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Abstract 

Dynamically Structured Holographic Memory (DSHM) is 
architecture for modeling memory.  It was originally designed 
to account for long-term memory alone.  However, the current 
model of Paper, Rock, Scissors (PRS) play (and Rock=2 PRS 
play) provides evidence that DSHM can be used to model 
tasks where the truth of facts change quickly and 
dynamically. 
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Dynamically Structured Holographic Memory 

Dynamically Structured Holographic Memory (DSHM) is 

an architecture for modeling memory.  It was designed to 

account for how stable information is stored and retrieved 

from long-term memory.  DSHM does not presume that the 

relationships between concepts are entirely static.  Rather, it 

explicitly accounts for how concepts can evolve to form 

associations of different strengths, over time.  DSHM has 

been used successfully to model the fan effect (Rutledge-

Taylor & West, 2008; Rutledge-Taylor, Pyke, West and 

Lang, 2010).  It has also been used as the basis for a 

recommender system (Rutledge-Taylor, Vellino & West, 

2008).  In both of these applications, DSHM commits a set 

of static facts to memory.   

DSHM was not designed as a store for information whose 

relevance is short-lived and potentially contradictory to new 

information.  This is because there are no native 

mechanisms that cause old memories to decay, or otherwise 

contribute less than recent memories in decision making.  

This sort of information, whose relevance is time dependent, 

is not uncommon in strategic decision making tasks, such as 

those in that take place in competitive games described by 

game theory (VonNeumann & Morgenstern, 1944).  For 

example, in the game Paper, Rock, Scissors (PRS), 

successful players are able to detect and exploit repeating 

patterns of sequences of moves in the play of opponents 

(West & Lebiere, 2001).  Additionally, they must adapt to 

ignoring old biases in opponents play and discover new 

biases.   

The fact that DSHM was not designed to model these 

sorts of dynamic memory tasks does not preclude the 

possibility that it might be used to build successful models 

of human performance in these sorts of games.  This 

possibility was examined by building DSHM models of 

human performance in the game PRS and a modified 

version of PRS.  These models are presented herein. 

Existing Models of PRS 

In order to provide some base-level of expectation for what 

might constitute good performance in models of PRS play, 

some existing models are briefly reviewed. 

Perceptron Models 

It has been shown that simple perceptron-like neural 

networks can be used to model human behaviour in standard 

PRS games (West, 1998; West & Lebiere, 2001).  The 

networks take sets of past opponent moves as input, and 

provide choices of next move as output.  The networks are 

constructed such that they each have an output layer of three 

nodes, one corresponding to each of the three play options: 

paper, rock, and scissors.  Each has one or more groups of 

input nodes.  Each group includes three input nodes, one for 

each play option.  Each input node is connected to each 

output node.  The connections between nodes are assigned 

integer values (or, weights), which start at 0.   

If a network has only a single input group, it takes only its 

opponent’s last move as input.  To determine what option to 

play, the connections between the node in the input group 

corresponding to the opponent’s move and each of the 

output nodes are compared.  The output node attached to the 

connection with the greatest value determines which move 

the network selects (ties are decided randomly).  If the 

network’s decision results in a win, the relevant connection 

is rewarded by increasing its value by one.  If the result is a 

loss, the connection is punished by reducing its value by 

one.  Ties are treated differently by two variations of this 

basic network design (West & Lebiere, 2001).  Networks 

called ‘passive’ treat ties as neutral events and neither 

reward or punish the connection values after a tie.  

Networks called ‘aggressive’ punish connections leading to 

ties by 1.  

Networks with two or more input groups take a set of the 

opponent’s last moves as input.  Each additional input group 

beyond the first corresponds to a move further back in the 

opponent’s play history.  For example, with two input 

groups, one corresponds to the opponent’s last move as 

input, while the other takes the opponent’s second to last 

move as input.   For these networks the output is determined 

by summing the connections between one node from each 

input group (corresponding to the move played on that past 

occasion) and each output node.  Rewards and punishments 

are applied to all connections that contribute to the output 

decision.  In addition to being labelled as either passive or 

2341



 

 

aggressive, these networks were also labelled as ‘lag 1’, ‘lag 

2’ or ‘lag 3’ depending on whether they attended to 

opponents’ last one, two, or three past moves. 

 

 
Figure 1: Perceptron Networks 

 

Both West (1998), and West and Lebiere (2001) 

concluded that the aggressive lag 2 network provided the 

best model of human PRS play.  Both the humans and the 

aggressive lag 2 networks were able to beat the passive lag 2 

and aggressive lag 1 networks (West, 1998; West & 

Lebiere, 2001), by statistically significant margins.  On 

average, humans lost to the aggressive lag 2 networks by a 

small margin (West & Lebiere, 2001).  However, the 

authors suggest that this may be due to imperfect attention 

and motivation on the parts of the human participants. 

 

Perceptron Rock=2 The standard PRS game played by 

humans and network models in West (1998) and West and 

Lebiere (2001) were perfectly symmetrical.  The three play 

options were identical in that each beat one of the other two 

moves and lost to the other; a rock versus scissors win was 

no different from a scissors versus paper win.  In Rutledge-

Taylor and West (2004), a modified version of PRS, where 

rock versus scissors wins were worth two points, while the 

other two outcomes were worth only one point each, was 

investigated.  Ten human participants played one game 

against each of three network opponents.  The network 

opponents were: the aggressive lag 1, the aggressive lag 2, 

and a ‘rock=2’ lag 1.  The rock=2 network rewarded 

network connections by two when it won with rock.  Table 

1 presents the mean points differences in the final scores of 

games between the human participants and each of the 

network models.  All games consisted of 300 trials each. 

 

Table 1: Humans versus networks 

 

Network Model Mean Pts. Diff. 

Agg. Lag 1 16.5 

Agg. Lag 2 5.7 

Rock=2 lag 1 25.6 
 

Two conclusions were drawn from this experiment: 1) 

humans were able to take advantage of the fact that wins 

using rock were worth two, while all three network 

opponents were not; 2) the rock=2 network performed the 

worst of all the network models due to the fact that 

rewarding rock wins by two became a liability (and not the 

anticipated advantage).  This larger reward unbalanced the 

reward system in such a way that the rock=2 network played 

rock too frequently, and this was exploited by the human 

players.   

An additional observation was that in Rock=2 PRS the 

frequencies with which a player played each of the possible 

moves did not predict the game’s final scores.  For example, 

if two players each play paper, rock and scissors exactly 1/3 

of the time each, they will tie, on average, if they are 

playing randomly.  However, it has been demonstrated that 

human players (and the network models) do not play 

randomly (West, 1998; Rutledge-Taylor & West, 2004). 

Rather than playing randomly, superior players exploit 

weaker opponents by predicting their opponents’ moves and 

making winning moves.  As a result, they are able to 

achieve higher win rates than would be predicted by play 

probabilities alone.  This effect is particularly important in 

the Rock=2 game, as being able to orchestrate rock versus 

scissors plays and to be able to avoid the opposite play is 

crucial to success in this game.  Thus, a measure called the 

strategy index was invented.   

The strategy index is calculated according to formula 1, 

below.  Given two players, player 1’s strategy index is 

player 1’s total points scored minus player 2’s total points, 

divided by the number of games played.  The predicted 

points difference is calculated using game theory (i.e., each 

player is assumed to have played randomly according to 

probabilities determined by the actual ratios with which the 

options were chosen).  A positive strategy index indicates a 

superior ability to correctly anticipate opponent’s plays and 

achieve a higher than probabilistically predicted number of 

points.  The raw strategy index is relative to the number of 

trials per game.  So, it can be also represented as a 

percentage according to formula 2. 

 

(1) Strategy index = average actual points difference per 

game – predicted points difference per game 

(2) Strategy index percentage = Strategy index / number 

of trials per game 

 

For example, if two players play a game of 300 trials, and 

each player plays paper 100 times, rock 100 times, and 

scissors 100 times, game theory predicts that they will tie 

(on average).  However, it is possible for one player to win 

all 300 trials by always matching the opponent’s move with 

the move that beats it.  In this case, the winning player 

would score a perfect strategy index of 300 (or 100%).  In 

real games, a strategy index percentage of 3% or more is 

considered very good. 

In Rutledge-Taylor & West (2004) a network model of 

human Rock=2 play was created by using a genetic 

algorithm to find a reward matrix that resulted in human like 

play.  The criterion was to match as closely as possible the 

human mean points difference and the mean strategy indices 
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against the three opponents in table 1.  The best reward 

matrix was the following: rock wins = 3, paper wins = 2 

scissors wins = 0; rock tie = -1, paper tie = -1, scissors tie = 

0; and -3 for all losses.  The performance of this model is 

presented below. 

ACT-R Models 

ACT-R models of both standard PRS (Lebiere & West, 

1999) and of Rock=2 PRS (Rutledge-Taylor & West, 2005) 

have been created.  Both employ an exemplar based 

approach and manipulate noise to establish a best fit. 

For both models a chunk type with four slots was used.  

The isa slot was tagged with PRS to indicate that is was a 

PRS relevant chunk.  The three remaining chunks encoded a 

sequence of three moves, by the model’s opponent: lag0, is 

the opponents current, or predicted move; lag1 is its 

previous move; and, lag2 is its second to last move.  An 

example is illustrated in figure 2. 

 

Goal 

isa PRS 

lag2 Paper 

lag1 Rock 

lag0 nil 

Figure 2: Example chunk 

 

When the model’s opponent makes a move, a chunk 

encoding its last three moves is put into the goal, and then 

popped to make it a chunk in memory (either creating a new 

chunk or reinforcing an existing chunk). To predict the 

opponent’s move, the model attempts to retrieve a chunk 

from memory that matches the opponent’s last two moves 

(slots lag1 and lag2).  The value of the lag0 slot is the move 

the model predicts its opponent to make. It then plays the 

move that beats it. 

In Lebiere and West (1999), both humans and the lag 2 

ACT-R model were pitted against lag 1 and lag 2 versions 

of the ACT-R model.  Consistent with the findings in West 

(1998), both humans and the lag 2 ACT-R model were able 

to beat the lag 1 opponent; however, exact scores were not 

reported.  

 

ACT-R Rock=2  Several ACT-R models of human Rock=2 

PRS play were presented in Rutledge-Taylor and West 

(2004).  These models were similar to those appearing in 

Lebiere and West (1999), however, they differed in that they 

were designed to be sensitive to the unequal payoffs in the 

Rock=2 game.  This sensitivity was achieved by reinforcing 

certain kinds of chunks more than others depending on what 

the opponent’s last play was.  This was done by harvesting 

these chunks twice.  Rutledge-Taylor & West (2005) tested 

three variations on this strategy.  One model paid extra 

attention to cases when its opponent played rock; another 

attended more closely to scissors; while the third attended 

more closely to both rock and scissors (effectively paying 

less attention to paper). 

The result was that the third model provided the best 

match to the human data.  This makes intuitive sense in that 

a human player is likely to incorporate a defensive 

component to his or her game, which his to be wary of when 

the opponent is likely to play Rock; however, he or she 

might also incorporate an offensive component which is to 

also focus on when the opponent might play scissors.  

Winning with Paper, or losing to a Paper play, is a less 

important event in the game. 

DSHM PRS Models 

Given the broad similarities between DSHM and the 

declarative memory system of ACT-R (Rutledge-Taylor & 

West, 2008), the DSHM models here were based on the 

ACT-R models described above. 

The DSHM models took sequences of opponent’s plays, 

encoded as ordered complex items. The items consisted of 

two, three, or four atomic items, for lag 1, lag 2 and lag 3 

models respectively; the extra item is the predicted or 

current play by the opponent.  The right-most item 

represented the opponent’s last move, while items to the left 

represented previous plays.  For example, if the opponent’s 

last few plays were: 

 

…, rock, paper, paper, rock, scissors; 

 

a lag 1 DSHM model would learn the following pattern 

after scissors was played: 

 

[rock:scissors]; 

 

thus, reinforcing the association between ‘scissors’ as a 

play the follows ‘rock’.  A lag 3 DSHM model would learn 

the pattern: 

 

[paper:paper:rock:scissors]. 

 

An interesting architectural point that should be made 

here is that DSHM reinforces all of the combinations of 

consecutive sets of sub-items in the input, when learning 

ordered complex items.  Thus, given the lag 3 input above, 

the following sequences of items are reinforced after 

scissors is played: 

 

[paper:paper:rock:scissors], 

[paper:rock:scissors], 

[paper:paper:rock], 

[rock:scissors], 

[paper:rock], and 

[paper:paper]. 

 

So, in a sense, DSHM models of two or more lags 

incorporate some of the learning of shorter lagged models as 

well.  An additional consideration is that this results in a 

potential liability for DSHM, as shorter sequences receive 

repeated reinforcement for several consecutive trials.  In this 

example, this will have been the third time that 
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[paper:paper] had been reinforced: the third time 

immediately after the play of ‘scissors’; the second time, 

when ‘rock’ was played; and the first time when the most 

recent of the two ‘paper’ plays was  made.  It is also the 

second time that [paper:paper:rock] will have been 

reinforced (the first time being when ‘rock’ was played).  

Thus, in this respect, DSHM models of PRS differ 

somewhat from both the perceptron-like networks, and the 

ACT-R models discussed above. 

Rock=1 Simulations 

A variety of DSHM PRS players were built.  The 

manipulated parameters were: number of lags and the length 

of the vectors used to represent items.  It would not be 

appropriate to embark on a complete discussion of the inner-

workings of DSHM here (see Rutledge-Taylor, Pyke, West 

& Lang, 2010; Rutledge-Taylor & West, 2008).  For now, it 

is sufficient to understand that vector length is correlated 

with memory capacity.  Additionally, lower vector lengths 

contribute to noise-like effects due to an increased amount 

of interference in the system.   

Each combination of two sets of values for these 

parameters was used to build a unique DSHM PRS player: 

 

Lags: [1, 2, 3]; 

 

Vector lengths: [32, 64, 128, 256, 512, 1024, 2048]. 

 

Each DSHM model played against the aggressive lag 1, 

aggressive lag 2, and passive lag 2 network models.   

 

Evaluation To determine which DSHM performed most 

like human players, data from West and Lebiere (2001) was 

used as a comparison: human players average 9.99 (s.d. 

19.61) more wins than the aggressive lag 1 networks, after 

300 trials; lost to the aggressive lag 2 models by an average 

margin of 8.89 (s.d. 19.74), after an imprecise number of 

trials; and, beat the passive lag 2 by 11.14 wins after 287 

trials.   

Given that understanding human play against the 

aggressive lag 2 networks is difficult due confounding 

factors discussed in West and Lebiere (2001), and the fact 

that an exact target win difference (after a fixed number of 

trials) is not available, comparison to the data against this 

opponent was simplified.   

The DSHM models were rated according to the mean 

squared difference between their average final scores 

against the aggressive lag 1 and passive lag 2 networks, and 

the average finals scores of humans against these models.  

Additionally, DSHM models that won against the 

aggressive lag 2 were disqualified as potential models of 

human play.  This is because all that is certain about human 

performance against the aggressive lag 2 networks is that 

humans lost to these networks, on average.  Additionally, 

West and Lebiere (2001) discuss factors that could make the 

interpretation of human players’ performance against the 

aggressive lag 2 networks difficult (e.g, it is less fun to play 

and lose against a stronger opponent). 

 

Results Of all the models tested, one produced results that 

came very close to the human data.  The Lag 3 DSHM 

model with vector lengths of 1024 scored an average of 

10.89 wins more than the aggressive lag 1 network, 13.24 

more wins than the passive lag 2, and lost to the aggressive 

lag 2 by an average of 6.22 wins per game. 

The fact that the best DSHM model was a lag 3, not a lag 

2 model, was surprising at first.  Lebiere and West (1999), 

and West and Lebiere (2001), found that lag 2 ACT-R and 

lag 2 network models provided the best fit to the human 

data.  However, the fact that the DSHM lag 3 models 

incorporated lag 2 and lag 1 memory behaviour makes this 

result more consistent with previous findings.  The DSHM 

lag 3 model weighs lag 1 sequences the most, lag 2 

sequences second, and lag 3 sequences the least.  So, it 

could be argued that, on average, the lag 3 DSHM models 

are more like lag 2 ACT-R and network models, than the lag 

3 ACT-R and network models. 

Rock=1 Model Comparison 

This paper reviews the three different types of models of 

PRS play: ACT-R, DSHM, and perceptron-like networks.  

In each case, the model of human play, played games 

consisting of 300 trials against the aggressive lag 1 network, 

and games of 287 trials against the passive lag 2 network.  

For each model, the mean difference in the number of wins 

scored by the model and the opponent network was 

recorded.  Humans scored, on average, 9.99 more wins than 

the aggressive lag 1 networks, and 11.14 more wins than the 

passive lag 2 network. The sum of the squares of the 

differences between the model’s results and the human 

results are presented as a basis for comparing the model’s fit 

to the human data. 

The best ACT-R model was taken from Rutledge-Taylor 

and West (2005).  It was exemplar based, and used the 

following parameters: ANS=0.28, OL=NIL.  The best 

DSHM model was the lag 3, vector length 1024, model 

discussed above.  The best network model was the 

aggressive lag 2 network.  

New network versus network simulations were run for 

this comparison: 10000 games were run against each of the 

two benchmark opponents.  The mean difference in wins 

between the aggressive lag 2 and aggressive lag 1 networks 

was somewhat lower than was found in West and Lebiere 

(2001).  However, given the high standard deviation on the 

win differences, both the results found here and those found 

in West and Lebiere (2001) may be valid.  

 

Table 2: Models of Human Rock=1 PRS 

Opponent Human ACT-R DSHM Network 

Agg. lag 1 9.99 12.30 10.89 5.76 

Pas. lag 2 11.14 8.15 13.24 10.44 

Rating  14.27 5.22 18.37 
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Table 2 summarizes the best models of human Rock=1 

PRS play.  The DSHM produces the closest fit to the human 

data, i.e., it scored the lowest mean squared error.  

Additionally, the DSHM model lost to the aggressive lag 2 

model by a mean win difference of 6.22 (not shown in this 

table), which helps support this model as a good account of 

human PRS play.  

Rock=2 Simulations 

The mechanism for building a sensitivity to the unequal 

payoffs of the Rock=2 game in the DSHM models was 

essentially the same as for the ACT-R Rock=2 models.  

Three versions of the Rock=2 DSHM models were created: 

one that attended to opponents’ rock plays more; another 

that attended to scissors more; and, one that gave preference 

to both rock and scissors.  This extra attention was achieved 

by training the models twice on sequences of opponents’ 

moves ending in these plays. 

For each of the three variations on the Rock=2 DSHM 

player, the combinations of the three different lags and 

seven vector lengths were tested. 

 

Evaluation Each of the DSHM players results were 

compared to the human data from Rutledge-Taylor and 

West (2004).  A mean squared error approach was used.  Six 

data point were compared: the mean points differences 

versus the three network models, and the strategy indices 

versus these opponents.  Because the strategy index values 

were, on average smaller than the point differences, and 

because they are crucially important to establishing strategic 

play, these three data points were given twice the weight of 

the points difference comparisons.  Thus, each model’s 

rating was the sum of the squares of the mean point 

differences and twice the sum of the squares of the strategy 

indices. 

 

Results The results were somewhat predictable based on the 

DSHM rock=2 and ACT-R Rock=2 results: The lag 3 

DSHM model with vector lengths of 1024, and that paid 

extra attention to both rock and scissors produced the best 

fit to the human data.  It matched five of the six data points 

very well.  However, this model failed to defeat the 

aggressive lag 2 network model.  There were other DSHM 

models that beat the aggressive lag 2 network, but failed to 

match the other five data points well (e.g., the margins of 

victory were too great). 

Rock=2 Model Comparison 

Three different kinds of models of human Rock=2 PRS play 

are discussed in this paper: ACT-R, DSHM and perceptron-

like networks.  The ACT-R results are taken from Rutledge-

Taylor and West (2005), the DSHM model is the one 

discussed above.  As with the Rock=1 comparison, new 

network versus network data was collected.  The network 

model of human Rock=2 played each of the benchmark 

opponents 10000 times.  Each model played 300 trial games 

against the three network opponents discussed in Rutledge-

Taylor and West (2004).  The evaluation method for all 

types of models was the same as for the DSHM models 

discussed above. 

Figures 3 and 4 summarize the evaluations of the three 

model types.  The confidence values for the human data in 

Figure 3 are estimated based on the 95% confidence 

intervals of a regression analysis of the rate of point 

difference achieved by the human players against each of 

the three opponents. 

 

 
Figure 3: Points difference comparison for Rock=2 PRS.  

Human values include estimated 95% confidence values. 

 

 
Figure 4: Strategy indices comparison for Rock=2 PRS 

 

All three models produced good fits to the human data.  

However, the DSHM model is unique in that it failed to beat 

the aggressive lag 2 network.  However, it correctly scored a 

negative strategy index versus this opponent.  In contrast, 

the ACT-R and network models beat the aggressive lag 2, 

but did not score negative strategy indices, as did the human 

players.  Thus, there is an obvious objective in building a 

superior model of human play.  That is, to build a model 

that beats the aggressive lag 2, but does so despite a 

negative strategy index. 

Conclusions 

The simulations run and analyzed here demonstrate that 

DSHM can, in fact, be used successfully to model at least 

one memory task that relies on reconciling inconsistent 

information and rapidly changing predictions based on past 

events.  Despite the fact that DSHM was designed to model 
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only long-term memory, it may also useful as a model of 

short-term memory.  This also suggests that long-term and 

short term memory in humans may rely on the same basic 

mechanisms. 
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