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Abstract

Here we describe the Semantic Pictionary Project—a set of
online games and tools designed to collect large amounts of
structured data about the object characteristics and perceptual
properties of word referents. The project hinges on the use of
encoding-decoding games and a set of creation tools to
capture data using online crowdsourcing. We describe the
architecture of the basic tools behind the games, the structure
of the resulting data, and how this information may be
integrated into existing statistical semantic models. We also
describe two validations using data collected from one of the
tools (2D Geon Pictionary) demonstrating typicality effects in
the metrics of raw Geon objects created by subjects, and
unique variance in the predictions of word pair metrics over
currently used linguistic and property data.

Keywords: Geon;  natural language  processing;
crowdsourcing; semantic space models; embodied cognition.

Introduction

Humans learn about the meanings of words and larger
discourse units from repeated experience with both
linguistic and perceptual information. However, current
models of lexical semantics focus only on learning from
linguistic structure using statistical abstraction algorithms.
Part of the problem is the lack of realistic structured data
containing information about the perceptual structure of
word referents. Text is plentiful, but usable object structure
data currently are not. Given the ideological movement
towards models of embodied lexical representation, model
development is currently being held up due to a lack of
structured human data containing configural object and
property information about concrete word referents. Here,
we describe the NSF-funded Semantic Pictionary Project,
an online approach to the problem of data capture that
makes use of the paradigms of crowdsourcing and online
gaming to gather data containing the perceptual structure of
word referents. The online games may be played at
www.SemanticPictionary.org.

Statistical semantic models (SSMs; e.g., Landauer &
Dumais, 1997) have recently been attacked as implausible
cognitive models because they learn from only linguistic
information and are not grounded in perception and action,
contrary to the literature on embodied cognition, and this
limits their ability to account for human behavior on
semantic tasks (for a review of the debate, see de Vega,
Graesser, & Glenberg, 2008). The inadequacy of SSMs as
cognitive models punctuates the current movement in
cognitive science towards models of embodied cognition.
There is a growing body of both behavioral and
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neuroimaging research demonstrating that when humans
process words (in isolation or in context) they automatically
activate sensorimotor information about the perceptual
features of the word’s referent, how it is commonly used,
and physical contexts in which it has been experienced (for
a review, see Riordan & Jones, 2010). A large number of
behavioral experiments also demonstrate convincing
evidence that sensorimotor experience becomes an
inseparable part of a word’s lexical representation, including
information about object features (color, shape, motion,
etc.). Perceptual information is an inherent part of the
semantic organization of the human lexicon, but much of
this information cannot be learned from statistics in a text
corpus—it must be learned from multisensory experience.

Perceptually grounded SSMs are now emerging in the
cognitive science literature (e.g., Andrews, Vigliocco, &
Vinson, 2009; Recchia & Jones, 2010; Steyvers, 2010). As a
proxy for sensorimotor perception, these new integrative
models use norms of human-generated properties (e.g.,
McRae et al., 2005). These norms are collected by asking
hundreds of subjects to produce the physical properties
(internal and external parts), appearance, sounds, smells,
tastes, functional properties, categorical membership, etc.
for concrete nouns and event verbs based on multisensory
experience. A property vector for a word is then created by
aggregating across subjects. For example, the property
<has 4 legs> will have a high probability for dog and cow,
but a low probability for centipede, and a zero probability
for strawberry. However, <is red> is a highly salient
property of strawberry and not for dog.

The development of perceptually grounded SSMs is
currently being held up by a lack of data. The overall goal of
the Semantic Pictionary Project is to collect large amounts
of object and property data online using a combination of
crowdsourcing and our new encoding-decoding games, and
to make the large datasets available to researchers to
develop superior grounded semantic models.

The Semantic Pictionary Paradigm

The Semantic Pictionary paradigm is a two-stage task with
self-correction built in. In the first stage, subjects are
presented with a target word selected from the high-
concreteness/early-AoA  nouns from the MRC
Psycholinguistic Database. Subjects are then provided a tool
to make a representation of this noun, with the goal of
making a depiction such that another subject could guess
what word is being represented (similar to the popular
Pictionary game). That representation is then given to a
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different subject to attempt to recover the initial label.
Success at recovering the initial label is in indication of a
valid and meaningful encoding by the first subject. The data
created by this paradigm can then be used in various
modeling applications.

Words can be encoded in a variety of ways. The goal is to
build a symbolic representation of the word’s referent in a
constrained domain. Example domains could be other
words, physical shape, smell, or sound. In each domain, a
specially constructed tool is used by subjects to generate the
feature set representing that word, and the feature set can
then be given to a different set of subjects to verify.

Crowdsourcing

Crowdsourcing is a paradigm that has recently emerged to
use aggregate groups of humans to solve problems online
that are impossible for computers to currently solve.
Crowdsourcing takes advantage of crowd wisdom
(Surowiecki, 2004) to capture data that only humans can
currently produce at a massive scale. GWAPs (“games with
a purpose”) take advantage of crowdsourcing and the
amount of human computation currently wasted on online
games to capture data for practical purposes. For example,
humans spend approximately 10 billion hours each year
playing solitaire online. Facebook’s Farmville game allows
users to grow virtual crops and form social relations with
other players online—Farmville sees about 68 million users
each day. GWAPs harness the power of human computation
for data labeling using an entertaining game. The original
GWAP was called the “ESP Game” (von Ahn, 2006; now
the “Google Image Labeler”). The ESP game used online
human computation to solve the problem of labeling images
and image components on the web. All of the Semantic
Pictionary GWAPs are available online and are also linked
to social media sites such as Facebook to collect massive
amounts of structural data with crowdsourcing.

Semantic Pictionary Games
There are two broad classes of data representation games we
employ: Property Pictionary and Geon Pictionary. Property
Pictionary is a class of games in which the subject encodes
the target as a set of constrained verbal features that
describe it. Property Pictionary can be thought of as an
online crowdsourcing version of McRae et al.’s (2005)
feature generation task (originally collected in the
laboratory), with the addition of a decoding phase in which
different subjects attempt to guess the target word given a
generated feature vector. Geon Pictionary is purely
nonverbal. When presented with a target word to encode,
the subject uses an editor to create an object model the
referent using a constrained set of Geons (Biederman, 1987)
in either two- or three-dimensional space. The Geon object
constructed from a target word is then provided to different
subjects to guess the target word given the image.

The two classes of games were selected to compliment
information learned well by corpus-based models. Geon
Pictionary collects information about object structure, color,

viewpoint variance, component connectivity, etc. that do not
seem to be possible to mine from language (see Riordan &
Jones, 2011). Property Pictionary capitalizes on verbal
feature generation to produce high-level descriptions of
words including physical properties (internal and external
parts), appearance, sounds, smells, tastes, functional
properties, categorical membership, affordances, etc. not
captured by the low-level Geon shape descriptions or the
distributional structure of natural language.

In the following sections, we briefly describe the
architectures of each of these GWAP tools as well as the
structure of the data they collect and how it may be
integrated into existing statistical semantic models. Then we
turn to an analysis of data collected through the 2D Geon
Pictionary game. We demonstrate that the information
captured by the game can reproduce standard semantic
typicality effects, and contains unique variance in semantic
similarity used by humans but that is currently missing from
linguistic structure and verbal properties.

Property Pictionary

Property production norms have proven extremely valuable
in a variety of semantic experiments, and in cognitive
models of semantic representation and processing.
However, these databases are currently limited to a few
hundred concepts. By taking lessons from McRae et al.’s
(2005) original study and string normalizations, a
crowdsourcing GWAP can potentially produce a database
like McRae’s spanning thousands of words in 1-2 years. In
addition, we will have “goodness of transmission” values
for features from the encoding/decoding paradigm that were
not possible in McRae’s original lab-collected database.
Verbally coded features contain perception and action
information at a higher level than the Geon shape
description, and both are needed to evaluate perceptual
integration in SSMs.

In Property Pictionary, subjects are assigned to be
encoders or decoders. In the encoding phase, the subject is
presented with a target word (e.g., DOG) and is asked to
generate N descriptive features such that a decoder could
guess the target word from the features. Subjects gain points
as encoders the more people who can correctly guess the
target word from their feature encoding. When a certain
number of words have been encoded, subjects then progress
to the decoding phase, guessing the target word that is
represented by the feature encoding produced by another
encoder for a different word. In this fashion, we are able to
quantify the diagnosticity of produced features. An
encoding of DOG = [+has_wings, +is_made of metal, ...]
will not only be very infrequent, but will also have a very
low probability of anyone else guessing the target word
given this encoded pattern.

We have conducted pilot tests of Property Pictionary
using both traditional psychology subject pool players, and
using subjects via Amazon’s Mechanical Turk
crowdsourcing site. In the pilot collection phase, we used
the same concrete nouns in McRae et al.’s (2005) original
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laboratory study, and built interactive checks at the input
phase that originally had taken a significant portion of time
to manually recode after data collection in McRae et al.’s
norms. For example, if a subject typed in “has four legs” or
“is four legged” the input system would remap in real-time
by suggesting the equivalent recoded label, e.g., “do you
mean <has_4 legs>?”

The details of the Property Pictionary pilot norms have
been described elsewhere (Recchia & Jones, 2011), so we
will just briefly summarize here. The online Property
Pictionary version of the feature norms was remarkably well
correlated with the original McRae et al. (2005) laboratory-
collected norms. The verbal features generated by our online
subjects were very similar to those generated by McRae et
al.’s subjects in the laboratory setting. The correlations
between words’ feature vectors in the online version and
McRae et al.’s original database produced a mean
correlation .83 (SD = .08). In addition, the semantic
similarity among words in each of the norms were highly
correlated. If one creates a word-by-word correlation matrix
within each of the norms and then computes the correlations
between rows of the two matrices, the mean correlation is
.96 (SD = .03). The online version of the norms also had
high similarities to other production characteristics of the
original norms; e.g., # of features, # of distinguishing
features, # of visual-motor/forms, # of tactile features, etc.
The remainder of this paper will focus on validating the
Geon Pictionary data.

Geon Pictionary

Geon Pictionary games require the subject to produce an
object image representing the referent of the target word
using a constrained set of components and attachments. If
given DOG as a target word, the subject essentially draws a
picture of a dog by selecting from a set of primitive geons,
adjusting shape, color, orientation, size, and attachment
structure of the components using our geon editor. This
image is then provided to a second subject to guess at what
target word the encoder is representing with the image. The
system is designed such that we maximize the potential
representable objects while at the same time having a
compact and constrained enough description that
meaningful comparisons can be made between objects. The
data structure of the resulting image is stored as a tree-based
representation of object configurations and properties, and
we have several similarity algorithms available to determine
the similarity among geon objects. The tree-based object is
represented as a phrase structure grammar, so the visual
object may be recoded to a text-based sentence. This allows
corpus-based models to integrate the statistical information
from the visual object while bypassing the problem of
providing the models with vision.

The Semantic Pictionary website has two- and three-
dimensional versions of the Geon Pictionary game. The
three-dimensional version is necessarily tree attachment
based (to preserve the object structure as viewpoint is
rotated). The two-dimensional version has two versions. The

tree-based version requires that geons be attached to one
another at specified attachment points to construct a
hierarchical tree-based representation and phrase grammar.
The ‘no-tree’ version is unconstrained with regards to
attachment points between geons—this allows much faster
production of images, but object similarities are reliant on
vector superposition since the object representation is flat
rather than hierarchically structured. We next describe the
three-dimensional version of Geon Pictionary in detail, and
then the restricted two-dimensional versions more briefly.

Three-Dimensional Geon Pictionary

A final object generated with the 3D Geon Pictionary tool is
a tree of Geon objects with properties and their connection
or attachment constraints. Each Geon has the following
properties:

Geon Type: Chosen from (cube, sphere, cyliner, cone,
handle).

Size: Scaling in the X, Y and Z axis in set increments (from
50% to 350% of one unit in steps of 1%).

Rotation: Rotation around the X, Y and then Z planes in set
increments (from 0 to 6 radians in steps of .01 radians)

Color: Chosen from a reduced color set (original MSPaint)

The first Geon is set as the root of the model and each Geon
added is then attached to the root at specified attachment
points. An attachment point is defined as a pair of points,
one defining the location on the parent and one the location
on the child. The child is then moved such that these two
attachment points are aligned in the same three-dimensional
point. The points defining potential attachments are the 27
points formed by a bounding rectangle around the Geon (3
potential values for the X, Y and Z axis).
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Figure 1. The build interface of the 3D Geon tool.

The basic web interface is shown in Figure 1. The 3D
rendering is done with an in-lab developed 3D rendering
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tool so no external libraries are required (this greatly
facilitates web distribution). The model can be rotated by
dragging the mouse in the X or Y plane. Particular Geons
can be selected by clicking on them and deselected by a
second click. The rendering window is also used in moving
Geons to new parent nodes. Controls allow the subject to
manipulate the color, scaling, rotation, and geon type of a
selected object or group of objects.

Geons may be added to existing Geons (at default
connections points). Connected Geons can also manage
their attachment points. Since each Geon (except the root)
has exactly one parent, but may have multiple children, we
decided to show and let the subjects manipulate the
connection between the selected node and its parent.
Selecting appropriate attachment points is the most difficult
task for subjects and to facilitate this we have provided two
manipulation techniques. The connection can be modified
by use of either radio buttons representing the connection in
the X, Y and Z axis, or by selecting the point by clicking on
the appropriate location on a 3D wireframe model of a cube
that shares its orientation with the Geon on the rendering
screen. Figure 2 shows a rendered object and the attachment

point cubes.
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Figure 2. A rendered object and attachment point cubes.

The web environment is written in php and provides three
paths of interface, Amazon's Mechanical Turk, Facebook
application, and our own web domain
www.SemanticPictionary.org. The php code provides a
login system to manage users, a set of written and video
instructions on how to use the Geon tools, the actual
building interface, the identification interface and a scoring
system.

Two-Dimensional Geon Pictionary

The two dimensional version of Geon Pictionary tool is
designed to have a very similar look and feel to its three
dimensional equivalent. There are two primary differences
between these two tools. The first is that whereas the three
dimensional system only allows subjects to select stepped
values for rotation and scale, the two dimensional system
allows arbitrary values. The connection interface for the two
dimensional system also allows subjects to click and drag
Geons (and all descendents) and will automatically select
the attachment point that would most closely represent the
released location, which makes object production much
faster. In addition to the tree-based version of the 2D game,
there is also a freeform no-tree version. In this version, the

tree structure requirement has been removed. Primitive
instances can be added to the scene in arbitrary locations.
While this version makes it faster for the subject to produce
an object, the resulting data structure is flat and requires
different types of similarity algorithms to analyze.

Figure 3. 2D Geon Pictionary click-and-drag interface.

Encoding, Decoding, and Extrapolation

For storage and transfer, models are encoded in a simple
shorthand coding. In this coding, key symbols are used to
describe the tree structure and properties of instances. This
encoding is short and easy to transfer between systems. The
model is decomposed into a text-based encoding through a
simple rule set. Each primitive instance can be decomposed
into a sentence unit of the following form:

[SENTENCE] = An [OBJECT] made up of a [ROOT
OBJECT DESCRIPTION] [OBJECT DESCRIPTION] =
[COLOR], [SCALE], [GEON] rotated [ROTATION] whose
[CHILD ATTACHMENT POINT] is attached to the
[PARENT ATTACHMENT POINT] of a [CHILD OBJECT
DESCRIPTION] and a [CHILD OBJECT DESCRIPTION]

A horse is made up of a brown, wide, Cube whose left,
top, front, is attached to the top, of a brown, narrow,
shallow, Cylinder whose right, top, front, is attached to
the top, of a brown, narrow, shallow, Cylinder whose
left, top, back, is attached to the top, of a brown, narrow,
shallow, Cylinder whose right, top, back, is attached to
the top, of a brown, narrow, shallow, Cylinder whose
right, bottom, is attached to the bottom, of a brown,
narrow, shallow, Cylinder whose center, is attached to
the bottom, of a brown, wide, Sphere

Figure 4. An example of a horse model converted to natural
text description.

Vector Encoding of Object Structure
Though the models can be decomposed into natural
language and read by any natural language engine, purpose
built translators for particular NLP models are likely to
improve performance. We next describe an encoding
algorithm for the BEAGLE semantic model (Jones &
Mewhort, 2007) to make use of the Geon models directly.
BEAGLE uses a set of two holographic vectors to
represent each word in a language. The first vector is the
environmental vector; this is the static representation of the
word in the universe (sampled from a Gaussian
distribution). The second vector is the lexical vector, which
stores the relational information learned by the system
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through interaction with the corpus. After learning, word
relations can be extracted though holographic operations on
sets of vectors such as cosine for similarity. Algorithms may
then be applied to convert a model into a single holographic
vector usable by the BEAGLE model.

Each property value (color, scale, Geon type, rotation,
attachment points) is assigned a randomly generated
permutation of dimension equivalent to the language model.
After these are assigned, they will remain constant
throughout all encodings. A primitive instance is then
encoded as the point-wise sum of the relevant property
vectors. Property vectors will be calculated in two different
ways depending on whether the property is continuous or
drawn from a small set. For those drawn from a small set
such as Geon type, attachment point and possibly color, the
property vector will simply be the natural language
environmental vector for that word. This is useful since
those environmental vectors will already have relational
meaning from previous or post experience with
supplemental corpora (we would expect most of the color
names and many of the shape names to occur in common
English text).

Those values from continuous sets such as scale and
rotation can be encoded with frequency-encoded vectors
where vector values are chosen from a distribution
reflecting the value of the property (higher values for
example, may shift a distribution). A model vector can then
be calculated from the vectors for each of its primitive
instances. To do this, each child is permuted by a static
random permutation and then added point-wise to its parent
representation.

Information Structure in 2D Geon Pictionary

We assess the structure contained in 2D geon
representations constructed by groups of subjects in two
tasks. In the first task, subjects were asked to generate geon
representations of the concrete nouns from Rosch’s (1975)
study of semantic typicality. In studies of typicality effects,
stimuli are normally words. Here, we evaluate the structure
of the geon representations of those words using the above
described similarity algorithm applied to the geons. In the
second task, we had subjects produce geon representations
for words from the original McRae et al. (2005) norms, and
we assess the information contained in the geon
representations of those words compared to the McRae et al.
feature vectors and a corpus-based co-occurrence metric.

Semantic Typicality Effects

Figure 5 shows the similarity structure among words from
Rosch’s  (1975) high, medium, and low typicality
conditions. In verification experiments, subjects are
typically faster to verify that two high typicality exemplars
are members of the same category (e.g., robin-sparrow)
than medium (hawk-chicken) or low (penguin-ostrich)
typicality exemplars. To compute similarity between geons
in Figure 5, each possible color, shape, rotation and scale is
assigned a random Gaussian vector (these values could be

taken from a learned training run on a corpus). The vector
representation for a given geon is simply the sum of the part
vectors. The tree's holographic vector is then the root
instances holographic vector added to the holographic
vector of its children with a present random permutation
added at each level. As is shown in Figure 5, members of a
semantic category that are rated as being more typical
exemplars tend to look more like one another in their geon
encodings as well. This effect is stable over all typicality
bins (right panel), but also the individual categories (left
panel). These results suggest that at least part of typicality
structure can be encoded in how subjects describe word
referents using our Geons, and this information would be
represented in our natural language or vector representations
as unique variance to be used to enrich statistical semantic
models that typically only have linguistic structure from
which to make inferences.

150.00+] 150.00

R category

100.00+

Mean Geon_Sim

50.00+

0.00

T T T 0.00 T T
High Med Low High Med Low

typicality typicality

Figure 5. Typicality effects in 2D Geon Pictionary

Predicting Word Pair Similarities

Using the same similarity metric applied to the 2D geon
representations, we computed the pairwise similarities
between words from the McRae et al. (2005) norms
(different group of subjects than produced the typicality
data). These pairwise similarities were then entered into a
hierarchical regression to predict similarities between words
in WordNet using the JCN metric; JCN has been shown to
give the best approximation to human judgments of
semantic similarity between words (Jones & Mewhort,
2007). Included in the regression was cosine similarity from
the McRae norms and pointwise mutual information (PMI)
between the word pair in the TASA corpus.

Table 1. Hierarchical regression predicting WordNet pairs.

Model R FA Partial R
PMI 158  377.11 158
PMI + McRae 344 1556.27 .096, .305
PMI + McRae + Geon  .358 144.42 .096, .302, .084
all p <.001.
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Figure 6. Similarity structure that is unique to the text, verbal feature, and geon object representations of words.

As Table 1 shows, there is a considerable amount of
redundancy in the three variables when predicting variance
in WordNet similarities. However, each also contains a
significant portion of unique variance not accounted for by
the others. We entered geon similarity to the regression
equation as the last step to stack chance against it. However,
as Table 1 demonstrates, similarity between the geon
representations of the words predicts a significant portion of
variance that is not accounted for by the text-based or verbal
feature measures. Figure 6 shows this structure more
clearly. The MDS plot is arranged so that proximities are
based on similarity from the McRae et al. (2005) norms.
The red lines show strong connections between items found
by their geon similarity that are not seen by the other
metrics. Qualitatively, this includes a considerable amount
of shape structure (e.g., the similarity between pizza and
coin), color (pickle-grasshopper) material (green plants and
wood/metal), symmetry/asymmetry, internal consistency,
etc. This information is important to human semantic
organization, but is neither learned by the text-based models
nor is it well represented in standard verbal feature
generation norms.
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