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Abstract: Behavior in conflict situations can be
influenced by the social information that individuals have
about their opponents. This paper tests whether an
existent Instance-based Learning (IBL) model, built using
the Instance-based Learning Theory (IBLT) to explain
behavior in a single-person binary-choice task (BCT), can
predict behavior in a two-player iterated prisoner’s
dilemma (IPD) game. The same IBL model is generalized
to two conditions in the IPD: Social, where individuals
have information about their opponents and their choices;
and Non-social, where individuals and opponents lack this
information. We expect the single-person IBL model to
predict behavior in the Non-social condition better than in
the Social condition. However, due to the structural
differences between BCT and IPD, we also expect only
moderately good model predictions in the Non-social
condition. Our results confirm these expectations. These
findings highlight the need for additional cognitive
mechanisms to account for social information in conflict
situations.
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Introduction

One objective of a participant in 2x2 games (between two
players, each of whom has two available choice options),
is to maximize personal economic benefit by cooperating
or competing with an opponent. A popular game called
the prisoner's dilemma (PD) (Axelrod, 1980; Rapoport &
Chammah, 1965) has been widely used to investigate
such conflict situations. In the PD, each of two
participants chooses simultaneously whether to cooperate
(C) or defect (D). If both cooperate, they obtain an equal
outcome that is larger than if both had chosen to defect.
(In Figure 1, each player’s outcomes are higher for C-C
than for D-D.)

Opponent's Action
C
You get 10 points,
Opponent gets -10 points

You get -1 point,
Opponent gets -1 point
You get -10 points, You get 1 point,
Opponent gets 10 points Opponent gets 1 point
Figure 1. The matrix of outcomes in the prisoner’s dilemma game.
“Your Action” and “Opponent’s Action” refer to the actions of the two

Your
Action

C

players. “D” and “C” are labels used for “defection” and “cooperation,”
respectively.

However, if one participant defects while the other
cooperates, the defector obtains an even larger outcome
while the cooperator suffers a loss (shown by the C-D and
D-C outcomes in Figure 1). In a one-trial PD, the standard
finding is a larger proportion of D choices than C choices
when aggregated over several participants (Rapoport &
Chammah, 1965). However, in the iterated PD (IPD),
where people are asked to repeatedly make C or D
decisions, the proportion of D choices are shown to
decrease over time (Rapoport & Chammah, 1965). Thus,
the PD represents a tradeoff between short-term
individual gain of defection and long-term individual gain
of sustained mutual cooperation (Baker & Rachlin, 2002).

Despite the general focus on maximizing personal
benefits in the PD, researchers have argued that the
economic perspective alone is oftentimes insufficient to
capture the social aspects of such games, including the
amount of information that is shared between participants
(Dawes, Van De Kragt, & Orbell, 1988; Gonzalez &
Martin, 2011; Schuster & Perelberg, 2004). For example,
if a participant does not know that he is actually playing
with another human opponent in the IPD, is not provided
with the matrix in Figure 1, and is asked to maximize his
benefits by repeatedly choosing between the C and D
buttons from experience (Non-social condition), then he
might strive to strictly maximize his own observed
outcomes. However, when the participant knows that he is
playing a human opponent and has descriptive
information about how his own and opponent’s choices
will affect one another’s outcomes (e.g., Figure 1) (Social
condition), he might be inclined to take the other’s
perspective. In the Social condition, he chooses to
cooperate or defect not only to maximize his own
outcomes, but also to uphold his preferences regarding
fairness and trust (Baker & Rachlin, 2002; Gonzalez &
Martin, 2011).

Furthermore, recent literature in decisions from
experience has shown that human behavior is primarily
driven by experience when people are presented with both
the descriptive and experiential information (like that in
the Social condition in the form of knowledge of human
opponents and outcomes in Figure 1 along with repeated
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choices to defect and cooperate) (Jessup, Bishara, &
Busemeyer, 2008; Lejarraga & Gonzalez, 2011). This
human behavior could be evaluated in the form of
alternations from a choice in the current trial (to defect or
cooperate) to the choice in the next trial. One expects that
early on in the task humans show exploration and thus
alternate much more between C and D choices; but with
repeated experience their alternations decay over trials
(due to exploitation of learned choices) (March, 1991). If
the IPD represents decisions from experience, then we
expect that human alternations in both Social and Non-
social conditions to show the exploration-exploitation
tradeoff where in Social condition humans rely on
experience rather than the descriptive information just
like they would do in the Non-social condition.

Many laboratory studies have evaluated human behavior
in different social information conditions in the IPD
(Baker & Rachlin, 2002; Gallagher, Jack, Roepstorff, &
Frith, 2002; Martin, Gonzalez, Juvina, & Lebiere, in-prep;
McCabe, Houser, Ryan, Smith, & Trouard, 2001).
Moreover, there have been a number of mathematical and
cognitive attempts to model human behavior in the
presence of social information in the IPD (Bordini,
Bazzan, Vicari, & Campbell, 2000; Cho & Schunn, 2002;
Erev & Roth, 1998; Erev & Roth, 2001; Kim & Taber,
2004; Lebiere, Wallach, & West, 2000; Ritter & Wallach,
1998; West, Lebiere, & Bothell, 2006). Among the
mathematical attempts the two common approaches that
have been used include agent-based modeling and
reinforcement learning (Bordini, Bazzan, Vicari, &
Campbell, 2000; Erev & Roth, 1998; Erev & Roth, 2001).
Among the cognitive attempts there has been both a
single memory-based account in ACT-R architecture
(Lebiere, Wallach, & West, 2000) and several procedural
accounts in the ACT-R and SOAR architectures (Cho &
Schunn, 2002; Ritter & Wallach, 1998; Kim & Taber,
2004). The mathematical attempts have lacked cognitive
explanations of the human behavior like memory and
recall. Moreover, the cognitive-procedural attempts have
mainly relied on fixed strategies that often compete to
reproduce the effects of social information (Gonzalez &
Martin, 2011). The single cognitive memory-based
attempt assumes a single shared memory for two humans
and makes no distinction between recalling an outcome
from memory for the first time and experiencing it
repeatedly (Lebiere, Wallach, & West, 2000). Thus, this
modeling approach might be unrealistic in explaining the
effects of social information in both the Social and Non-
social conditions.

In this paper, we investigate how an existent memory-
based model based upon the Instance-based Learning
theory (IBLT) to capture individual behavior, is able to
account for behavior in the Social and Non-social
conditions of the IPD. Most recently, memory-based

models of experiential-learning, derived from IBLT have
shown robust generalization to novel conditions in a
single-person binary-choice task (BCT), and have also
performed well at predicting behavior in a complex multi-
person BCT (e.g., a market entry game) (Gonzalez, Dutt,
& Lejarraga, 2011). In these BCTs, participants are told to
maximize their outcomes, lack information about how
their outcomes are generated, and can only gather this
information through experience. Thus, the BCTs are the
closest to the Non-social condition in the IPD where a
participant does not know that he is actually playing with
another human opponent and, like in a BCT, is instructed
to maximize his own outcomes from experience, without
knowing the outcome matrix ahead of time.

IBLT (Gonzalez et al., 2003) proposes that people make
decisions by storing and retrieving instances from
memory, where an instance serves as the basic unit of
experience. The use of instances in memory in IBLT
depends on a gradual transition from implicit exploration
to exploitation processes that account for the exploration-
exploitation tradeoff as more and more similar instances
accumulate in memory. The theory reflects a generic
decision making process that includes recognition,
judgment, choice, execution, and feedback steps that
affect decisions with accumulated instances in memory,
and according to the interaction of a decision maker with
a decision task.

In this paper, we test whether the same model based upon
IBLT (hereafter, IBL model) used in the BCTs, can
explain human behavior in two IPD conditions, Non-
social and Social. Because the existent IBL model was
built for single-person tasks where participants lacked
social information, we hypothesize that the model when
generalized to the IPD conditions will be able to explain
human behavior in the Non-social condition better than in
the Social condition. The generalization process involves
using the model developed for the BCT, with identical
parameters (from Lejarraga et al., 2010) and generalizing
it in the two IPD conditions. This generalization process
is a standard procedure to test the robustness of cognitive
models (Busemeyer & Wang, 2002). The behavioral data
we use in the generalization of the IBL model to the IPD
is reported in a separate manuscript (Martin et al., in-
prep). First, we briefly describe the Social and Non-social
conditions of the IPD. Then, we describe how we
generalized an existent IBL model and compared its
performance to observed behavior in these two conditions.
Finally, we discuss results of comparison and describe
potential future directions in this research.

Iterated Prisoner’s Dilemma with and without
Social Information
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In Martin et al. (in prep), the experimental procedures and
human data results are presented in detail. Here, we
summarize their methods and some of their findings. One-
hundred and twenty participants were randomly paired
with one another and assigned to one of two between-
subjects conditions, Social and Non-social, to play the
IPD. The two conditions fall near opposite ends of the
Hierarchy of Social Information (HSI) framework
(Gonzalez & Martin, 2011) with least social information
available to a participant in the Non-social condition and
the most social information available to a participant in
the Social condition. Participants in both conditions in the
IPD played a total of 200 repeated trials (which were
unnumbered with no known endpoint to participants) and
made repeated “C” and “D” decisions (See Figure 1). In
the Non-social condition, participants did not know they
played another person, and thus, only knew the decisions
they took and their own outcomes (they were essentially
maximizing their own outcomes in this condition). In the
Social condition, participants were informed that they
played another person, were given the outcome matrix
similar to Figure 1 from the outset of the game, and they
saw the decisions and outcomes of the other player
throughout the interaction. Participants received a base
pay of $10 and could earn additional pay based upon
points earned in the IPD. In both conditions, participants
who were randomly paired to play the IPD were
anonymous and did not see or talk to each other. Two
standard dependent measures were used to compare the
IBL model results to human data: 1. Average proportion
of defections (D-rate) over trials (as a measure of overall
human behavior); and, 2. Average proportion of
alternations (from cooperate (C) to defect (D) and vice-
versa) (A-rate) over trials (an overall measure of human
learning or exploration-exploitation). These proportions
were computed over 30 pairs of human participants and
30 pairs of model participants in each condition over the
200 trials (i.e., averaged over all participants). The
behavioral results will be summarized below together
with the results from the IBL model.

The IBL model

We used an existent model based upon IBLT that was
built to explain human behavior in single-person BCT
(Lejarraga, Dutt & Gonzalez, 2010). An instance, i.e.,
smallest unit of experience, in the IBL model consists of
three parts: a situation in a task (a set of attributes that
define the decision situation), a decision in a task, and an
outcome resulting from making that decision in that
situation. Different parts of an instance are built through a
general decision process: creating a situation from
attributes in the task, a decision and expectation of an
outcome when making a judgment, and updating the
decision’s outcome in the feedback stage when the actual
outcome is known. In the IBL model, instances

accumulated in memory over time are retrieved from
memory and are used repeatedly according to their
availability in memory. This availability is measured by a
statistical mechanism called Activation, originally
implemented in the ACT-R architecture (Anderson and
Lebiere, 1998). In this paper, we extend the IBL model of
a single-person BCT to the two-player IPD by simply
allowing the same two single-person models with their
own memories as opponents to interact with each other in
the IPD (having an independent memories for each model
does away with the assumption of a single shared memory
by Lebiere, Wallach, & West, 2000). Next, we summarize
the single-player IBL model and explain the extensions to
the IPD.

In the IBL model, each instance consists of a label that
identifies an option in the IPD (i.e., to cooperate or defect)
and the outcome obtained (e.g., 10 points). Thus, the
structure of an instance is simply, (option, outcome) (e.g.,
defect, 10). There are four instance-types one for each of
the four possibilities in Figure 1. In each trial ¢ of the IPD,
the option with the highest blended value is selected
(Equation 1 below). The blended value of an option
depends on outcomes observed in the option and the
probability of retrieval of instances from memory
corresponding to outcomes (Equation 2 below).
Furthermore, the probability of retrieval of instances from
memory is a function of their activation in memory,
governed by the recency and frequency of retrieval of
instances from memory (Equation 3 below).

The IBL model for Iterated Prisoner’s Dilemma

In the IBL model the selected option in a trial is one with
the highest blended value, V (Lebiere, 1999) resulting
from all instances belonging to options. The blended
value of option J is defined as:

n
Vi = Z DiX; [1]

i=1
where x; is the value of the observed outcome in the
outcome slot of an instance i corresponding to the option j
and p; is the probability of that instance's retrieval from
memory (for the IPD, the value of j is either to defect or
to cooperate and x; could be -10, -1, +1, +10 depending
upon the respective decision choices in Figure 1). The
blended value of an option is the sum of all observed
outcomes X; for the option in the corresponding instances
in memory, weighted by their probability of retrieval. In
any trial ¢, the probability of retrieval of instance i from
memory is a function of that instance's activation relative
to the activation of all other instances corresponding to
that option, given by
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where 7 is random noise defined as T = ¢ X V2, and ois
a free noise parameter. Noise in equation 3 captures the

imprecision of retrieving instances from memory.

The activation of each instance in memory depends upon
the Activation mechanism (Anderson & Lebiere, 1998). A
simplified version of the activation mechanism that relied
on recency and frequency of use of instances in memory
was sufficient to capture human choice behavior in
several BCTs (Lejarraga, Dutt, & Gonzalez, 2010) and
has been used in the IBL model reported in this paper. For
each trial ¢, Activation A;, of instance i is:

Ay =ln (t—t)™
tie(1,..,t—1}

1—v,
+ o. ln( m) [3]
Vit

where, d is a free decay parameter and t; is the time
period of a previous trial where the instance i was created
or its activation was reinforced due to an observed
outcome in the task corresponding to the instance’s
outcome in memory. Thus, the model only reinforces
instances when a corresponding outcome is observed in
the task and not when instances are retrieved from
memory (an assumption in the model by Lebiere, Wallach,
& West, 2000). The summation includes a number of
terms that coincides with the number of times that an
outcome has been observed in previous trials and that the
corresponding instance i’s activation has been reinforced
in memory. Therefore, the activation of an instance
corresponding to an observed outcome increases with the
frequency of observation of the outcome (i.e., by
increasing the number of terms in the summation) and
with the recency of those observations (i.e., by small
differences in t; €{1,..,t —1} of outcomes that
correspond to that instance in memory). The decay
parameter d affects the activation of the instance directly,
as it captures the rate of forgetting. The higher the value
of the d parameter, the faster is the decay of memory.

The y;, term is a random draw from a uniform
distribution bounded between 0 and 1, and the

1-y; . Lo
o.ln (—”) term represents Gaussian noise important

Yit

for capturing the variability of human behavior. The
higher the o value, the more variability there will be in
the retrieval of information from memory. Lejarraga,
Dutt, and Gonzalez (2010), found the optimized value of
d=5.0 and 0 = 1.5 in the IBL model of the BCT by
minimizing the dependent measure (maximization-rate)
between the model and human data. The high value of d

and o parameters assumes a high rate of decay of memory

instances and considerable variability in model’s
performance over trials. As we use the same model in this
paper, we keep both d and o parameters at values
determined by Lejarraga, Dutt, and Gonzalez (2010).

First Trial

Given that in the first trial there are no past instances from
which to calculate blended values of the two options, the
model makes a selection between two pre-populated
instances in memory. Each pre-populated instance
corresponds to one of the two options, cooperating or
defecting, with a value of +30 pre-assigned to the
instance’s outcome slot. These pre-populated instances in
memory may represent the expectations that participants
bring to the laboratory (Lejarraga, Dutt, & Gonzalez,
2010). The choice of a +30 value is the same as that
assumed by Lejarraga, Dutt, and Gonzalez (2010). As the
+30 value is higher than any of the possible outcomes in
the task (Figure 1), it will trigger an initial exploration of
the two options. Since both pre-populated instances have
the same outcome, in practice the model makes a random
selection of the two options in the first trial. Because the
+30 values are never observed as outcomes in the IPD
according to its matrix (Figure 1), thus the activation of
these pre-populated instances decays quickly enough that
they cease to affect decisions in the model after the first
few trials in the IPD.

Implementation and execution of the IBL model
in the IPD

The same single-person model (described above) was
duplicated to form the two players in the IPD (called M1
and M2) and these acted as a pair of participants
interacting repeatedly for 200 trials in the IPD, just as
human participants did in two conditions, Social and Non-
social (Martin et al., in prep). Both M1 and M2 used
identical mechanisms and the same parameter values.
The outcomes for each model in a given trial were
determined as a consequence of both their decisions, as
for human players (See Figure 1). The same IBL model
with M1 and M2 players was generalized to the Social
and Non-Social conditions separately to determine how
the model that represents individual behavior in the BCT
would perform in each of the conditions of the IPD. The
performance of the model was determined by computing
the mean squared distance (MSD) over 200 trials between
the D-rate and A-rate predictions from the model and that
from the human data in each condition. Because we
expect the model to generalize better in the Non-social
condition compared to the Social condition, the MSDs in
the Non-social condition should be smaller than those in
the Social condition. Also, according to IBLT, regardless
of the learning situation, the gradual transition from
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exploration to exploitation occurs according to the
consistency and similarity of the problem and outcomes in
the IPD (Gonzalez et al., 2003). Since the same payoff
values are maintained throughout the learning process and
in both conditions, we expect similar transitions from
exploration to exploitation as measured by the A-rate in
human data. Thus, the A-rates should gradually decrease
over time, and the MSDs for the A-rate should be similar
in both conditions.

Results

Table 1 summarizes the MSDs obtained by generalizing
the same IBL model from Lejarraga et al. (2010) to the
two conditions of the IPD, Social and Non-social. The
MSD for the D-rate was considerably higher in the Social
condition compared to that in the Non-social condition;
however, the MSDs for the A-rate were about the same in
the two conditions (fractionally better in the Social
condition compared to the Non-social condition). These
results seem to meet our expectation that the IBL model
originally created for a single-person BCT would perform
better in the Non-social condition compared to the Social
condition and that humans would gradually transition
from exploration to exploitation regardless of the
condition and due to the consistency of the problem and
outcomes as predicted by IBLT.

Table 1. The MSDs in the different conditions.

Condition MSD (D-rate) MSD (A-rate)
Non-Social 0.0201 0.0071
Social 0.1415 0.0049

Figure 2 presents the D-rate and A-rate in the model and
human data over 200 trials of IPD in the Non-social
condition (panel A) and the Social condition (panel B),
respectively. The model’s predictions for the D-rate seem
to overestimate the D-rate over time in both conditions.
Moreover, the overestimation of the model’s predictions
is exacerbated in the Social condition due to a drop in the
human D-rate over trials. Furthermore, although there is a
marked change in behavior of the D-rate in human data
between the two conditions, the exploration-exploitation
(reflected by the A-rate) is very similar in both conditions
as the IBL model predicts. Also, the model’s A-rate is
high initially and low in the later trials and this behavior
reflects the predicted gradual transition from exploration
to exploitation. The initial instances with +30 values of
utility drive the initial exploration and gradually moves to
the actual values of the payoffs obtained from the game.

Discussion

In this paper, we expected that an IBL model, developed
for a single-person BCT without any social information

and based upon decisions from past experience, would be
able to make more accurate predictions in conflict
situations where social information is absent compared to
where it is present. Furthermore, we expected that
regardless of the social condition, human exploration-
exploitation in both conditions would be similar. Based
upon results in this paper, our expectations were met. The
IBL model that accounts of individual behavior in binary
choice, performed reasonably well in the Non-social
condition compared to the Social condition according to
the D-rate in human data. This happens because the IBL
model is experience-based, uses retrieval from memory,
and it has been shown to do well in single-person BCT
similar to the IPD’s Non-social condition (Lejarraga, Dutt,
& Gonzalez, 2010). Moreover, because the model seems
to essentially rely on gained experience in the IPD, the
model moves gradually from exploration to exploitation
in the IPD (Gonzalez et al., 2003). However, it is valuable
to note that humans in the Non-social condition might be
primarily exploring the outcome distribution (like the
model); whereas, humans in the Social condition might be
primarily exploring the choice strategy of their opponent
(unlike the model). These differences between model and
humans explain reasons for fits in the two conditions.

Although the model performs reasonably well it also
seems to overestimate the human D-rate. We believe that
the overestimation of the D-rate in the non-social
condition can only be due to the difference in the
dynamics from the single-person BCT (Lejarraga, Dutt, &
Gonzalez, 2010) to the IPD. In the IPD, considering an
ambivalent 50-50 chance of defections and cooperation,
the expected value of the defection option (10*0.5-1*0.5
= 4.5) for a player is much higher than that for the
cooperation option (= -4.5). Because blended values of
the two options approach the expected value over many
trials, the model, that seems to be driven to maximize the
blended value in each trial, yields a high D-rate over trials.
In addition, in the BCT, the probability of occurrence of
outcomes remains fixed for all trials in both options,
whereas in the IPD, the probability changes dynamically
as a function of the other player’s actions. The fact that
the overestimation of the D-rate in the Social condition is
much larger and that the gap increases over time supports
these explanations.

In evaluating an existing IBL model in different social
information conditions, we have highlighted the challenge
that social information brings to computational model of
individual choice behavior. Our next step is to calibrate
the IBL model in the Non-social and Social conditions
and in conditions that are in between these two extremes
with same and different parameters for both model
participants to evaluate the highest potential of the model
to explain human behavior. Furthermore, we would like to
gain insight into exactly what the existing IBL model
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lacks. Gaining this insight that accounts for the effects of
social information in conflict situations will be an
ongoing focus of this research.
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