
The Semantic Pictionary Project 
 

Brent Kievit-Kylar (bkievitk@indiana.edu) 
Cognitive Science Program 

Indiana University, Bloomington, Indiana USA 

Michael N. Jones (jonesmn@indiana.edu) 
Department of Psychological and Brain Sciences  

Indiana University, Bloomington, Indiana USA 
 

 
 

Abstract 
Here we describe the Semantic Pictionary Project—a set of 
online games and tools designed to collect large amounts of 
structured data about the object characteristics and perceptual 
properties of word referents. The project hinges on the use of 
encoding-decoding games and a set of creation tools to 
capture data using online crowdsourcing. We describe the 
architecture of the basic tools behind the games, the structure 
of the resulting data, and how this information may be 
integrated into existing statistical semantic models. We also 
describe two validations using data collected from one of the 
tools (2D Geon Pictionary) demonstrating typicality effects in 
the metrics of raw Geon objects created by subjects, and 
unique variance in the predictions of word pair metrics over 
currently used linguistic and property data.  

Keywords: Geon; natural language processing; 
crowdsourcing; semantic space models; embodied cognition. 

 Introduction 
Humans learn about the meanings of words and larger 
discourse units from repeated experience with both 
linguistic and perceptual information. However, current 
models of lexical semantics focus only on learning from 
linguistic structure using statistical abstraction algorithms. 
Part of the problem is the lack of realistic structured data 
containing information about the perceptual structure of 
word referents. Text is plentiful, but usable object structure 
data currently are not. Given the ideological movement 
towards models of embodied lexical representation, model 
development is currently being held up due to a lack of 
structured human data containing configural object and 
property information about concrete word referents. Here, 
we describe the NSF-funded Semantic Pictionary Project, 
an online approach to the problem of data capture that 
makes use of the paradigms of crowdsourcing and online 
gaming to gather data containing the perceptual structure of 
word referents. The online games may be played at 
www.SemanticPictionary.org.  
     Statistical semantic models (SSMs; e.g., Landauer & 
Dumais, 1997) have recently been attacked as implausible 
cognitive models because they learn from only linguistic 
information and are not grounded in perception and action, 
contrary to the literature on embodied cognition, and this 
limits their ability to account for human behavior on 
semantic tasks (for a review of the debate, see de Vega, 
Graesser, & Glenberg, 2008). The inadequacy of SSMs as 
cognitive models punctuates the current movement in 
cognitive science towards models of embodied cognition. 
There is a growing body of both behavioral and 

neuroimaging research demonstrating that when humans 
process words (in isolation or in context) they automatically 
activate sensorimotor information about the perceptual 
features of the word’s referent, how it is commonly used, 
and physical contexts in which it has been experienced (for 
a review, see Riordan & Jones, 2010). A large number of 
behavioral experiments also demonstrate convincing 
evidence that sensorimotor experience becomes an 
inseparable part of a word’s lexical representation, including 
information about object features (color, shape, motion, 
etc.). Perceptual information is an inherent part of the 
semantic organization of the human lexicon, but much of 
this information cannot be learned from statistics in a text 
corpus—it must be learned from multisensory experience.  

Perceptually grounded SSMs are now emerging in the 
cognitive science literature (e.g., Andrews, Vigliocco, & 
Vinson, 2009; Recchia & Jones, 2010; Steyvers, 2010). As a 
proxy for sensorimotor perception, these new integrative 
models use norms of human-generated properties (e.g., 
McRae et al., 2005). These norms are collected by asking 
hundreds of subjects to produce the physical properties 
(internal and external parts), appearance, sounds, smells, 
tastes, functional properties, categorical membership, etc. 
for concrete nouns and event verbs based on multisensory 
experience. A property vector for a word is then created by 
aggregating across subjects. For example, the property 
<has_4_legs> will have a high probability for dog and cow, 
but a low probability for centipede, and a zero probability 
for strawberry. However, <is_red> is a highly salient 
property of strawberry and not for dog. 

The development of perceptually grounded SSMs is 
currently being held up by a lack of data. The overall goal of 
the Semantic Pictionary Project is to collect large amounts 
of object and property data online using a combination of 
crowdsourcing and our new encoding-decoding games, and 
to make the large datasets available to researchers to 
develop superior grounded semantic models.  

 
The Semantic Pictionary Paradigm 
The Semantic Pictionary paradigm is a two-stage task with 
self-correction built in. In the first stage, subjects are 
presented with a target word selected from the high-
concreteness/early-AoA nouns from the MRC 
Psycholinguistic Database. Subjects are then provided a tool 
to make a representation of this noun, with the goal of 
making a depiction such that another subject could guess 
what word is being represented (similar to the popular 
Pictionary game). That representation is then given to a 
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different subject to attempt to recover the initial label. 
Success at recovering the initial label is in indication of a 
valid and meaningful encoding by the first subject. The data 
created by this paradigm can then be used in various 
modeling applications. 
    Words can be encoded in a variety of ways. The goal is to 
build a symbolic representation of the word’s referent in a 
constrained domain. Example domains could be other 
words, physical shape, smell, or sound. In each domain, a 
specially constructed tool is used by subjects to generate the 
feature set representing that word, and the feature set can 
then be given to a different set of subjects to verify. 
 
Crowdsourcing 
Crowdsourcing is a paradigm that has recently emerged to 
use aggregate groups of humans to solve problems online 
that are impossible for computers to currently solve. 
Crowdsourcing takes advantage of crowd wisdom 
(Surowiecki, 2004) to capture data that only humans can 
currently produce at a massive scale. GWAPs (“games with 
a purpose”) take advantage of crowdsourcing and the 
amount of human computation currently wasted on online 
games to capture data for practical purposes. For example, 
humans spend approximately 10 billion hours each year 
playing solitaire online. Facebook’s Farmville game allows 
users to grow virtual crops and form social relations with 
other players online—Farmville sees about 68 million users 
each day. GWAPs harness the power of human computation 
for data labeling using an entertaining game.  The original 
GWAP was called the “ESP Game” (von Ahn, 2006; now 
the “Google Image Labeler”). The ESP game used online 
human computation to solve the problem of labeling images 
and image components on the web. All of the Semantic 
Pictionary GWAPs are available online and are also linked 
to social media sites such as Facebook to collect massive 
amounts of structural data with crowdsourcing.  
 
Semantic Pictionary Games 
There are two broad classes of data representation games we 
employ: Property Pictionary and Geon Pictionary. Property 
Pictionary is a class of games in which the subject encodes 
the target as a set of constrained verbal features that 
describe it. Property Pictionary can be thought of as an 
online crowdsourcing version of McRae et al.’s (2005) 
feature generation task (originally collected in the 
laboratory), with the addition of a decoding phase in which 
different subjects attempt to guess the target word given a 
generated feature vector. Geon Pictionary is purely 
nonverbal. When presented with a target word to encode, 
the subject uses an editor to create an object model the 
referent using a constrained set of Geons (Biederman, 1987) 
in either two- or three-dimensional space. The Geon object 
constructed from a target word is then provided to different 
subjects to guess the target word given the image.  
    The two classes of games were selected to compliment 
information learned well by corpus-based models. Geon 
Pictionary collects information about object structure, color, 

viewpoint variance, component connectivity, etc. that do not 
seem to be possible to mine from language (see Riordan & 
Jones, 2011). Property Pictionary capitalizes on verbal 
feature generation to produce high-level descriptions of 
words including physical properties (internal and external 
parts), appearance, sounds, smells, tastes, functional 
properties, categorical membership, affordances, etc. not 
captured by the low-level Geon shape descriptions or the 
distributional structure of natural language. 
    In the following sections, we briefly describe the 
architectures of each of these GWAP tools as well as the 
structure of the data they collect and how it may be 
integrated into existing statistical semantic models. Then we 
turn to an analysis of data collected through the 2D Geon 
Pictionary game. We demonstrate that the information 
captured by the game can reproduce standard semantic 
typicality effects, and contains unique variance in semantic 
similarity used by humans but that is currently missing from 
linguistic structure and verbal properties.  

Property Pictionary 
Property production norms have proven extremely valuable 
in a variety of semantic experiments, and in cognitive 
models of semantic representation and processing. 
However, these databases are currently limited to a few 
hundred concepts. By taking lessons from McRae et al.’s 
(2005) original study and string normalizations, a 
crowdsourcing GWAP can potentially produce a database 
like McRae’s spanning thousands of words in 1-2 years. In 
addition, we will have “goodness of transmission” values 
for features from the encoding/decoding paradigm that were 
not possible in McRae’s original lab-collected database. 
Verbally coded features contain perception and action 
information at a higher level than the Geon shape 
description, and both are needed to evaluate perceptual 
integration in SSMs.  
    In Property Pictionary, subjects are assigned to be 
encoders or decoders. In the encoding phase, the subject is 
presented with a target word (e.g., DOG) and is asked to 
generate N descriptive features such that a decoder could 
guess the target word from the features. Subjects gain points 
as encoders the more people who can correctly guess the 
target word from their feature encoding. When a certain 
number of words have been encoded, subjects then progress 
to the decoding phase, guessing the target word that is 
represented by the feature encoding produced by another 
encoder for a different word. In this fashion, we are able to 
quantify the diagnosticity of produced features. An 
encoding of DOG = [+has_wings, +is_made_of_metal, ...] 
will not only be very infrequent, but will also have a very 
low probability of anyone else guessing the target word 
given this encoded pattern.  
    We have conducted pilot tests of Property Pictionary 
using both traditional psychology subject pool players, and 
using subjects via Amazon’s Mechanical Turk 
crowdsourcing site. In the pilot collection phase, we used 
the same concrete nouns in McRae et al.’s (2005) original 
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laboratory study, and built interactive checks at the input 
phase that originally had taken a significant portion of time 
to manually recode after data collection in McRae et al.’s 
norms. For example, if a subject typed in “has four legs” or 
“is four legged” the input system would remap in real-time 
by suggesting the equivalent recoded label, e.g., “do you 
mean <has_4_legs> ?”   
    The details of the Property Pictionary pilot norms have 
been described elsewhere (Recchia & Jones, 2011), so we 
will just briefly summarize here. The online Property 
Pictionary version of the feature norms was remarkably well 
correlated with the original McRae et al. (2005) laboratory-
collected norms. The verbal features generated by our online 
subjects were very similar to those generated by McRae et 
al.’s subjects in the laboratory setting. The correlations 
between words’ feature vectors in the online version and 
McRae et al.’s original database produced a mean 
correlation .83 (SD = .08). In addition, the semantic 
similarity among words in each of the norms were highly 
correlated. If one creates a word-by-word correlation matrix 
within each of the norms and then computes the correlations 
between rows of the two matrices, the mean correlation is 
.96 (SD = .03). The online version of the norms also had 
high similarities to other production characteristics of the 
original norms; e.g., # of features, # of distinguishing 
features, # of visual-motor/forms, # of tactile features, etc. 
The remainder of this paper will focus on validating the 
Geon Pictionary data.   

Geon Pictionary 
Geon Pictionary games require the subject to produce an 
object image representing the referent of the target word 
using a constrained set of components and attachments. If 
given DOG as a target word, the subject essentially draws a 
picture of a dog by selecting from a set of primitive geons, 
adjusting shape, color, orientation, size, and attachment 
structure of the components using our geon editor. This 
image is then provided to a second subject to guess at what 
target word the encoder is representing with the image. The 
system is designed such that we maximize the potential 
representable objects while at the same time having a 
compact and constrained enough description that 
meaningful comparisons can be made between objects. The 
data structure of the resulting image is stored as a tree-based 
representation of object configurations and properties, and 
we have several similarity algorithms available to determine 
the similarity among geon objects. The tree-based object is 
represented as a phrase structure grammar, so the visual 
object may be recoded to a text-based sentence. This allows 
corpus-based models to integrate the statistical information 
from the visual object while bypassing the problem of 
providing the models with vision.  
    The Semantic Pictionary website has two- and three-
dimensional versions of the Geon Pictionary game. The 
three-dimensional version is necessarily tree attachment 
based (to preserve the object structure as viewpoint is 
rotated). The two-dimensional version has two versions. The 

tree-based version requires that geons be attached to one 
another at specified attachment points to construct a 
hierarchical tree-based representation and phrase grammar. 
The ‘no-tree’ version is unconstrained with regards to 
attachment points between geons—this allows much faster 
production of images, but object similarities are reliant on 
vector superposition since the object representation is flat 
rather than hierarchically structured. We next describe the 
three-dimensional version of Geon Pictionary in detail, and 
then the restricted two-dimensional versions more briefly.   
 
Three-Dimensional Geon Pictionary 
A final object generated with the 3D Geon Pictionary tool is 
a tree of Geon objects with properties and their connection 
or attachment constraints. Each Geon has the following 
properties: 
 

Geon Type: Chosen from (cube, sphere, cyliner, cone, 
handle). 
 

Size: Scaling in the X, Y and Z axis in set increments (from 
50% to 350% of one unit in steps of 1%). 
 

Rotation: Rotation around the X, Y and then Z planes in set 
increments (from 0 to 6 radians in steps of .01 radians) 
 

Color: Chosen from a reduced color set (original MSPaint)  
 
The first Geon is set as the root of the model and each Geon 
added is then attached to the root at specified attachment 
points. An attachment point is defined as a pair of points, 
one defining the location on the parent and one the location 
on the child. The child is then moved such that these two 
attachment points are aligned in the same three-dimensional 
point. The points defining potential attachments are the 27 
points formed by a bounding rectangle around the Geon (3 
potential values for the X, Y and Z axis). 
 
 

 

 
 

Figure 1. The build interface of the 3D Geon tool. 
 
    The basic web interface is shown in Figure 1. The 3D 
rendering is done with an in-lab developed 3D rendering 
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tool so no external libraries are required (this greatly 
facilitates web distribution). The model can be rotated by 
dragging the mouse in the X or Y plane. Particular Geons 
can be selected by clicking on them and deselected by a 
second click. The rendering window is also used in moving 
Geons to new parent nodes. Controls allow the subject to 
manipulate the color, scaling, rotation, and geon type of a 
selected object or group of objects.  
    Geons may be added to existing Geons (at default 
connections points). Connected Geons can also manage 
their attachment points. Since each Geon (except the root) 
has exactly one parent, but may have multiple children, we 
decided to show and let the subjects manipulate the 
connection between the selected node and its parent. 
Selecting appropriate attachment points is the most difficult 
task for subjects and to facilitate this we have provided two 
manipulation techniques. The connection can be modified 
by use of either radio buttons representing the connection in 
the X, Y and Z axis, or by selecting the point by clicking on 
the appropriate location on a 3D wireframe model of a cube 
that shares its orientation with the Geon on the rendering 
screen. Figure 2 shows a rendered object and the attachment 
point cubes. 
 

  
 

Figure 2. A rendered object and attachment point cubes. 
 
The web environment is written in php and provides three 
paths of interface, Amazon's Mechanical Turk, Facebook 
application, and our own web domain 
www.SemanticPictionary.org. The php code provides a 
login system to manage users, a set of written and video 
instructions on how to use the Geon tools, the actual 
building interface, the identification interface and a scoring 
system.     
 
Two-Dimensional Geon Pictionary 
The two dimensional version of Geon Pictionary tool is 
designed to have a very similar look and feel to its three 
dimensional equivalent. There are two primary differences 
between these two tools. The first is that whereas the three 
dimensional system only allows subjects to select stepped 
values for rotation and scale, the two dimensional system 
allows arbitrary values. The connection interface for the two 
dimensional system also allows subjects to click and drag 
Geons (and all descendents) and will automatically select 
the attachment point that would most closely represent the 
released location, which makes object production much 
faster. In addition to the tree-based version of the 2D game, 
there is also a freeform no-tree version. In this version, the 

tree structure requirement has been removed. Primitive 
instances can be added to the scene in arbitrary locations. 
While this version makes it faster for the subject to produce 
an object, the resulting data structure is flat and requires 
different types of similarity algorithms to analyze.  
 
 

  
 

Figure 3. 2D Geon Pictionary click-and-drag interface. 
 

Encoding, Decoding, and Extrapolation 
For storage and transfer, models are encoded in a simple 
shorthand coding. In this coding, key symbols are used to 
describe the tree structure and properties of instances. This 
encoding is short and easy to transfer between systems. The 
model is decomposed into a text-based encoding through a 
simple rule set. Each primitive instance can be decomposed 
into a sentence unit of the following form: 
    [SENTENCE] = An [OBJECT] made up of a [ROOT 
OBJECT DESCRIPTION] [OBJECT DESCRIPTION] = 
[COLOR], [SCALE], [GEON] rotated [ROTATION] whose 
[CHILD ATTACHMENT POINT] is attached to the 
[PARENT ATTACHMENT POINT] of a [CHILD OBJECT 
DESCRIPTION] and a [CHILD OBJECT DESCRIPTION] 
... 
 
 

 

A horse is made up of a brown, wide, Cube whose left, 
top, front, is attached to the top, of a brown, narrow, 
shallow, Cylinder whose right, top, front, is attached to 
the top, of a brown, narrow, shallow, Cylinder whose 
left, top, back, is attached to the top, of a brown, narrow, 
shallow, Cylinder whose right, top, back, is attached to 
the top, of a brown, narrow, shallow, Cylinder whose 
right, bottom, is attached to the bottom, of a brown, 
narrow, shallow, Cylinder whose center, is attached to 
the bottom, of a brown, wide, Sphere 

 
Figure 4. An example of a horse model converted to natural 

text description. 
 
Vector Encoding of Object Structure 
Though the models can be decomposed into natural 
language and read by any natural language engine, purpose 
built translators for particular NLP models are likely to 
improve performance. We next describe an encoding 
algorithm for the BEAGLE semantic model (Jones & 
Mewhort, 2007) to make use of the Geon models directly. 
    BEAGLE uses a set of two holographic vectors to 
represent each word in a language. The first vector is the 
environmental vector; this is the static representation of the 
word in the universe (sampled from a Gaussian 
distribution). The second vector is the lexical vector, which 
stores the relational information learned by the system 
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through interaction with the corpus. After learning, word 
relations can be extracted though holographic operations on 
sets of vectors such as cosine for similarity. Algorithms may 
then be applied to convert a model into a single holographic 
vector usable by the BEAGLE model. 
    Each property value (color, scale, Geon type, rotation, 
attachment points) is assigned a randomly generated 
permutation of dimension equivalent to the language model. 
After these are assigned, they will remain constant 
throughout all encodings. A primitive instance is then 
encoded as the point-wise sum of the relevant property 
vectors. Property vectors will be calculated in two different 
ways depending on whether the property is continuous or 
drawn from a small set. For those drawn from a small set 
such as Geon type, attachment point and possibly color, the 
property vector will simply be the natural language 
environmental vector for that word. This is useful since 
those environmental vectors will already have relational 
meaning from previous or post experience with 
supplemental corpora (we would expect most of the color 
names and many of the shape names to occur in common 
English text). 
    Those values from continuous sets such as scale and 
rotation can be encoded with frequency-encoded vectors 
where vector values are chosen from a distribution 
reflecting the value of the property (higher values for 
example, may shift a distribution). A model vector can then 
be calculated from the vectors for each of its primitive 
instances. To do this, each child is permuted by a static 
random permutation and then added point-wise to its parent 
representation. 

Information Structure in 2D Geon Pictionary 
We assess the structure contained in 2D geon 
representations constructed by groups of subjects in two 
tasks. In the first task, subjects were asked to generate geon 
representations of the concrete nouns from Rosch’s (1975) 
study of semantic typicality. In studies of typicality effects, 
stimuli are normally words. Here, we evaluate the structure 
of the geon representations of those words using the above 
described similarity algorithm applied to the geons. In the 
second task, we had subjects produce geon representations 
for words from the original McRae et al. (2005) norms, and 
we assess the information contained in the geon 
representations of those words compared to the McRae et al. 
feature vectors and a corpus-based co-occurrence metric.  
 
Semantic Typicality Effects 
Figure 5 shows the similarity structure among words from 
Rosch’s (1975) high, medium, and low typicality 
conditions. In verification experiments, subjects are 
typically faster to verify that two high typicality exemplars 
are members of the same category (e.g., robin-sparrow) 
than medium (hawk-chicken) or low (penguin-ostrich) 
typicality exemplars. To compute similarity between geons 
in Figure 5, each possible color, shape, rotation and scale is 
assigned a random Gaussian vector (these values could be 

taken from a learned training run on a corpus). The vector 
representation for a given geon is simply the sum of the part 
vectors. The tree's holographic vector is then the root 
instances holographic vector added to the holographic 
vector of its children with a present random permutation 
added at each level. As is shown in Figure 5, members of a 
semantic category that are rated as being more typical 
exemplars tend to look more like one another in their geon 
encodings as well. This effect is stable over all typicality 
bins (right panel), but also the individual categories (left 
panel). These results suggest that at least part of typicality 
structure can be encoded in how subjects describe word 
referents using our Geons, and this information would be 
represented in our natural language or vector representations 
as unique variance to be used to enrich statistical semantic 
models that typically only have linguistic structure from 
which to make inferences. 
 

 

 
 
Predicting Word Pair Similarities 
Using the same similarity metric applied to the 2D geon 
representations, we computed the pairwise similarities 
between words from the McRae et al. (2005) norms 
(different group of subjects than produced the typicality 
data). These pairwise similarities were then entered into a 
hierarchical regression to predict similarities between words 
in WordNet using the JCN metric; JCN has been shown to 
give the best approximation to human judgments of 
semantic similarity between words (Jones & Mewhort, 
2007). Included in the regression was cosine similarity from 
the McRae norms and pointwise mutual information (PMI) 
between the word pair in the TASA corpus.  
 
Table 1. Hierarchical regression predicting WordNet pairs. 
 

Model R F Δ Partial R 
PMI .158 377.11 .158 
PMI + McRae .344 1556.27 .096, .305 
PMI + McRae + Geon .358 144.42 .096, .302, .084 

all p < .001. 

Figure 5. Typicality effects in 2D Geon Pictionary 
Pictionary 
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Figure 6. Similarity structure that is unique to the text, verbal feature, and geon object representations of words. 
 

 
As Table 1 shows, there is a considerable amount of 
redundancy in the three variables when predicting variance 
in WordNet similarities. However, each also contains a 
significant portion of unique variance not accounted for by 
the others. We entered geon similarity to the regression 
equation as the last step to stack chance against it. However, 
as Table 1 demonstrates, similarity between the geon 
representations of the words predicts a significant portion of 
variance that is not accounted for by the text-based or verbal 
feature measures. Figure 6 shows this structure more 
clearly. The MDS plot is arranged so that proximities are 
based on similarity from the McRae et al. (2005) norms. 
The red lines show strong connections between items found 
by their geon similarity that are not seen by the other 
metrics. Qualitatively, this includes a considerable amount 
of shape structure (e.g., the similarity between pizza and 
coin), color (pickle-grasshopper) material (green plants and 
wood/metal), symmetry/asymmetry, internal consistency, 
etc. This information is important to human semantic 
organization, but is neither learned by the text-based models 
nor is it well represented in standard verbal feature 
generation norms.   
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