

early on in the task humans show exploration and thus 

alternate much more between C and D choices; but with 

repeated experience their alternations decay over trials 

(due to exploitation of learned choices) (March, 1991). If 

the IPD represents decisions from experience, then we 

expect that human alternations in both Social and Non-

social conditions to show the exploration-exploitation 

tradeoff where in Social condition humans rely on 

experience rather than the descriptive information just 

like they would do in the Non-social condition.    

 

Many laboratory studies have evaluated human behavior 

in different social information conditions in the IPD 

(Baker & Rachlin, 2002; Gallagher, Jack, Roepstorff, & 

Frith, 2002; Martin, Gonzalez, Juvina, & Lebiere,  in-prep; 

McCabe, Houser, Ryan, Smith, & Trouard, 2001). 

Moreover, there have been a number of mathematical and 

cognitive attempts to model human behavior in the 

presence of social information in the IPD (Bordini, 

Bazzan, Vicari, & Campbell, 2000; Cho & Schunn, 2002; 

Erev & Roth, 1998; Erev & Roth, 2001; Kim & Taber, 

2004; Lebiere, Wallach, & West, 2000; Ritter & Wallach, 

1998; West, Lebiere, & Bothell, 2006). Among the 

mathematical attempts the two common approaches that 

have been used include agent-based modeling and 

reinforcement learning (Bordini, Bazzan, Vicari, & 

Campbell, 2000; Erev & Roth, 1998; Erev & Roth, 2001).  

Among the cognitive attempts there has been both a 

single memory-based account in ACT-R architecture 

(Lebiere, Wallach, & West, 2000) and several procedural 

accounts in the ACT-R and SOAR architectures (Cho & 

Schunn, 2002; Ritter & Wallach, 1998; Kim & Taber, 

2004). The mathematical attempts have lacked cognitive 

explanations of the human behavior like memory and 

recall. Moreover, the cognitive-procedural attempts have 

mainly relied on fixed strategies that often compete to 

reproduce the effects of social information (Gonzalez & 

Martin, 2011). The single cognitive memory-based 

attempt assumes a single shared memory for two humans 

and makes no distinction between recalling an outcome 

from memory for the first time and experiencing it 

repeatedly (Lebiere, Wallach, & West, 2000). Thus, this 

modeling approach might be unrealistic in explaining the 

effects of social information in both the Social and Non-

social conditions. 

 

In this paper, we investigate how an existent memory-

based model based upon the Instance-based Learning 

theory (IBLT) to capture individual behavior, is able to 

account for behavior in the Social and Non-social 

conditions of the IPD. Most recently, memory-based 

models of experiential-learning, derived from IBLT have 

shown robust generalization to novel conditions in a 

single-person binary-choice task (BCT), and have also 

performed well at predicting behavior in a complex multi-

person BCT (e.g., a market entry game) (Gonzalez, Dutt, 

& Lejarraga, 2011). In these BCTs, participants are told to 

maximize their outcomes, lack information about how 

their outcomes are generated, and can only gather this 

information through experience. Thus, the BCTs are the 

closest to the Non-social condition in the IPD where a 

participant does not know that he is actually playing with 

another human opponent and, like in a BCT, is instructed 

to maximize his own outcomes from experience, without 

knowing the outcome matrix ahead of time. 

 

IBLT (Gonzalez et al., 2003) proposes that people make 

decisions by storing and retrieving instances from 

memory, where an instance serves as the basic unit of 

experience. The use of instances in memory in IBLT 

depends on a gradual transition from implicit exploration 

to exploitation processes that account for the exploration-

exploitation tradeoff as more and more similar instances 

accumulate in memory. The theory reflects a generic 

decision making process that includes recognition, 

judgment, choice, execution, and feedback steps that 

affect decisions with accumulated instances in memory, 

and according to the interaction of a decision maker with 

a decision task. 

 

In this paper, we test whether the same model based upon 

IBLT (hereafter, IBL model) used in the BCTs, can 

explain human behavior in two IPD conditions, Non-

social and Social. Because the existent IBL model was 

built for single-person tasks where participants lacked 

social information, we hypothesize that the model when 

generalized to the IPD conditions will be able to explain 

human behavior in the Non-social condition better than in 

the Social condition. The generalization process involves 

using the model developed for the BCT, with identical 

parameters (from Lejarraga et al., 2010) and generalizing 

it in the two IPD conditions.  This generalization process 

is a standard procedure to test the robustness of cognitive 

models (Busemeyer & Wang, 2002). The behavioral data 

we use in the generalization of the IBL model to the IPD 

is reported in a separate manuscript (Martin et al., in-

prep). First, we briefly describe the Social and Non-social 

conditions of the IPD. Then, we describe how we 

generalized an existent IBL model and compared its 

performance to observed behavior in these two conditions. 

Finally, we discuss results of comparison and describe 

potential future directions in this research.  

 

Iterated Prisoner’s Dilemma with and without 

Social Information 
 

2372



In Martin et al. (in prep), the experimental procedures and 

human data results are presented in detail.  Here, we 

summarize their methods and some of their findings. One-

hundred and twenty participants were randomly paired 

with one another and assigned to one of two between-

subjects conditions, Social and Non-social, to play the 

IPD. The two conditions fall near opposite ends of the 

Hierarchy of Social Information (HSI) framework 

(Gonzalez & Martin, 2011) with least social information 

available to a participant in the Non-social condition and 

the most social information available to a participant in 

the Social condition. Participants in both conditions in the 

IPD played a total of 200 repeated trials (which were 

unnumbered with no known endpoint to participants) and 

made repeated “C” and “D” decisions (See Figure 1).  In 

the Non-social condition, participants did not know they 

played another person, and thus, only knew the decisions 

they took and their own outcomes (they were essentially 

maximizing their own outcomes in this condition). In the 

Social condition, participants were informed that they 

played another person, were given the outcome matrix 

similar to Figure 1 from the outset of the game, and they 

saw the decisions and outcomes of the other player 

throughout the interaction. Participants received a base 

pay of $10 and could earn additional pay based upon 

points earned in the IPD. In both conditions, participants 

who were randomly paired to play the IPD were 

anonymous and did not see or talk to each other. Two 

standard dependent measures were used to compare the 

IBL model results to human data: 1. Average proportion 

of defections (D-rate) over trials (as a measure of overall 

human behavior); and, 2. Average proportion of 

alternations (from cooperate (C) to defect (D) and vice-

versa) (A-rate) over trials (an overall measure of human 

learning or exploration-exploitation). These proportions 

were computed over 30 pairs of human participants and 

30 pairs of model participants in each condition over the 

200 trials (i.e., averaged over all participants). The 

behavioral results will be summarized below together 

with the results from the IBL model. 

 

The IBL model 
 

We used an existent model based upon IBLT that was 

built to explain human behavior in single-person BCT 

(Lejarraga, Dutt & Gonzalez, 2010). An instance, i.e., 

smallest unit of experience, in the IBL model consists of 

three parts: a situation in a task (a set of attributes that 

define the decision situation), a decision in a task, and an 

outcome resulting from making that decision in that 

situation. Different parts of an instance are built through a 

general decision process: creating a situation from 

attributes in the task, a decision and expectation of an 

outcome when making a judgment, and updating the 

decision’s outcome in the feedback stage when the actual 

outcome is known. In the IBL model, instances 

accumulated in memory over time are retrieved from 

memory and are used repeatedly according to their 

availability in memory. This availability is measured by a 

statistical mechanism called Activation, originally 

implemented in the ACT-R architecture (Anderson and 

Lebiere, 1998). In this paper, we extend the IBL model of 

a single-person BCT to the two-player IPD by simply 

allowing the same two single-person models with their 

own memories as opponents to interact with each other in 

the IPD (having an independent memories for each model 

does away with the assumption of a single shared memory 

by Lebiere, Wallach, & West, 2000). Next, we summarize 

the single-player IBL model and explain the extensions to 

the IPD. 

 

In the IBL model, each instance consists of a label that 

identifies an option in the IPD (i.e., to cooperate or defect) 

and the outcome obtained (e.g., 10 points). Thus, the 

structure of an instance is simply, (option, outcome) (e.g., 

defect, 10). There are four instance-types one for each of 

the four possibilities in Figure 1. In each trial t of the IPD, 

the option with the highest blended value is selected 

(Equation 1 below). The blended value of an option 

depends on outcomes observed in the option and the 

probability of retrieval of instances from memory 

corresponding to outcomes (Equation 2 below). 

Furthermore, the probability of retrieval of instances from 

memory is a function of their activation in memory, 

governed by the recency and frequency of retrieval of 

instances from memory (Equation 3 below). 

 

The IBL model for Iterated Prisoner’s Dilemma 

 
In the IBL model the selected option in a trial is one with 

the highest blended value, V (Lebiere, 1999) resulting 

from all instances belonging to options. The blended 

value of option j is defined as: 

 

    ∑    

 

   

                                                                    , - 

 

where    is the value of the observed outcome in the 

outcome slot of an instance i corresponding to the option j 

and    is the probability of that instance's retrieval from 

memory (for the IPD, the value of j is either to defect or 

to cooperate and    could be -10, -1, +1, +10 depending 

upon the respective decision choices in Figure 1). The 

blended value of an option is the sum of all observed 

outcomes    for the option in the corresponding instances 

in memory, weighted by their probability of retrieval. In 

any trial t, the probability of retrieval of instance i from 

memory is a function of that instance's activation relative 

to the activation of all other instances corresponding to 

that option, given by 
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where   is random noise defined as     √  , and  is 

a free noise parameter. Noise in equation 3 captures the 

imprecision of retrieving instances from memory. 

  

The activation of each instance in memory depends upon 

the Activation mechanism (Anderson & Lebiere, 1998). A 

simplified version of the activation mechanism that relied 

on recency and frequency of use of instances in memory 

was sufficient to capture human choice behavior in 

several BCTs (Lejarraga, Dutt, & Gonzalez, 2010) and 

has been used in the IBL model reported in this paper. For 

each trial t, Activation      of instance   is: 

       ( ∑ (    )
  

   *       +

) 

           (
      
    

)                          , - 

where, d is a free decay parameter and    is the time 

period of a previous trial where the instance i was created 

or its activation was reinforced due to an observed 

outcome in the task corresponding to the instance’s 

outcome in memory. Thus, the model only reinforces 

instances when a corresponding outcome is observed in 

the task and not when instances are retrieved from 

memory (an assumption in the model by Lebiere, Wallach, 

& West, 2000). The summation includes a number of 

terms that coincides with the number of times that an 

outcome has been observed in previous trials and that the 

corresponding instance  ’s activation has been reinforced 

in memory. Therefore, the activation of an instance 

corresponding to an observed outcome increases with the 

frequency of observation of the outcome (i.e., by 

increasing the number of terms in the summation) and 

with the recency of those observations (i.e., by small 

differences in    *       +  of outcomes that 

correspond to that instance in memory). The decay 

parameter   affects the activation of the instance directly, 

as it captures the rate of forgetting. The higher the value 

of the d parameter, the faster is the decay of memory. 

 

The      term is a random draw from a uniform 

distribution bounded between 0 and 1, and the 

       (
      

    
)  term represents Gaussian noise important 

for capturing the variability of human behavior.  The 

higher the   value, the more variability there will be in 

the retrieval of information from memory.  Lejarraga, 

Dutt, and Gonzalez (2010), found the optimized value of 

d=5.0 and   = 1.5 in the IBL model of the BCT by 

minimizing the dependent measure (maximization-rate) 

between the model and human data. The high value of d 

and   parameters assumes a high rate of decay of memory 

instances and considerable variability in model’s 

performance over trials. As we use the same model in this 

paper, we keep both d and   parameters at values 

determined by Lejarraga, Dutt, and Gonzalez (2010). 

 

First Trial 
 

Given that in the first trial there are no past instances from 

which to calculate blended values of the two options, the 

model makes a selection between two pre-populated 

instances in memory. Each pre-populated instance 

corresponds to one of the two options, cooperating or 

defecting, with a value of +30 pre-assigned to the 

instance’s outcome slot. These pre-populated instances in 

memory may represent the expectations that participants 

bring to the laboratory (Lejarraga, Dutt, & Gonzalez, 

2010). The choice of a +30 value is the same as that 

assumed by Lejarraga, Dutt, and Gonzalez (2010). As the 

+30 value is higher than any of the possible outcomes in 

the task (Figure 1), it will trigger an initial exploration of 

the two options. Since both pre-populated instances have 

the same outcome, in practice the model makes a random 

selection of the two options in the first trial.  Because the 

+30 values are never observed as outcomes in the IPD 

according to its matrix (Figure 1), thus the activation of 

these pre-populated instances decays quickly enough that 

they cease to affect decisions in the model after the first 

few trials in the IPD.   

 

Implementation and execution of the IBL model 

in the IPD 

 
The same single-person model (described above) was 

duplicated to form the two players in the IPD (called M1 

and M2) and these acted as a pair of participants 

interacting repeatedly for 200 trials in the IPD, just as 

human participants did in two conditions, Social and Non-

social (Martin et al., in prep). Both M1 and M2 used 

identical mechanisms and the same parameter values.  

The outcomes for each model in a given trial were 

determined as a consequence of both their decisions, as 

for human players (See Figure 1). The same IBL model 

with M1 and M2 players was generalized to the Social 

and Non-Social conditions separately to determine how 

the model that represents individual behavior in the BCT 

would perform in each of the conditions of the IPD. The 

performance of the model was determined by computing 

the mean squared distance (MSD) over 200 trials between 

the D-rate and A-rate predictions from the model and that 

from the human data in each condition. Because we 

expect the model to generalize better in the Non-social 

condition compared to the Social condition, the MSDs in 

the Non-social condition should be smaller than those in 

the Social condition. Also, according to IBLT, regardless 

of the learning situation, the gradual transition from 
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exploration to exploitation occurs according to the 

consistency and similarity of the problem and outcomes in 

the IPD (Gonzalez et al., 2003). Since the same payoff 

values are maintained throughout the learning process and 

in both conditions, we expect similar transitions from 

exploration to exploitation as measured by the A-rate in 

human data.  Thus, the A-rates should gradually decrease 

over time, and the MSDs for the A-rate should be similar 

in both conditions.  

 

Results 

 
Table 1 summarizes the MSDs obtained by generalizing 

the same IBL model from Lejarraga et al. (2010) to the 

two conditions of the IPD, Social and Non-social. The 

MSD for the D-rate was considerably higher in the Social 

condition compared to that in the Non-social condition; 

however, the MSDs for the A-rate were about the same in 

the two conditions (fractionally better in the Social 

condition compared to the Non-social condition). These 

results seem to meet our expectation that the IBL model 

originally created for a single-person BCT would perform 

better in the Non-social condition compared to the Social 

condition and that humans would gradually transition 

from exploration to exploitation regardless of the 

condition and due to the consistency of the problem and 

outcomes as predicted by IBLT.  

  

Table 1. The MSDs in the different conditions. 

 

Condition MSD (D-rate) MSD (A-rate) 

Non-Social 0.0201 0.0071 

Social 0.1415 0.0049 

 

Figure 2 presents the D-rate and A-rate in the model and 

human data over 200 trials of IPD in the Non-social 

condition (panel A) and the Social condition (panel B), 

respectively. The model’s predictions for the D-rate seem 

to overestimate the D-rate over time in both conditions. 

Moreover, the overestimation of the model’s predictions 

is exacerbated in the Social condition due to a drop in the 

human D-rate over trials. Furthermore, although there is a 

marked change in behavior of the D-rate in human data 

between the two conditions, the exploration-exploitation 

(reflected by the A-rate) is very similar in both conditions 

as the IBL model predicts. Also, the model’s A-rate is 

high initially and low in the later trials and this behavior 

reflects the predicted gradual transition from exploration 

to exploitation.  The initial instances with +30 values of 

utility drive the initial exploration and gradually moves to 

the actual values of the payoffs obtained from the game. 

 

Discussion 
 

In this paper, we expected that an IBL model, developed 

for a single-person BCT without any social information 

and based upon decisions from past experience, would be 

able to make more accurate predictions in conflict 

situations where social information is absent compared to 

where it is present. Furthermore, we expected that 

regardless of the social condition, human exploration-

exploitation in both conditions would be similar. Based 

upon results in this paper, our expectations were met. The 

IBL model that accounts of individual behavior in binary 

choice, performed reasonably well in the Non-social 

condition compared to the Social condition according to 

the D-rate in human data. This happens because the IBL 

model is experience-based, uses retrieval from memory, 

and it has been shown to do well in single-person BCT 

similar to the IPD’s Non-social condition (Lejarraga, Dutt, 

& Gonzalez, 2010). Moreover, because the model seems 

to essentially rely on gained experience in the IPD, the 

model moves gradually from exploration to exploitation 

in the IPD (Gonzalez et al., 2003). However, it is valuable 

to note that humans in the Non-social condition might be 

primarily exploring the outcome distribution (like the 

model); whereas, humans in the Social condition might be 

primarily exploring the choice strategy of their opponent 

(unlike the model). These differences between model and 

humans explain reasons for fits in the two conditions. 

 

Although the model performs reasonably well it also 

seems to overestimate the human D-rate. We believe that 

the overestimation of the D-rate in the non-social 

condition can only be due to the difference in the 

dynamics from the single-person BCT (Lejarraga, Dutt, & 

Gonzalez, 2010) to the IPD. In the IPD, considering an 

ambivalent 50-50 chance of defections and cooperation, 

the expected value of the defection option (10*0.5-1*0.5 

= 4.5) for a player is much higher than that for the 

cooperation option (= -4.5). Because blended values of 

the two options approach the expected value over many 

trials, the model, that seems to be driven to maximize the 

blended value in each trial, yields a high D-rate over trials. 

In addition, in the BCT, the probability of occurrence of 

outcomes remains fixed for all trials in both options, 

whereas in the IPD, the probability changes dynamically 

as a function of the other player’s actions. The fact that 

the overestimation of the D-rate in the Social condition is 

much larger and that the gap increases over time supports 

these explanations.  

 

In evaluating an existing IBL model in different social 

information conditions, we have highlighted the challenge 

that social information brings to computational model of 

individual choice behavior. Our next step is to calibrate 

the IBL model in the Non-social and Social conditions 

and in conditions that are in between these two extremes 

with same and different parameters for both model 

participants to evaluate the highest potential of the model 

to explain human behavior. Furthermore, we would like to 

gain insight into exactly what the existing IBL model 
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lacks. Gaining this insight that accounts for the effects of 

social information in conflict situations will be an 

ongoing focus of this research.  
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