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Abstract

Humans have an impressive ability to solve even computation-
ally complex problems. Limited cognitive processing capa-
bilities, however, impede an exhaustive search of the problem
space. Thus, planning problems of the same size may require a
different cognitive effort. Formal complexity aspects are inher-
ent to a problem and set computational limits that a solver must
deal with. For a measure of cognitive complexity, operational
aspects of human cognition must be taken into account. We
present a structural complexity measure for predicting human
planning performance. This measure is based on the number
and connectedness of subgoals necessary to solve a problem.
This measure is evaluated on the PSPACE-complete puzzle
game Rush Hour and is able to capture empirically measured
difficulty for this game.
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Introduction

Planned and rational behavior are daily aspect in everyday
life. Planning can be defined as, the anticipation of action
steps or “a procedure for achieving a particular goal or desired
outcome” (Morris & Ward, 2005, p. 1). In computer science,
one distinguishes between optimal and satisfiable planning.
The goal of optimal planning is to find a shortest possible so-
lutions for a problem, whereas the goal of satisfiable planning
is to find a solution at all.

In AI and Cognitive Science finding a solution is often
represented as a search of the problem space (Russell &
Norvig, 2003). The problem space is defined by the oper-
ators and problem states. Due to limited cognitive process-
ing resources, humans are not able to search the problem
space exhaustively, i.e., they do not apply any operator on
any state. Humans are, nonetheless, able to solve computa-
tionally complex problems by chunking information, in order
to reduce the problem representation, (Ellis & Siegler, 1994;
Kotovsky, Hayes, & Simon, 1985) and by applying heuristic
search strategies (Miller, Galanter, & Pribram, 1960).

Planning problems have various characteristics. Problems
can be non-transparent, have multiple goals, can be solv-
able, well-defined, dynamic, or decomposable. Another im-
portant issue is the domain of the problem. A first mea-
sure of the difficulty of a planning problem is the minimum
number of steps necessary to solve the problem. In Al the
different degrees of difficulty for problems are mostly clas-
sified according to the number of computing operations or
the amount of memory required to solve a problem. For an
overview of the complexity of planning tasks please refer to
Helmert (2008). These measures are asymptotically with re-
spect to worst case boundaries for increasing problem sizes
(Papadimitriou, 1994). However, computational complexity
measures do not integrate local problem structures. This is

important for a more detailed measurement of problem diffi-
culty, because problems with shorter solution length can be
more difficult to solve for humans.

If too many operations are necessary, most humans seem
to become overstrained, i.e., they make significantly more er-
rors, need more time, and even start to guess. The difficulty
for humans in solving planning problems can differ with re-
gards to solvability, optimality, and response times. This im-
plies, that there must be further problem-inherent planning
differences which influence the performance of humans.

This aspect is important for explaining varying cognitive
effort as it occurs in human problem solving. A cognitive
complexity measure (a formal measure which is able to cap-
ture the human planning complexity) must not only integrate
formal aspects of complexity, but also particularities of the
human reasoning and planning process, e.g., the abundant use
of heuristics or preferred operations.

We will define our cognitive complexity measure and eval-
uate it on (spatial) permutation problems like Rush Hour!.
This planning problem developed by Nob Yoshigahara is a
game with a visual-spatial presentation which is well-defined,
solvable, decomposable, not dynamic and has only one goal.
Given these settings, the number of operations can be con-
trolled systematically and measured precisely. These plan-
ning problems have an initial state, an explicit goal state (e.g.
where a certain relation must hold), and a number of un-
derlying operations. Compared to Tower of London, Rush
Hour has advantages, which guide the decision to use the lat-
ter: the problem size is easier to adjust, it has two dimen-
sional features, the number of interacting objects is higher,
which increases the difficulties for human reasoning (branch-
ing, counterintuitive moves), and Rush Hour is PSPACE-
complete (Flake & Baum, 2002) and sufficiently complex
for our purposes. It is also possible to generate highly chal-
lenging problems. Thus, it is important to find parameters,
which describe more precisely difficulties humans encounter
in planning tasks as was possible in classical theoretical com-
puter science

In the following we first analyze (formal) requirements of a
cognitive complexity measure to capture the average human
planning process and introduce a first notion of a structural
complexity measure. This is exemplified on the PSPACE-
complete puzzle game Rush Hour. This structural complexity
measure, although defined formally, is able to capture empir-
ically measured difficulty for this game. Identified solution
strategies and examples conclude the paper.

YA complete description of RushHour can be found at
http://www.thinkfun.com/instructions
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Rush Hour Game

Assume that your car is parked in a parking lot and your goal
is to reach the exit with your car. The problem is that the path
to the exit is blocked by other cars which must first be moved.

The game board consists of a 6 x 6 grid in which the cells
can be occupied by vehicles of different color and type (see
Fig. 1). The set of possible positions can be defined as

P={(x,y) e N*|1<xy<6}.

For a position p = (x,y) € P, col(p) = x denotes the column
and row(p) = y denotes the row of p.

The set of vehicles on a Rush Hour board is defined as a
set of tuples of a start and end position

V ={(s,e) | s,e € P,row(s) = row(e) or col(s) = col(e)}.

There are two types of vehicles which differ only in their
length, i.e., by the number of occupied positions. The oc-
cupied positions for a vehicle v = (s, e) is the set

pos(v) ={p € P | row(s) < row(v) < row(e)
Acol(s) < col(v) < col(e)}.

There are cars occupying two cells in length and there are
trucks occupying three cells in length. Vehicles can be ar-
ranged horizontally as well as vertically. The orientation of
a vehicle v = (s,e) is horizontal, if row(s) = row(e), other-
wise it is vertical. The position of all vehicles determine the
occupied board positions.

The exit position is located at the right border of the third
row at position (6,3). Thus, the rightmost horizontal car in
this row is automatically defined as the exit car. The main
goal of the task is to sequentially move the cars such that
the exit car can reach the exit, i.e., it can reach the coordi-
nate (6,3). The vehicles can only be moved longitudinally
in a forward or backward manner and they are not allowed to
leave the grid. Vehicles can only move in the range of free
cells. Vehicles may not be moved over or through occupied
positions by other cars.

The primary goal of this planning problem is to find a se-
quence of moves so that the goal condition is reached (satis-
fying solution). Finding one of the optimal solutions, i.e., a
solution with a minimum number of moves, is the secondary
goal. The secondary goal is to find one of the optimal solu-
tions, i.e., a solution with a minimum number of moves.

To be able to move the red carl in Fig. 1 to the exit,
other vehicles (2, 3, 4) that are blocking the route, have to
be moved. The complexity of this problem can depend on
different factors: (1) The number of vehicles on the grid, i.e.,
more cars can block each other, but this may also restrict the
number of possible moves. (2) The number of moves, i.e., it
is harder to find the minimal solution the more moves are nec-
essary as at each step one can deviate from an optimal solu-
tion. (3) Counter-intuitive moves, i.e., moves that increase the
distance to the goal with regards to optimistic distance mea-
sures (e.g. Manhattan distance). (4) The number of branch-
ing points for alternative moves where only one specific move

IO

Figure 1: Abstract version of Rush Hour. Cars and trucks are
reduced to blocks. The goal is to move the car marked by the
number “1” to the exit at the right border of the grid.

leads to the solution. (5) Move dependency, i.e if a previously
moved vehicle blocks the movement of other vehicles, which
also need to be moved.

Some of these parameters can be calculated offline, i.e
without knowing the complete solution (e.g. property 1).
Others depend on the actual moves/positions which we de-
note as online (e.g. property 5).

Cognitive Complexity

Psychologically, reasoning difficulty is measured on a set of
problems w.r.t. errors and the time participants need to solve
the task. Another often used measure is the relational com-
plexity proposed by Halford et al., (2001; 1998). This com-
plexity measure classifies the problem difficulty by the high-
est dimensional relation which must be processed simultane-
ously. Although this complexity measure takes the working
memory into account and recognizes the complexity of highly
inter-connected tasks — van Rooij et al. (2008) could show
that the hypothesis of relational complexity as a measure of
difficulty was not confirmed, at least in the case where com-
putational complexity is taken as a measure of difficulty.

Each Rush Hour board can be classified with respect to
the branching factor as well as the depth of its optimal so-
lution. While the depth of the solution (or the minimal plan
length) will certainly play an important role, the branching
factor might not fully reflect human reasoning difficulty, be-
cause humans do not always apply all possible operations si-
multaneously (Anderson, 2000).

Human reasoning is certainly very heuristic driven. In cog-
nitive science a number of heuristics are recognized. The two
most well-known are means-end analysis (match the current
state to goal state to find the most important difference and
eliminate this difference by applying operators (Anderson,
2000, p. 232) and then hill climbing, i.e., choose the operator
that transforms the problem state into a state that resembles
the goal state more closely than the initial state (Anderson,
2000, p. 228). Further identified heuristics are backward
chaining, operator subgoaling, subgoal decomposition, and
backup avoidance.

All these characteristics point in the same direction: A cog-
nitive complexity measure must be based on operators — with
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Figure 2: Two example positions and the marked rays for
each car. In both pictures car2 is in the ray of carl. To move
the red carl out each car in the ray has to be moved away.
Which is only possible if there is no car blocking in the ray.
The ray structure defines the subgoal identification process.

the condition that certain operators must be cognitively ad-
equate, i.e., that is the application of this operator must be
supported by empirical investigations.

Structural Complexity

As the name implies, a structural complexity measure in-
tegrates structural problem characteristics for predicting a
problem-inherent difficulty that a planner has to deal with
when trying to optimally solve a problem.

We present a complexity measure based on the number and
inter-connectedness of task-specific sub-problems. This mea-
sure is based on the means-end-analysis heuristic in which a
planner successively breaks up a problem into smaller sub-
problems (Morris & Ward, 2005). Means-end-analysis seems
to be the major strategy applied in the human problem solv-
ing process and is the most widely used strategy for modeling
human problem solving (Newell & Simon, 1972; Anderson,
2000, 1993). In well-defined problems, sub-problems can be
identified by comparing the current state with a desired goal-
state and by finding a transformation that reduces the differ-
ence between current state and goal state (Miller et al., 1960).
We assume that for spatial transformation problems like Rush
Hour, the euclidean distance between the current position of
a vehicle and its goal position is an appropriate measure for
the goal distance.

Based on this, sequential sub-problems can be represented
as a graph, with the sub-problems as nodes which are con-
nected by directed edges to represent a sequential depen-
dency. This graph can contain cycles because problem chains
might occur that reference back to an earlier sub-problem.
For example in Fig. 1 the exit carl is blocked by car2, but
to solve this blocking, car2 has to move down. This move
is blocked by car3 which is blocked by car4. To move car4
such that it does not block car3 requires the exit carl to move,
i.e., we have a cyclic reference back to the beginning.

In Rush Hour, sub-problems are defined based on the
blocking of desired goal positions. For example, the initial
goal requires the red car to be at position ((5,3),(6,3)). To
be able to reach this position, the goal position itself as well

as all positions in between need to be free. Thus, all vehi-
cles in between the current position and the goal position are
sub-problems. The set of cells that need to be freed to move
a vehicle to its goal position is defined by the blocking ray of
the vehicle (see Fig. 2).

Definition 1 The ray of a vehicle v = (s,e) € V with reference
position p = (px, py) € P is the set of positions

RE ={(x,y) € P |y =row(s),col(e) <x< pyV
px <x<col(s)}

if v is horizontal and

RY = {(x,y) € P [x=col(s),row(e) <y < py V

Py <x <row(s)}
if the blocked vehicle v is vertical.

Now we can define blocking cars as the set of cars which
occupy a position on a cars’ blocking ray as follows:

Definition 2 The blocking cars for a car v € V regarding a
reference position p € P, are defined as the set

BY ={c eV |pos(c)NRY # 0}.

If the blocking vehicles for a car regarding its desired goal
position are known, the successive sub-problems can be de-
rived directly. For each blocking vehicle, possible positions
that do not block the current goal position are new goal po-
sitions for the successive sub-problem. The generation of
new sub-problems then continues as long as there are suc-
cessive sub-problems or as long as the new sub-problem does
not involve a vehicle that was already considered in the sub-
problem chain back to the initial problem.

The successive sub-problem generation can be used to con-
vert a Rush Hour board into a directed graph G = (N, E) rep-
resenting the degree of interlacing between the vehicles (see
Fig. 3). The node set N C V is the set of vehicles which are
necessary for the solution. The directed edges represent the
blocking relations. These are defined as:

E = {(Vl,vz) eN? ‘ Vv GB{ZI}

i.e., two nodes are connected, if the car v, is in the set of
blocking cars of car v». The blocking cars for a car can only
be determined if a goal position p is known. These goal po-
sitions are determined successively beginning from the initial
goal.

The generation of the structural graph is a recursive pro-
cess beginning with the exit car v, having the goal position
p = (6,3). For each blocking car v € R, a new edge (v,,v) is
added to the graph. The definition of sub-problems could lead
to infinite loops if the problem contained cycles. Therefore,
if the new sub-problems contain already visited nodes we use
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a special edges marking this back reference. A node n, repre-
senting a newly generated sub-problem of a predecessor node
P, is called visited if G contains a path from n to p that is not
a direct connection, i.e., it is not a back reference edge. Then,
anew edge (p,n) is inserted and the search is stopped.

If the back reference connections are disregarded, the
graph is directed and acyclic, i.e., it is a tree with the exit car
as root node. Thus, we can assign each node a depth regard-
ing the tree representation of the graph. As mentioned above,
the structural complexity measure represents the number and
inter-connectedness of the sub-problems that are necessary to
solve the problem.

The numerical value for the structural complexity is deter-
mined by the problem graph and its reduced tree representa-
tion. For a node v with successor nodes sy, ...,s,,n € N, with
back references from “deeper” nodes by,...,b,,m € N, the
complexity of v is defined as

m

[c(si) +1]+ Y depth(b;).

i=1

-

Il
—

c(v) =

sub-problems backreferences

Leaves are either not blocked, or are part of a cycle. The com-
plexity of such nodes is counted as 0. A node’s complexity
thus results from the number and complexity of its successor
nodes.

Figure 3 shows a graph conversion for a sample Rush Hour
task. The complexity of each node is given in the node
caption. The exit car (carl) is blocked by car2 and car3.
They are, therefore, inserted into the graph as direct succes-
sor nodes of the root node. On the next level, car4 is blocked
by car5 which in turn is blocked by the exit car so that a back
reference edge goes from car5 to carl. On the final level,
car6 blokcs the movement of car2 and car3, but car6 itself is
not hindered from freeing either of these cars. Leaving car6
as the last node added to graph.

The resulting node complexities are computed in a bottom-
up manner. First, car6 and car5 are leaves in the tree repre-
sentation of the graph and thus have a complexity of 0. The
complexities of the nodes car2, car3 and car4 are calculated
by adding one to the complexity of each successor node and
then adding the complexities together. For the root node carl,
the final task complexity results from the complexity of the
two successor nodes as well as from the depth of the back-
reference of car5. The successor node complexities add up to
7 and the depth of the back-reference is 3 and thus, the overall
task complexity is 10.

Cognitive Complexity and Empirical Difficulty

We conducted a behavioral experiment to test if participants
could find the optimal number of moving steps and if not,
why and what were they doing instead.

Participants, Material, and Task. Twenty participants (8
male, 12 female, mean = 24,8 years) processed 21 tasks from

Figure 3: Rush Hour board and its structure graph. The com-
plexities of each node are given in the trailing parentheses.
The total complexity of the task results from the complexity
of the root node. The example given here has a total com-
plexity of 10.

the “’Junior edition” of the Rush Hour game. Tasks were se-
lected with respect to following aspects: existing classifica-
tion of the tasks (beginner, intermediate, and advanced), the
minimum number of needed to reach the solution, and num-
ber of additional moves for the exit car (one move at the end to
the right to the exit, two separate moves to the right, and one
counter intuitive move to the left and afterwards a separate
move to the right). The participants solved all tasks on the
computer. Behavioral parameters like solution length, moves
made, and moving time for each step were recorded.

Results. For some of the Rush Hour tasks we show exem-
plary statistical and structural complexity results. The ac-
curacy of different difficult tasks (easy, moderate, high) are
shown in Table 1. For a better understanding of the hu-
man planning abilities it is especially important to explore
the tasks which were solved but not with the optimal solution
length.

Table 1: Accuracy for six selected tasks (easy 6, 13, moderate
9, 10, hard, 27, 29) in percent for 20 participants (NS = not
solved, SN = solved, but not optimal, SO = solved optimal).

Problem 6 13 9 10 27 29
NS 0% 0% 0% 0% 10% 20%
SN 5% 15% 80% 100% 80% 80%
SO 5% 85% 20% 0% 10% 0%

The increasing mean move difference from optimum as
well as the increasing standard deviation in relation to diffi-
culty of the task is displayed in Table 2. Almost all statistical
parameters reflect the increasing difficulty of the tasks. Note,
these parameters can better explain the difficulty difference
for humans between moderate and hard tasks.

The over-all results in Table 3 indicate that the difficulty
classification by means of statistical parameters (mean, stan-
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Table 2: The descriptive statistic shows the move difference
from the optimal number of moves for correct answered easy
(6, 13), moderate (9, 10), and hard (27, 29) tasks.

Task n/all Mean SD Med Min Max
6 20/20  0.10 0.45 0 0 2
13 2020 0.30 0.80 0 0 3
9 2020 4.45 4.20 3 0 13
4 1
0
1

10 20/20  6.05 5.12 17
27 18/20 11.00 11.21 85 37
29 16/20 10.56 845 105 32

dard deviation) is possible. A more profound analysis of the
online parameters would go beyond the scope of this paper.

Table 3: Over-all results for all tasks can classify empirical
difficulty. Only the hard tasks have a substantial unsolved
rate and also a higher mean moving steps difference.

optimally not mean move
Difficulty solved solved solved diff (SD)
easy >85% 100% 0% <l(<1)
moderate <20% >9%% <4% 4—-6(4—-06)
hard < 10% >62% <38% >10(>7)

Likewise, the offline parameters such as the structure com-
plexity in Table 4 fit the calculated online difficulty. The
structural complexity calculation, especially with consider-
ation of back-references is able to predict the empirically de-
termined difficulty.

Table 4: Structural complexity with/without back-references
(distance to the reference node is weighted/not considered).

Task  with back-reference w/o back-reference

6/13 3/5 3/5
9/10 22/16 18/13
27/29 48/30 24/18

Critical offline parameters were calculated (see Table 5)
and correlated with online parameters which were obtained
from the actual moving track. To capture the empirical devi-
ations from the formal structure complexity measure we re-
quire a measure to describe the goodness of the solution.

Fl:  MEAN (move,/optimal moves)
F2: Y, (move, — optimal moves)
F3:  logy (Y, (move, — optimal moves))

Minimal Solution Length (MSL) denotes the minimum (opti-
mal) number of moves for the solution. Structural Complexity
(SC) denotes the complexity with back references which were
calculated from the starting point of a task. Sum of Struc-
tural Complexity (SSC) denotes the mean cumulated struc-
tural complexity of all optimal solutions. Thus, the structural
complexity for each step of each optimal solution was calcu-
lated and summarized and the mean over all optimal solutions

Figure 4: Board setting and structural graph with back ref-
erences for task 27 of the Junior edition was generated by a
computer program for analyzing Rush Hour tasks. The nodes
contain the car and the edges denotes the directed blocking re-
lation between the two connected vehicles. This graph shows
a complex network of blocking relations and cyclic blocking
chains.

was built. Sum Movable Cars (SMC) denotes the cumulated
sum of movable vehicles of all optimal solutions. This means
that the possible movable vehicles for each step of each op-
timal solution was calculated and summarized and the mean
over all optimal solutions was built. All values were trans-
formed with log, and can be described as offline parameters.
The formulas below are used to calculate the results from the
empirical online parameters.

Table 5: The table indicates correlations between different pa-
rameters: Minimal Solution Length (MSL): minimal number
of moves for solution; Structural Complexity (SC): complex-
ity with cycles calculated from the starting point of a task;
Sum Structural Complexity (SSC): mean cumulated struc-
tural complexity of all optimal solutions; Sum Movable Cars
(SMC): number of movable cars. All values were trans-
formed with log,. ( *a < 0.05; **o < 0.01; **a0 < 0.001)

MSL SC SSC SMC
F1 r=.47 r=.06 r=.37 r=.41
F2 r=.77%%* r=.44 r=.64%* r=.60%*
F3 r=.66%*% r=.51% r=.66%%* r=.62%*

General Discussion

We investigated formal and empirical properties for a cog-
nitive complexity measure designed to be able to classify
planning problems w.r.t. factors of human reasoning diffi-
culty. This investigation lead to the development of a struc-
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tural complexity measure which we applied to the planning
task Rush Hour. The structural complexity might be an es-
sential part of cognitive complexity as it reflects the princi-
ple of means-end analysis (MEA) and difference reduction,
i.e., a greedy strategy to minimize a goal distance measure.
A concrete example of this general strategy is the interlaced
vehicle blockades in the tasks’ structural graph conversion.
More complex graph structures indicate more complex sub-
goal decompositions for solving the task. This aspect is rep-
resented in the structural complexity measure. We assume
that this complexity measure is applicable to other domains
as well, since means-end-analysis seems to be the premier
human problem solving method (Anderson, 1993).

The statistical analysis of Rush Hour tasks indicates that
the empirical reasoning difficulty significantly correlates with
the occurrence of move chains (of cars blocking each other).
Compared to simpler tasks, more difficult tasks contain more
subgoals to be solved and contain cyclic blocking structures
(cf. Fig. 3) in their associated graph. Based on the significant
correlations, the structural task complexity measure seems to
be a good indicator for our hypothesis of the empirical rea-
soning difficulty.

A previous computational analysis revealed that planning
depth alone does not capture the “cognitive” difficulty in solv-
ing planning tasks like Rush Hour. Of course, there is a cor-
relation, but a higher number of necessary moves also results
in a greater chance (depending on each branching point) of
deviating from the optimal plan length. A deviation from the
optimal number of moves for solving the task likely reduces
the cognitive planning effort drastically but might not con-
sider essential information about future states. Therefore, it
is important to analyze the problems that were used in the
experiments regarding a systematic deviation from the opti-
mal solution length. With a detailed analysis of branching
points, the planning depth as well as applied heuristics could
be identified, which gave additional information about the hu-
man planning quality.

In neuropsychology planning tasks like Tower of London
(ToL) are used to classify prefrontal lesions (Shallice, 1982;
Unterrainer et al., 2004). However, compared to Rush Hour
the task structure of ToL is too simple w.r.t. applicable heuris-
tics to fully classify human planning abilities. The number
of optimal solved tasks of Rush Hour compared to optimal
solved tasks in ToL had a significant correlation (r = .55, p <
.01,n = 20). Rush Hour is computationally more complex
than ToL due to the higher number of possible moves and
heuristics reflected by the associated tree conversion.

A detailed move analysis might reveal, in what kind of
problem states humans will probably deviate from optimal
solutions. We are currently working on further measures to
capture these aspects. Our goal is to classify human players
that share similar planning characteristics and apply similar
heuristics.
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