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Abstract

Dynamically Structured Holographic Memory (DSHM) is
architecture for modeling memory. It was originally designed
to account for long-term memory alone. However, the current
model of Paper, Rock, Scissors (PRS) play (and Rock=2 PRS
play) provides evidence that DSHM can be used to model
tasks where the truth of facts change quickly and
dynamically.
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Dynamically Structured Holographic Memory

Dynamically Structured Holographic Memory (DSHM) is
an architecture for modeling memory. It was designed to
account for how stable information is stored and retrieved
from long-term memory. DSHM does not presume that the
relationships between concepts are entirely static. Rather, it
explicitly accounts for how concepts can evolve to form
associations of different strengths, over time. DSHM has
been used successfully to model the fan effect (Rutledge-
Taylor & West, 2008; Rutledge-Taylor, Pyke, West and
Lang, 2010). It has also been used as the basis for a
recommender system (Rutledge-Taylor, Vellino & West,
2008). In both of these applications, DSHM commits a set
of static facts to memory.

DSHM was not designed as a store for information whose
relevance is short-lived and potentially contradictory to new
information. ~ This is because there are no native
mechanisms that cause old memories to decay, or otherwise
contribute less than recent memories in decision making.
This sort of information, whose relevance is time dependent,
is not uncommon in strategic decision making tasks, such as
those in that take place in competitive games described by
game theory (VonNeumann & Morgenstern, 1944). For
example, in the game Paper, Rock, Scissors (PRS),
successful players are able to detect and exploit repeating
patterns of sequences of moves in the play of opponents
(West & Lebiere, 2001). Additionally, they must adapt to
ignoring old biases in opponents play and discover new
biases.

The fact that DSHM was not designed to model these
sorts of dynamic memory tasks does not preclude the
possibility that it might be used to build successful models
of human performance in these sorts of games. This
possibility was examined by building DSHM models of
human performance in the game PRS and a modified
version of PRS. These models are presented herein.

Existing Models of PRS

In order to provide some base-level of expectation for what
might constitute good performance in models of PRS play,
some existing models are briefly reviewed.

Perceptron Models

It has been shown that simple perceptron-like neural
networks can be used to model human behaviour in standard
PRS games (West, 1998; West & Lebiere, 2001). The
networks take sets of past opponent moves as input, and
provide choices of next move as output. The networks are
constructed such that they each have an output layer of three
nodes, one corresponding to each of the three play options:
paper, rock, and scissors. Each has one or more groups of
input nodes. Each group includes three input nodes, one for
each play option. Each input node is connected to each
output node. The connections between nodes are assigned
integer values (or, weights), which start at 0.

If a network has only a single input group, it takes only its
opponent’s last move as input. To determine what option to
play, the connections between the node in the input group
corresponding to the opponent’s move and each of the
output nodes are compared. The output node attached to the
connection with the greatest value determines which move
the network selects (ties are decided randomly). If the
network’s decision results in a win, the relevant connection
is rewarded by increasing its value by one. If the result is a
loss, the connection is punished by reducing its value by
one. Ties are treated differently by two variations of this
basic network design (West & Lebiere, 2001). Networks
called ‘passive’ treat ties as neutral events and neither
reward or punish the connection values after a tie.
Networks called ‘aggressive’ punish connections leading to
ties by 1.

Networks with two or more input groups take a set of the
opponent’s last moves as input. Each additional input group
beyond the first corresponds to a move further back in the
opponent’s play history. For example, with two input
groups, one corresponds to the opponent’s last move as
input, while the other takes the opponent’s second to last
move as input. For these networks the output is determined
by summing the connections between one node from each
input group (corresponding to the move played on that past
occasion) and each output node. Rewards and punishments
are applied to all connections that contribute to the output
decision. In addition to being labelled as either passive or
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aggressive, these networks were also labelled as ‘lag 1°, ‘lag
2> or ‘lag 3’ depending on whether they attended to
opponents’ last one, two, or three past moves.

INPUT OUTPUT

lag1 rocks

lag2 rocks

lag3 rocks
SCISSOrsO

Figure 1: Perceptron Networks

Both West (1998), and West and Lebiere (2001)
concluded that the aggressive lag 2 network provided the
best model of human PRS play. Both the humans and the
aggressive lag 2 networks were able to beat the passive lag 2
and aggressive lag 1 networks (West, 1998; West &
Lebiere, 2001), by statistically significant margins. On
average, humans lost to the aggressive lag 2 networks by a
small margin (West & Lebiere, 2001). However, the
authors suggest that this may be due to imperfect attention
and motivation on the parts of the human participants.

Perceptron Rock=2 The standard PRS game played by
humans and network models in West (1998) and West and
Lebiere (2001) were perfectly symmetrical. The three play
options were identical in that each beat one of the other two
moves and lost to the other; a rock versus scissors win was
no different from a scissors versus paper win. In Rutledge-
Taylor and West (2004), a modified version of PRS, where
rock versus scissors wins were worth two points, while the
other two outcomes were worth only one point each, was
investigated. Ten human participants played one game
against each of three network opponents. The network
opponents were: the aggressive lag 1, the aggressive lag 2,
and a ‘rock=2" lag 1. The rock=2 network rewarded
network connections by two when it won with rock. Table
1 presents the mean points differences in the final scores of
games between the human participants and each of the
network models. All games consisted of 300 trials each.

Table 1: Humans versus networks

Network Model Mean Pts. Diff.
Agg. Lag 1 16.5

Agg. Lag 2 5.7

Rock=2 lag 1 25.6

Two conclusions were drawn from this experiment: 1)
humans were able to take advantage of the fact that wins
using rock were worth two, while all three network

opponents were not; 2) the rock=2 network performed the
worst of all the network models due to the fact that
rewarding rock wins by two became a liability (and not the
anticipated advantage). This larger reward unbalanced the
reward system in such a way that the rock=2 network played
rock too frequently, and this was exploited by the human
players.

An additional observation was that in Rock=2 PRS the
frequencies with which a player played each of the possible
moves did not predict the game’s final scores. For example,
if two players each play paper, rock and scissors exactly 1/3
of the time each, they will tie, on average, if they are
playing randomly. However, it has been demonstrated that
human players (and the network models) do not play
randomly (West, 1998; Rutledge-Taylor & West, 2004).

Rather than playing randomly, superior players exploit
weaker opponents by predicting their opponents’ moves and
making winning moves. As a result, they are able to
achieve higher win rates than would be predicted by play
probabilities alone. This effect is particularly important in
the Rock=2 game, as being able to orchestrate rock versus
scissors plays and to be able to avoid the opposite play is
crucial to success in this game. Thus, a measure called the
strategy index was invented.

The strategy index is calculated according to formula 1,
below. Given two players, player 1’s strategy index is
player 1’s total points scored minus player 2’s total points,
divided by the number of games played. The predicted
points difference is calculated using game theory (i.e., each
player is assumed to have played randomly according to
probabilities determined by the actual ratios with which the
options were chosen). A positive strategy index indicates a
superior ability to correctly anticipate opponent’s plays and
achieve a higher than probabilistically predicted number of
points. The raw strategy index is relative to the number of
trials per game. So, it can be also represented as a
percentage according to formula 2.

(1) Strategy index = average actual points difference per
game — predicted points difference per game

(2) Strategy index percentage = Strategy index / number
of trials per game

For example, if two players play a game of 300 trials, and
each player plays paper 100 times, rock 100 times, and
scissors 100 times, game theory predicts that they will tie
(on average). However, it is possible for one player to win
all 300 trials by always matching the opponent’s move with
the move that beats it. In this case, the winning player
would score a perfect strategy index of 300 (or 100%). In
real games, a strategy index percentage of 3% or more is
considered very good.

In Rutledge-Taylor & West (2004) a network model of
human Rock=2 play was created by using a genetic
algorithm to find a reward matrix that resulted in human like
play. The criterion was to match as closely as possible the
human mean points difference and the mean strategy indices
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against the three opponents in table 1. The best reward
matrix was the following: rock wins = 3, paper wins = 2
scissors wins = 0; rock tie = -1, paper tie = -1, scissors tie =
0; and -3 for all losses. The performance of this model is
presented below.

ACT-R Models

ACT-R models of both standard PRS (Lebiere & West,
1999) and of Rock=2 PRS (Rutledge-Taylor & West, 2005)
have been created. Both employ an exemplar based
approach and manipulate noise to establish a best fit.

For both models a chunk type with four slots was used.
The isa slot was tagged with PRS to indicate that is was a
PRS relevant chunk. The three remaining chunks encoded a
sequence of three moves, by the model’s opponent: lag0, is
the opponents current, or predicted move; lagl is its
previous move; and, lag2 is its second to last move. An
example is illustrated in figure 2.

Goal
isa PRS
lag2 Paper
lagl Rock
lagO nil

Figure 2: Example chunk

When the model’s opponent makes a move, a chunk
encoding its last three moves is put into the goal, and then
popped to make it a chunk in memory (either creating a new
chunk or reinforcing an existing chunk). To predict the
opponent’s move, the model attempts to retrieve a chunk
from memory that matches the opponent’s last two moves
(slots lagl and lag2). The value of the lag0 slot is the move
the model predicts its opponent to make. It then plays the
move that beats it.

In Lebiere and West (1999), both humans and the lag 2
ACT-R model were pitted against lag 1 and lag 2 versions
of the ACT-R model. Consistent with the findings in West
(1998), both humans and the lag 2 ACT-R model were able
to beat the lag 1 opponent; however, exact scores were not
reported.

ACT-R Rock=2 Several ACT-R models of human Rock=2
PRS play were presented in Rutledge-Taylor and West
(2004). These models were similar to those appearing in
Lebiere and West (1999), however, they differed in that they
were designed to be sensitive to the unequal payoffs in the
Rock=2 game. This sensitivity was achieved by reinforcing
certain kinds of chunks more than others depending on what
the opponent’s last play was. This was done by harvesting
these chunks twice. Rutledge-Taylor & West (2005) tested
three variations on this strategy. One model paid extra
attention to cases when its opponent played rock; another
attended more closely to scissors; while the third attended
more closely to both rock and scissors (effectively paying
less attention to paper).

The result was that the third model provided the best
match to the human data. This makes intuitive sense in that
a human player is likely to incorporate a defensive
component to his or her game, which his to be wary of when
the opponent is likely to play Rock; however, he or she
might also incorporate an offensive component which is to
also focus on when the opponent might play scissors.
Winning with Paper, or losing to a Paper play, is a less
important event in the game.

DSHM PRS Models

Given the broad similarities between DSHM and the
declarative memory system of ACT-R (Rutledge-Taylor &
West, 2008), the DSHM models here were based on the
ACT-R models described above.

The DSHM models took sequences of opponent’s plays,
encoded as ordered complex items. The items consisted of
two, three, or four atomic items, for lag 1, lag 2 and lag 3
models respectively; the extra item is the predicted or
current play by the opponent. The right-most item
represented the opponent’s last move, while items to the left
represented previous plays. For example, if the opponent’s
last few plays were:

..., rock, paper, paper, rock, scissors;

a lag 1 DSHM model would learn the following pattern
after scissors was played:

[rock:scissors];

thus, reinforcing the association between ‘scissors’ as a
play the follows ‘rock’. A lag 3 DSHM model would learn
the pattern:

[paper:paper:rock:scissors].

An interesting architectural point that should be made
here is that DSHM reinforces all of the combinations of
consecutive sets of sub-items in the input, when learning
ordered complex items. Thus, given the lag 3 input above,
the following sequences of items are reinforced after
scissors is played:

[paper:paper:rock:scissors],
[paper:rock:scissors],
[paper:paper:rock],
[rock:scissors],
[paper:rock], and

[paper:paper].

So, in a sense, DSHM models of two or more lags
incorporate some of the learning of shorter lagged models as
well.  An additional consideration is that this results in a
potential liability for DSHM, as shorter sequences receive
repeated reinforcement for several consecutive trials. In this
example, this will have been the third time that
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[paper:paper] had been reinforced: the third time
immediately after the play of ‘scissors’; the second time,
when ‘rock’ was played; and the first time when the most
recent of the two ‘paper’ plays was made. It is also the
second time that [paper:paper:rock] will have been
reinforced (the first time being when ‘rock’ was played).
Thus, in this respect, DSHM models of PRS differ
somewhat from both the perceptron-like networks, and the
ACT-R models discussed above.

Rock=1 Simulations

A variety of DSHM PRS players were built.  The
manipulated parameters were: number of lags and the length
of the vectors used to represent items. It would not be
appropriate to embark on a complete discussion of the inner-
workings of DSHM here (see Rutledge-Taylor, Pyke, West
& Lang, 2010; Rutledge-Taylor & West, 2008). For now, it
is sufficient to understand that vector length is correlated
with memory capacity. Additionally, lower vector lengths
contribute to noise-like effects due to an increased amount
of interference in the system.

Each combination of two sets of values for these
parameters was used to build a unique DSHM PRS player:

Lags: [1, 2, 3];
Vector lengths: [32, 64, 128, 256, 512, 1024, 2048].

Each DSHM model played against the aggressive lag 1,
aggressive lag 2, and passive lag 2 network models.

Evaluation To determine which DSHM performed most
like human players, data from West and Lebiere (2001) was
used as a comparison: human players average 9.99 (s.d.
19.61) more wins than the aggressive lag 1 networks, after
300 trials; lost to the aggressive lag 2 models by an average
margin of 8.89 (s.d. 19.74), after an imprecise number of
trials; and, beat the passive lag 2 by 11.14 wins after 287
trials.

Given that understanding human play against the
aggressive lag 2 networks is difficult due confounding
factors discussed in West and Lebiere (2001), and the fact
that an exact target win difference (after a fixed number of
trials) is not available, comparison to the data against this
opponent was simplified.

The DSHM models were rated according to the mean
squared difference between their average final scores
against the aggressive lag 1 and passive lag 2 networks, and
the average finals scores of humans against these models.
Additionally, DSHM models that won against the
aggressive lag 2 were disqualified as potential models of
human play. This is because all that is certain about human
performance against the aggressive lag 2 networks is that
humans lost to these networks, on average. Additionally,
West and Lebiere (2001) discuss factors that could make the
interpretation of human players’ performance against the

aggressive lag 2 networks difficult (e.g, it is less fun to play
and lose against a stronger opponent).

Results Of all the models tested, one produced results that
came very close to the human data. The Lag 3 DSHM
model with vector lengths of 1024 scored an average of
10.89 wins more than the aggressive lag 1 network, 13.24
more wins than the passive lag 2, and lost to the aggressive
lag 2 by an average of 6.22 wins per game.

The fact that the best DSHM model was a lag 3, not a lag
2 model, was surprising at first. Lebiere and West (1999),
and West and Lebiere (2001), found that lag 2 ACT-R and
lag 2 network models provided the best fit to the human
data. However, the fact that the DSHM lag 3 models
incorporated lag 2 and lag 1 memory behaviour makes this
result more consistent with previous findings. The DSHM
lag 3 model weighs lag 1 sequences the most, lag 2
sequences second, and lag 3 sequences the least. So, it
could be argued that, on average, the lag 3 DSHM models
are more like lag 2 ACT-R and network models, than the lag
3 ACT-R and network models.

Rock=1 Model Comparison

This paper reviews the three different types of models of
PRS play: ACT-R, DSHM, and perceptron-like networks.
In each case, the model of human play, played games
consisting of 300 trials against the aggressive lag 1 network,
and games of 287 trials against the passive lag 2 network.
For each model, the mean difference in the number of wins
scored by the model and the opponent network was
recorded. Humans scored, on average, 9.99 more wins than
the aggressive lag 1 networks, and 11.14 more wins than the
passive lag 2 network. The sum of the squares of the
differences between the model’s results and the human
results are presented as a basis for comparing the model’s fit
to the human data.

The best ACT-R model was taken from Rutledge-Taylor
and West (2005). It was exemplar based, and used the
following parameters: ANS=0.28, OL=NIL. The best
DSHM model was the lag 3, vector length 1024, model
discussed above. The best network model was the
aggressive lag 2 network.

New network versus network simulations were run for
this comparison: 10000 games were run against each of the
two benchmark opponents. The mean difference in wins
between the aggressive lag 2 and aggressive lag 1 networks
was somewhat lower than was found in West and Lebiere
(2001). However, given the high standard deviation on the
win differences, both the results found here and those found
in West and Lebiere (2001) may be valid.

Table 2;: Models of Human Rock=1 PRS

Opponent  Human ACT-R  DSHM Network
Agg.lagl 9.99 12.30 10.89 5.76
Pas.lag2 11.14 8.15 13.24  10.44
Rating 14.27 5.22 18.37
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Table 2 summarizes the best models of human Rock=1
PRS play. The DSHM produces the closest fit to the human
data, i.e.,, it scored the lowest mean squared error.
Additionally, the DSHM model lost to the aggressive lag 2
model by a mean win difference of 6.22 (not shown in this
table), which helps support this model as a good account of
human PRS play.

Rock=2 Simulations

The mechanism for building a sensitivity to the unequal
payoffs of the Rock=2 game in the DSHM models was
essentially the same as for the ACT-R Rock=2 maodels.
Three versions of the Rock=2 DSHM models were created:
one that attended to opponents’ rock plays more; another
that attended to scissors more; and, one that gave preference
to both rock and scissors. This extra attention was achieved
by training the models twice on sequences of opponents’
moves ending in these plays.

For each of the three variations on the Rock=2 DSHM
player, the combinations of the three different lags and
seven vector lengths were tested.

Evaluation Each of the DSHM players results were
compared to the human data from Rutledge-Taylor and
West (2004). A mean squared error approach was used. Six
data point were compared: the mean points differences
versus the three network models, and the strategy indices
versus these opponents. Because the strategy index values
were, on average smaller than the point differences, and
because they are crucially important to establishing strategic
play, these three data points were given twice the weight of
the points difference comparisons. Thus, each model’s
rating was the sum of the squares of the mean point
differences and twice the sum of the squares of the strategy
indices.

Results The results were somewhat predictable based on the
DSHM rock=2 and ACT-R Rock=2 results: The lag 3
DSHM model with vector lengths of 1024, and that paid
extra attention to both rock and scissors produced the best
fit to the human data. It matched five of the six data points
very well. However, this model failed to defeat the
aggressive lag 2 network model. There were other DSHM
models that beat the aggressive lag 2 network, but failed to
match the other five data points well (e.g., the margins of
victory were too great).

Rock=2 Model Comparison

Three different kinds of models of human Rock=2 PRS play
are discussed in this paper: ACT-R, DSHM and perceptron-
like networks. The ACT-R results are taken from Rutledge-
Taylor and West (2005), the DSHM model is the one
discussed above. As with the Rock=1 comparison, new
network versus network data was collected. The network
model of human Rock=2 played each of the benchmark
opponents 10000 times. Each model played 300 trial games
against the three network opponents discussed in Rutledge-

Taylor and West (2004). The evaluation method for all
types of models was the same as for the DSHM models
discussed above.

Figures 3 and 4 summarize the evaluations of the three
model types. The confidence values for the human data in
Figure 3 are estimated based on the 95% confidence
intervals of a regression analysis of the rate of point
difference achieved by the human players against each of
the three opponents.

40

30
I
20
10
|
0 . .

Agg.Mag 2 Rock=2 lag 1

Human
mACT-R
®DSHM
® Network

—_—

Agg. lag 1

-10

Figure 3: Points difference comparison for Rock=2 PRS.
Human values include estimated 95% confidence values.
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Figure 4: Strategy indices comparison for Rock=2 PRS

All three models produced good fits to the human data.
However, the DSHM model is unique in that it failed to beat
the aggressive lag 2 network. However, it correctly scored a
negative strategy index versus this opponent. In contrast,
the ACT-R and network models beat the aggressive lag 2,
but did not score negative strategy indices, as did the human
players. Thus, there is an obvious objective in building a
superior model of human play. That is, to build a model
that beats the aggressive lag 2, but does so despite a
negative strategy index.

Conclusions

The simulations run and analyzed here demonstrate that
DSHM can, in fact, be used successfully to model at least
one memory task that relies on reconciling inconsistent
information and rapidly changing predictions based on past
events. Despite the fact that DSHM was designed to model
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only long-term memory, it may also useful as a model of
short-term memory. This also suggests that long-term and
short term memory in humans may rely on the same basic
mechanisms.
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