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Abstract
People routinely draw inferences about others’ preferences by
observing their decisions. We study these inferences by char-
acterizing a space of simple observed decisions. Previous work
on attribution theory has identified several factors that predict
whether a given decision provides strong evidence for an un-
derlying preference. We identify one additional factor and
show that a simple probabilistic model captures all of these
factors. The model goes beyond verbal formulations of attri-
bution theory by generating quantitative predictions about the
full set of decisions that we consider. We test some of these
predictions in two experiments: one with decisions involving
positive effects and one with decisions involving negative ef-
fects. The second experiment confirms that inferences vary in
systematic ways when positive effects are replaced by negative
effects.
Keywords: preference learning; decisions; probabilistic
model; attribution

Suppose your friend Alice orders a boxed lunch that in-
cludes an eggplant sandwich and you are curious how much
Alice likes eggplant sandwiches. The conclusion you reach
could depend on several factors. If there were many other
boxed lunches available, perhaps Alice’s preference for egg-
plant sandwiches is relatively strong. If all boxed lunches ex-
cept the eggplant sandwich box come with a free cookie, per-
haps Alice’s preference for eggplant sandwiches is extremely
strong. On the other hand, if the eggplant sandwich is part
of the only box that contains a cookie, perhaps Alice’s pref-
erence for eggplant sandwiches is relatively weak and she
really wanted the cookie. As these examples suggest, any
given choice could potentially have many different explana-
tions, and deciding which of these explanations is best is often
a challenging inductive problem.

In cases like these, observing someone make a decision
provides information about his or her desires or prefer-
ences. Two classic proposals along these lines are Jones’s
and Davis’s (1965) correspondent inference theory of attri-
bution and Kelley’s (1973) ANOVA model, both inspired
by Heider (1958). Both proposals identify some normative
principles that predict when an observed decision provides
strong evidence for an underlying preference. The ANOVA
model has influenced subsequent computational accounts of
learning and reasoning (Cheng & Novick, 1992), but there
have been few computational accounts that address the issues
emphasized by correspondent inference theory (see Medcof,
1990). Here we show that a simple probabilistic model cap-
tures some of the key principles of the theory, along with
some additional principles not identified by Jones and Davis.

To explore the factors that support preference learning, we
work with a space of what we call decision events—observed
decisions among discrete choices. Each event involves a set

of options, and each option may have one or more effects. For
example, a restaurant may offer three boxed lunches (three
options), and one of these lunches may include an eggplant
sandwich and a cookie (two effects). One principle of corre-
spondent inference theory asserts that unique effects are max-
imally informative: for example, if Alice chooses the only
boxed lunch that includes an eggplant sandwich, perhaps her
preference for eggplant sandwiches is relatively strong. A
second principle asserts that as the number of chosen effects
increases, the less strongly one can conclude that an actor
sought one particular effect. For example, if Alice’s choice
happens to be the only box that contains an eggplant sand-
wich and the only box that contains a cookie, perhaps she
likes the cookie rather than the eggplant sandwich.

Both of these principles, along with several others that we
discuss, are captured by a simple probabilistic model known
as the multinomial logit model (McFadden, 1973). This
model is common in the economics literature, and has re-
ceived some attention in the psychological literature (Bergen,
Evans, & Tenenbaum, 2010; Lucas, Griffiths, Xu, & Fawcett,
2009). The model assumes that an actor assigns some utility
to each effect, and chooses probabilistically among the op-
tions in proportion to the total utility assigned to each one.
Given these assumptions, it is possible to work backward
from an observed decision to infer the likely utility assigned
to each effect. Lucas et al. (2009) showed that the model
helps to explain how children use statistical information to
make inferences about others’ preferences (Kushnir, Xu, &
Wellman, 2010). We build on this work and suggest that the
model provides a comprehensive account of preference learn-
ing over the full space of decision events.

A space of decision events
The first step is to formally characterize the space of decision
events. We will use a running example where an actor is given
a choice between bags (i.e., options) that contain candies of
different brands (i.e., effects). The actor chooses a bag con-
taining a Brand x candy, and our goal is to infer the strength
of the actor’s preference for Brand x. Figure 1a shows the 14
distinct decision events that involve up to four effects. The
event on the far left is a case where the choice set includes a
single bag that contains only a Brand x candy; the event on
the far right is a case where the choice set includes four bags
each containing a candy from a different brand. Since the la-
bels of the candies are not important in this example, a single
representative is included for all decision events that are the
same up to relabeling. For example, the event that involves a
single bag containing x and a is equivalent to the event that
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Figure 1: The space of decision events. Each decision is indicated by a set of options on each row. The effects of each option
are listed as letters and the chosen option is circled. (a) The space of decision events with up to four effects, such that the
option with effect x is always chosen. (b) These decisions can be ordered by how strongly they suggest a preference for x. (c)
Four factors (F1–F4) that inform preference inferences. In each case, the two columns labeled Alice and Bob indicate the set of
options each person was presented with. The four pairs of decisions illustrate cases in which Alice’s and Bob’s decisions differ
in (i) the number of chosen effects, (ii) the number of forgone effects, (iii) the number of available options, and (iv) the number
of decisions made.

involves a single bag containing x and b. The number of dis-
tinct events increases as the number of effects increases: for
example, there are 26 distinct events that involve up to five
effects, and 45 that involve up to six effects.

Given the full space of decision events in Figure 1a, it is
natural to ask which events provide the strongest evidence
that the actor likes Brand x. Figure 1b shows the ordering
predicted by the model described in the next section when all
effects are positive. None of the decision events at the far
left is informative about a preference for x, since the actor is
forced to choose a bag containing x if only one bag is avail-
able. The event on the far right provides strong evidence that
the actor likes x, since she passed up a bag with three candies
in order to acquire a single candy of Brand x.

A natural goal for behavioral research in this area is to es-
tablish an empirical ordering to compare with the predicted
ordering in Figure 1b. We make a start in this direction by
identifying several key factors that can be used to distinguish
among events and studying the roles of these factors. Each
decision event can be described in terms of three factors: the
set of chosen effects, the set of forgone effects, and the dis-
tribution of forgone effects over the forgone options. These
factors motivate the comparisons shown in Figures 1c(i)–(iii).
Although Figure 1b focuses on events with up to four effects,
note that the events in 1c include up to six effects to be con-
sistent with our experiments, described later.

The first comparison (i) involves two events that differ only
in the number of chosen effects. If asked to identify the ac-
tor with the greater preference for candy x, Alice seems to
be the better choice, since Bob might have been interested
in candy e. The second comparison (ii) involves events that
differ only in the number of forgone effects. Here, Alice ap-
pears to have the stronger preference for x, since she passed
up more effects in order to acquire an option that included x.
The third comparison (iii) suggests that the distribution of for-
gone effects over the forgone options is also important. Both
Alice and Bob passed up three effects, but Alice must have
a strong preference for x if she chose a bag with one candy
when she could have had a bag with three. So far we have
focused on cases where a single decision is observed, but of-
ten we are able to observe an actor’s behavior over time. The
fourth comparison (iv) suggests that the number of decisions
observed is relevant. Given that Alice chose Brand x on three
separate occasions, perhaps she has a relatively strong prefer-
ence for x.

In addition to considering each factor in isolation, compar-
isons between decision events may involve multiple factors.
In some of these cases, two or more factors will support the
same conclusion, but in others, some factors will be in con-
flict. Considering interactions of this kind is critical for devel-
oping a comprehensive account of preference learning. Thus,
our experiments include two comparisons where factors F1
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and F2 both apply.
Some of these factors have been previously studied.

Newtson (1974) explored the influence of factors F1 (number
of chosen effects) and F2 (number of forgone effects), and
Lucas et al. (2009) also explored the role of factor F2. Fac-
tor F4 (number of decisions) is captured by Kelley’s ANOVA
theory, but to the best of our knowledge, factor F3 (number
of options) has not been previously identified. In addition to
exploring factor F3, we build on previous studies by demon-
strating that the model described in the next section can ac-
count for the effects of all four factors.

A computational model of preference learning
In this section, we describe a simple formal model that helps
to explain how observers make inferences about an actor’s
preferences. We assume the actor is presented with a set of
n options {o1, . . . ,on}, each of which produces one or more
effects from the set { f1, f2, ..., fm}. For simplicity, we assume
that each effect is binary. Let ui indicate the utility that the
actor assigns to effect fi, and suppose that the utility of each
option is based on the utilities of the effects that it produces.
The greater the utility of the option, the more likely the actor
is to choose that option.

We make the standard assumption that utilities are additive.
That is, if fj is a binary vector indicating which effects are
produced by option o j and u is a vector of utilities assigned
to each of the m effects, then the total utility associated with
option o j can be expressed as U j = fj

T u. We complete the
specification of the model by applying the Luce choice rule
(Luce, 1959), a common psychological model of choice be-
havior, as the function that chooses among the options on the
basis of their utilities:

p(c = o j|u, f) =
exp(U j)

∑
n
k=1 exp(Uk)

=
exp(fj

T u)
∑

n
k=1 exp(fk

T u)
(1)

where c denotes the choice made.
Given these assumptions, we can use Bayes’ rule to infer

an actor’s utilities after observing a choice he or she makes.

p(u|c = o j, f) ∝ p(c = o j|u, f)p(u) (2)

In order to apply Equation 2 we must specify a prior on the
utilities p(u). We adopt a common approach that places inde-
pendent Gaussian priors on the utilities: ui ∼ N (µ,σ2). For
decisions where effects are positive, we set µ = 2σ, which
corresponds to a prior distribution that places approximately
2% of the probability mass below zero. Similarly, for nega-
tive effects, we set µ =−2σ.

Experiment 1
We applied this model to a set of decision events designed
to test the effects of the four factors in Figure 1c and com-
pared its predictions to human judgments. Newtson (1974)
previously studied factors F1 and F2; our first experiment
replicated all of his conditions plus two more that focused
on factors F3 and F4. Following Newtson, we examined the

interactive effects of factors F1 and F2, including a case in
which these two factors were in conflict.

Method
Participants 160 participants were recruited from the
Amazon Mechanical Turk website. They were paid for their
participation.

Design The experiment consisted of eight between-subject
conditions, with 20 participants allocated to each condition.
In each condition, participants read a story that described a
pair of decisions that two people made. The full set of pairs is
illustrated in Figure 2a. Each column of the figure represents
a comparison between two decisions, shown at the top and
bottom. The factors that each comparison manipulates are
labeled above each column, where F1–F4 correspond to the
factors in Figure 1c. In addition to manipulating each factor
in isolation, we also considered two comparisons involving
interactions between factors F1 and F2, shown in the last two
columns.

Procedure Participants completed the experiment online.
They were told that two people, Bob and Bill, were each given
a choice between several bags of candy. The options were the
bags of candy and the effects were different brands. As shown
in Figure 2a(i), both Bob and Bill always chose the bag con-
taining Brand x candy. Participants were then asked, “Based
only on the above information, which person do you think
likes Brand x candy more?” They provided their responses on
a numerical scale from 1 (Bill likes Brand x candy more) to
8 (Bob likes Brand x candy more). The polarity of the scale
was reversed for half of the participants. When varying the
number of decisions (factor F4), participants were told that
one person chose the bag with Brand x candy in it on three
separate occasions.

Results
Model predictions For each decision event, we estimated
the posterior distribution p(u|c = o j, f) in Equation 2 us-
ing a Metropolis-Hastings sampler. We then computed the
expected value of the utility for effect x, E(ux), by sum-
ming over all utilities except ux. In order to produce pre-
dictions for the comparison involving factor F4, the number
of decisions, we treated decisions as independent, such that
p(c|u) = ∏i p(ci|u). Because all the effects were intended
to be clearly positive, we used a prior distribution on utilities
with mean µ = 2σ. The model predictions shown in Figure
2a(i) were based on a prior distribution with standard devia-
tion σ = 2, but similar qualitative results were obtained with
a range of variances.

The first row of Figure 2a(i) shows differences between
the mean utilities for the actors in each pair. For each pair,
the model predicts that the actor represented at the top of the
plot has a greater utility for x. For every case, the model’s
predictions about the effects of the four factors are consistent
with the intuitive explanations offered earlier for the compar-
isons in Figure 1c. This is also true for the case in which both
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Figure 2: Model predictions and human data from (a) Experiment 1 and (b) Experiment 2. In each subfigure, panel (i) compares
the effect magnitudes between the model and human participants for the eight studied cases. Error bars indicate standard errors.
Black bars indicate results that are significantly different from 0. Panels (ii) and (iii) illustrate, for the model and human data
respectively, an ordering by strength of attribution for the cases involving factors F1 and F2. The diagram also indicates by
arrows the relative strengths of comparisons between the cases. The arrow is directed from the larger attribution to the smaller
attribution and the thicker and darker the arrow, the larger the difference.

factors F1 and F2 are manipulated to support the same infer-
ence (the second column from the right), which leads to the
model’s largest predicted difference.

Of particular interest is the case where factors F1 and F2
are in conflict (the rightmost column). At first, it may not
be clear which factor should carry more weight. The model,
however, predicts that F1 should have a greater influence in
this case. This prediction is a consequence of basic Bayesian
inference, which implies that

P(Bill loves x|Bill chooses bag 3)
P(Bob loves x|Bob chooses bag 3)

=

P(Bill chooses bag 3|Bill loves x)
P(Bob chooses bag 3|Bob loves x)

where Bill is the actor who makes the choice at the top of Fig-
ure 2a(i), and “Bill loves x” is shorthand for “Bill has a strong
preference for x”. Now consider the ratio on the right. If Bill
loves x, there is a high probability that he will choose bag
3. However, if Bob loves x, there is perhaps only a medium-
high probability that he will choose bag 3 because he might
not like e. It follows that the ratio on the right of the expres-

sion exceeds one and therefore the ratio on the left exceeds
one, hence the stronger attribution for Bill.

So far we have focused on predictions about pairs of deci-
sion events, but the model also predicts an ordering over the
full space of decision events (see Figure 1b). The model’s
predicted ordering for four of the events in the experiment
is shown in Figure 2a(ii), and this ordering generates pre-
dictions about the relative magnitudes of the effects for each
pairwise comparison. The arrows are directed from the larger
attribution to the smaller attribution, and the thicker and
darker the arrow, the larger the predicted difference. Note
that these arrows satisfy the property of transitivity: if D1
produces a stronger attribution than D2, which in turn pro-
duces a stronger attribution than D3, then the difference in
attribution strength for the comparison (D1,D3) should ex-
ceed the differences for both (D1,D2) and (D2,D3).

Human judgments Mean human ratings are shown in the
second row of Figure 2a(i). The human data were re-centered
around 0, meaning that 3.5 is the highest possible rating in the
plot. As predicted by the model, the mean ratings are positive
in all cases, indicating that the top actor in each pair was at-
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tributed a stronger preference for Brand x than the bottom ac-
tor. All four of the factors in Figure 1c affected the inferences
people made about other people’s preferences, and the results
for the conflict case (the last bar) suggest that factor F1 has
a stronger influence than factor F2. Wilcoxon signed ranked
tests were performed for each of the eight pairs. Each bar ex-
cept the smallest is significantly different from 0 (p < .02).
The result represented by the smallest bar is marginally sig-
nificant (p = .059).

Figure 2a(iii) shows the ordering diagram derived from the
human data. There is no guarantee that the empirical results
for all pairs of events will be consistent with a single order-
ing. The diagram shows, however, that the human data do
satisfy the transitivity property, suggesting that a stable psy-
chological ordering of these events exists, and this ordering
is consistent with the model’s prediction. The model fails to
correctly predict the relative differences in strength between
adjacent decision events in the ordering. These differences,
however, must be interpreted with care. The mean standard
deviation across conditions for the human ratings was 1.65,
suggesting that the differences may not be reliable.

The effect sizes in Figure 2a(i) differ from those reported
by Newtson (1974), but the direction of each effect replicates
his results for the six cases that he studied. Newtson, how-
ever, was unable to provide a clear explanation for the con-
flict case involving F1 and F2, and he and others (Jones &
McGillis, 1976) have claimed that there is no logical reason
for chosen effects to be more informative than forgone ef-
fects. As previously discussed, this result is a consequence
of our model’s basic assumptions. This suggests that proba-
bilistic inference may provide a better account of human in-
ferences and attributions than a strictly logical approach.

Experiment 2

Experiment 1 demonstrated that all four of the factors in Fig-
ure 1c shape people’s inferences about others’ preferences.
We also showed that the multinomial logit model accounts
for the influence of each of these factors. So far we have
focused exclusively on positive effects. However, the model
predicts that three of the four factors we considered work in
opposite directions when the effects are negative (e.g., elec-
tric shocks). In the first two comparisons of Figure 1c(i)–(ii),
if Bob chooses to receive two shocks when he could have
received one, we might infer that he considers shock x rel-
atively tolerable. In the third comparison (iii), any sensible
person would join Alice in choosing one shock over three,
but observing Bob’s choice suggests that he considers shock
x relatively tolerable. Note, however, that the fourth compari-
son (iv) may lead to the same inference regardless of whether
the effects are positive or negative. In each case, Alice chose
x three times, suggesting that her preference for x is relatively
strong. Our second experiment tested all of these predictions
by exploring how the four factors shape inferences about neg-
ative effects.

Method
Participants 320 participants were recruited from the
Amazon Mechanical Turk website. They were paid for their
participation.

Design The experiment consisted of the same eight
between-subject conditions that were used in Experiment 1,
with 40 participants allocated to each condition. We collected
a larger number of participants for Experiment 2 because pre-
liminary results suggested that in some cases an effect was
present but relatively small.

Procedure The procedure for Experiment 2 was largely the
same as in Experiment 1. The cover story was changed to
involve a choice between sets of painful electrical shocks at
different body locations so that the effects were unambigu-
ously negative. Accordingly, the question participants were
asked was revised to read, “Based only on the above infor-
mation, which person do you think finds shocks at location x
more tolerable?”

Results
Model predictions Model predictions were generated in
the same way as for Experiment 1. Because the effects in this
experiment were intended to be clearly negative, we used a
prior distribution on utilities with mean µ = −2σ that places
most of its probability mass is below zero. The predictions
for each comparison are shown in the top row of Figure 2b(i).
Compared to Experiment 1, the model predicts that the direc-
tion for all but two of the comparisons should reverse. This is
also reflected in the ordering diagram in Figure 2b(ii).

Human judgments Mean human ratings are shown in the
second row of Figure 2b(i). Comparing these results to those
from Experiment 1 in Figure 2a(i) suggests that the infer-
ences people draw about actor’s preferences when observing
choices among negative effects are qualitatively different than
for only positive effects. Note that these inferences are not
universally reversed, as indicated by the comparison involv-
ing factor F4 (number of decisions). However, some of these
effects are small. Wilcoxon signed rank tests were performed
for each set of human data. The effects depicted by black bars
in the figure were significantly different from 0 (p < .05). Of
the remaining effects, three out of four were in the predicted
direction.

These small effects make the ordering diagram in Figure
2b(iii) difficult to interpret. However, of the four cases shown
in the diagram, participants’ strongest and weakest attribu-
tions were for cases predicted by the model.

The mean standard deviation across conditions for the hu-
man ratings was 2.09, which is higher than for Experiment 1
(1.65). This may suggest that inferences about negative ef-
fects are more difficult than inferences about positive effects,
perhaps because choices among negative effects are less fa-
miliar in everyday life. An alternative explanation is that
electric shocks are unfamiliar examples of negative effects,
and that more familiar effects, like doing chores, may be eas-
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ier to reason about.

Conclusion

In this paper, we characterized a space of decision events that
can be used to explore how people make inferences about
other people’s preferences. We identified four factors that
shape the strength of these inferences: number of chosen
effects, number of forgone effects, number of available op-
tions, and number of decisions made. In two experiments, we
demonstrated that a standard model of choice behavior—the
multinomial logit model—predicts the effects of these factors
reasonably well.

In particular, the multinomial logit model offers an expla-
nation for why people find the number of chosen effects to
be more informative for inferring preferences than the num-
ber of forgone effects, an observation that previous theoret-
ical accounts have struggled to explain. It also accounts for
the fact that reasoning about negative effects can lead to qual-
itatively different inferences than for positive effects, rather
than a simple reversal of all judgments. This suggests that
the model, while fairly generic, may be applicable to a vari-
ety of preference learning problems. One question for future
work is how people reason about decisions involving choices
among options with positive and negative effects, which are
more like the decisions people make on a daily basis with
multiple trade-offs.

Although the factors we examined comprise all the ma-
jor dimensions of variability in the space of decision events,
people’s preference attributions are surely influenced by other
factors that are independent of the structure of the decision
event. For instance, we noted earlier that the model explored
in this paper offers a formal account of several principles of
the correspondent inference theory of attribution. The the-
ory, however, includes some additional principles that we did
not address. One principle concerns the influence of expec-
tations (Jones & Davis, 1965). As an example, suppose Al-
ice is given a choice between a new car and a new bike on
a game show. Observing Alice choose the car indicates that
she values cars over bikes, but this observation is not likely
to change your initial expectations about Alice’s preferences,
because nearly everyone would consider the car more valu-
able. By contrast, observing Alice choose the bike would be
highly unexpected and this information would likely cause
you to drastically alter your beliefs about her preferences.

We did not discuss the difference between expectations and
revised beliefs, but this principle is naturally captured using
the multinomial logit model by adjusting the priors assigned
to different utilities. We might assign a high prior to Alice’s
utility associated with cars, a low prior to her utility associ-
ated with bikes, and an even lower prior to her utility associ-
ated with pencils. In other words, although the model in this
paper is simple, it is flexible enough to handle many aspects
of preference learning and attribution that have interested re-
searchers for some time (Gilbert, 1998).
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