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Abstract 

Behavioral, neuroimaging, and lesion analysis data suggest 
two parallel semantic systems. One system, with anterior 
temporal lobe as critical hub, captures taxonomic relations 
based on feature overlap. A second system, with temporo-
parietal junction as critical hub, captures thematic relations 
based on complementary roles in events. We describe a 
computational model of this theory that accounted for a one-
way behavioral dissociation in aphasic picture naming errors 
(more taxonomic errors than thematic errors) and a 
neuroanatomical double dissociation (damaging feature 
representations led to relatively more taxonomic errors, 
damaging event representations led to relatively more 
thematic errors). The model also predicted that both 
taxonomic and thematic competitors should be automatically 
activated during single word processing, with taxonomic 
competitors activated more quickly and more strongly. These 
predictions were tested and confirmed in a spoken word 
comprehension experiment using eye tracking to assess the 
time course of competitor activation. 

Keywords: semantic knowledge; taxonomic relations; 
thematic relations; event processing; computational modeling; 
spoken word processing. 

Introduction 
A core question in cognitive science is how semantic 
knowledge is represented. The study of semantic knowledge 
is typically intertwined with the study of feature-based or 
hierarchical conceptual categories. Feature-based accounts 
can explain a very broad range of phenomena (e.g., Rogers 
& McClelland, 2004) and are particularly effective in 
capturing the categorical, or taxonomic, structure of 
conceptual knowledge (e.g., Rogers & McClelland, 2004; 
O’Connor, Cree, & McRae, 2009). However, thematic 
conceptual knowledge – the grouping of concepts by 
participation in the same scenario or event (e.g., Estes, 
Galonka, & Jones, 2011) – is not as well captured by 
traditional feature-based accounts. On feature-based 
accounts, semantic similarity is a function of feature overlap 
(e.g., Cree, McRae, & McNorgan, 1999; Mirman & 
Magnuson, 2009; Rogers & McClelland, 2004), but 
thematically related objects typically share few, if any, 
features. Rather, they have complementary features that are 
related to the complementary roles the objects play in 
events. 

There is a long history of behavioral studies 
demonstrating that thematic knowledge plays an important 
role in adult conceptual knowledge (e.g., Goldwater, 

Markman, & Stilwell, 2011; Hare et al., 2009; Lin & 
Murphy, 2001; for a review, see Estes et al., 2011). One 
recent study used voxel-based lesion-symptom mapping 
(VLSM) to examine the neural basis of taxonomic and 
thematic processing (Schwartz et al., in press). Schwartz et 
al. analyzed picture-naming errors generated by a large 
sample of individuals with left hemisphere stroke aphasia 
(N=86), distinguishing between taxonomic errors (e.g., 
apple named as “pear” or “grape”) and thematic errors (e.g., 
apple named as “worm” or dog named as “bone”). 
Taxonomic errors were defined as category coordinates, 
superordinates, or subordinates; thematic errors were 
defined as incorrect responses which come from a different 
category but frequently play a complementary role with the 
target in events. The behavioral results showed a single 
dissociation: there were far more taxonomic errors than 
thematic errors (approximately 5:1 ratio) and all but two 
patients made more taxonomic errors than thematic errors. 
However, the lesion analysis revealed a neuroanatomical 
double dissociation in the relative proportion of taxonomic 
to thematic errors. Patients with lesions affecting the left 
anterior temporal lobe (ATL; Brodmann area 38 and the 
anterior portions of BA 20 and 21) tended to produce a 
higher proportion of taxonomic errors relative to thematic 
errors. In contrast, patients with lesions affecting the left 
temporo-parietal junction (TPJ; BA 39, posterior BA 21 and 
22, superior BA 37, and BA 41 and 42) tended to produce a 
higher proportion of thematic errors relative to taxonomic 
errors.  

The ATL effect is consistent with previous studies 
demonstrating its critical role in lexical-semantic processing 
(e.g., Hodges, Graham, & Patterson, 1995; Lambon Ralph et 
al., 2001; Patterson, Nestor, & Rogers, 2007; Schwartz et 
al., 2009). The TPJ effect makes contact with studies 
suggesting an important role for TPJ in thematic relations 
(e.g., Kalenine et al., 2009) and relational knowledge more 
generally (e.g., Wu, Waller, & Chatterjee, 2007; for a recent 
comprehensive review of neuroimaging studies of semantic 
representations see Binder et al., 2009). 

Our first goal was to develop a formal computational 
model of these complementary semantic systems that can 
account for the neuroanatomical double dissociation as well 
as the one-way behavioral dissociation. Our model is related 
to previous work by Plaut (1995), who distinguished 
between semantic relatedness based on semantic feature 
overlap and semantic association based on temporal co-
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occurrence to account for differences between associative 
and semantic priming effects in visual word recognition. We 
tested whether this distinction, combined with an explicit 
event representation, can capture both the one-way 
behavioral dissociation and the neuroanatomical double 
dissociation.  

Like previous models of related phenomena (e.g., Plaut, 
1995), our model predicts that thematically-related concepts 
are automatically activated during single word processing 
even when such activation is not required by task demands. 
This prediction is consistent with recent priming studies that 
demonstrate fast activation of event-based relations (e.g., 
Hare et al., 2009). We further tested this prediction in a 
spoken word-to-picture matching task with eye tracking to 
examine the time course of taxonomic and thematic 
competition. 

Computational Model 
The model follows in the parallel distributed processing 
tradition of modeling cognition as the bidirectional, graded, 
and nonlinear interactions among many simple processing 
units. Each unit is associated with an activation state, which 
is determined by the strength of its input and a sigmoid 
activation function. Units interact through weighted 
connections and the weights are learned over the course of 
training. The structure of the model was based on three core 
principles: (1) Taxonomic structure: individual concepts are 
represented by sets of semantic features, which tend to be 
shared by concepts within a category. (2) Thematic/event 
structure: normal word production is situated in an event or 
sentence context, which imposes regularities on which 
objects will co-occur. (3) Distinct representation of event 
information and semantic feature information based on the 
neuroanatomical and psychological evidence. 

Figure 1. Architecture of the model. 

Model Architecture 
The model had 4 groups of units representing Semantic 
Features, Events, Lexical Semantics, and the Output 
Lexicon. The architecture of the model is shown in Figure 1. 
The arrows indicate full connectivity between layers (and 
fully recurrent connections between units in the Lexical 

Semantics layer). Since the model was primarily designed to 
capture word production data, external input was provided 
to the Semantic Features and Event layers. Conceptually, 
the model was trained to perform a simplified analog of 
event description: there was a constant event input (i.e., the 
model is describing a single, ongoing event), a sequence of 
individual concept representations chosen (input) for 
production, and a corresponding sequence of target word 
outputs. The model was tested on picture naming by 
presenting input to the Semantic Features layer and 
evaluating the Output Lexicon activations. The simulations 
were conducted in LENS: 
(www.stanford.edu/group/mbc/LENSManual/index.html). 

Representations 
The Output Lexicon was a localist representation of 16 
words where each unit represented a unique concept name. 
The 16 concepts were divided into 4 categories, each with 4 
category members. The 32 units in the Semantic Features 
layer were divided into 4 sets of 8 units, with each set 
representing the possible features for a single category. For 
each concept there were 2 category coordinates that shared 
50% of the object’s features and the remaining category 
coordinate shared 0% of the object’s features. Across 
categories, concepts shared 0% of their features. 

The 8 units in the Event group represented four general 
event types (e.g., eating) with two directions for each event 
that implicitly specify the roles of the two event participants 
(e.g., “eats” vs. “is eaten by”). Each event involved two 
participants from a set of four possible concepts (one from 
each category). 

Model Training 
The model was trained on a simplified analog of sentence 
production. All of the sentences consisted of two concept 
names produced in a particular sequence that coincided with 
semantic feature input that changed from concept to concept 
and constant event representation input. At the start of each 
training trial, activations for all units were initialized to a 
small value (0.2), with a default soft-clamp (clamp strength: 
0.2) at a value of 0.0. When groups received external input, 
their clamp strength was changed to 0.8. First, one event 
unit was soft-clamped to a value of 1.0, then the semantic 
features corresponding to the first concept in the sentence 
were also soft-clamped to a value of 1.0. Once these inputs 
were set, activation was allowed to propagate through the 
network for up to 10 time ticks with target activations 
defined for the output lexicon and semantic features layers. 
This corresponded to the production of the first word in the 
sentence. At the end of those 10 ticks, or if all activations 
were within 0.5 of their targets, all targets were removed 
and new external inputs for the semantic features layer were 
set, corresponding to the second concept in the sentence. 
Activation was again allowed to propagate through the 
network for up to 10 ticks with target activations defined for 
the semantic features and output lexicon. The connection 
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weights were updated after each training trial (i.e., 
production of each two-word sentence) using the error back-
propagation through time algorithm (Pearlmutter, 1995) 
with learning rate set to 0.1 and momentum set to 0.9. 

There were 32 possible example sentences: 4 event types 
with 4 possible first concepts and 2 possible second 
concepts. The model was trained for 5000 trials, at which 
point cross-entropy error had approached an asymptotic 
minimum.  

Model Testing 
The critical model test was an analog of the picture naming 
task. External inputs specifying a single concept were hard-
clamped to the semantic features units and no external input 
was provided to the event layer. Output lexicon activations 
were recorded for 20 ticks. No weight changes occurred on 
test trials. To compute a model analog of picture naming 
response, we considered the cumulative activation received 
by each word type (target, taxonomic competitor, and 
thematic competitor) over the first 15 ticks of processing 
(since at that point the target word was no longer the most 
active output unit). These summed activations were then 
normalized to compute a proportion of activation received 
by each response type. ATL lesions were modeled by 
removing 20% of the connections between the semantic 
features layer and the lexical semantics layer; TPJ lesions 
were modeled by removing 50% of the connections between 
the event layer and the lexical semantics layer. 

Results and Discussion 
The simulations were repeated for 20 models, using 
different random starting weights and different random 
lesions. Figure 2 shows the average activation patterns for 
the target word, its taxonomic competitors, and its thematic 
(event) competitors for the fully trained control (unlesioned) 
model (left panel), following a lesion disrupting 
communication between event representations and lexical 
semantics (i.e., a TPJ lesion, middle panel), and following a 
lesion disrupting communication between semantic features 
and lexical semantics (i.e., an ATL lesion, right panel). The 

target word was by far the most active word, indicating that 
although the model was trained to perform two-word 
sentence production, it was quite capable of performing 
single word production without an event context (i.e., no 
event input). This was true even after damage, indicating 
that our lesion implementation did not eliminate naming 
performance. Critically, both taxonomic and thematic 
competitors were activated, though with somewhat different 
time courses. Taxonomic competitors were strongly 
activated early in concept processing, but this activation was 
transient, peaking well before the target activation reached 
its peak (for a similar time course in spoken word 
recognition, and its implications, see Mirman & Magnuson, 
2009). In contrast, thematic competitors were initially 
weakly activated and the activation grew steadily late into 
the course of the trial. This pattern arose because the model 
was trained to produce thematically-grouped two-word 
sequences, so even in single word production there was a 
residual tendency to prepare to produce a thematically 
related word. 

Table 1 shows the normalized summed (over the first 15 
time ticks) activation for the taxonomic and thematic 
competitors for each of the three conditions. The one-way 
behavioral dissociation is very clear: normalized summed 
activation for the taxonomic competitors is substantially 
higher than for the thematic competitors in all three model 
tests. The model also exhibits the neuroanatomical double 
dissociation: the event lesion increases the normalized 
summed activation for the thematic competitors much more 
than for the taxonomic competitors, and the semantic 
features lesion increases the normalized summed activation 
for the taxonomic competitors much more than for the 
thematic competitors. 

A simple model trained to produce two-word sequences 
based on a stable event representation and a sequential 
semantic feature-based representation of individual concepts 
was able to perform single word production. Importantly, 
the model captured both of the key data patterns from the 
picture naming VLSM study (Schwartz et al., in press). 
There was a one-way behavioral dissociation such that 

 
Figure 2. Average activation for target word (circles), taxonomically related words (triangles), and thematically related words 
(squares) in the trained unlesioned model and two lesion models. 
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activation of taxonomic responses was higher than 
activation of thematic  responses and a neuroanatomical 
double dissociation such that damage to semantic feature 
representations produced increased activation of taxonomic 
responses relative to thematic responses and damage to 
event representations produced increased activation of 
thematic responses relative to taxonomic responses. 
 
Table 1. Normalized summed activations for targets, 
taxonomically related competitors, and thematically related 
competitors for each of the three models.  

Model Targets Taxonomic 
Competitors 

Thematic 
Competitors 

Control 0.703 0.158 0.139 
Event Lesion 0.687 0.159 0.154 
Sem. Feat. Lesion 0.661 0.181 0.158 

Experiment 
This experiment was designed to test two behavioral 
predictions from the simulations reported above: (1) 
taxonomic and thematic competitors are both activated 
automatically during single word processing, even when the 
task demands do not require it, and (2) taxonomic 
competitors are activated more quickly and more strongly 
than thematic competitors. These predictions were tested in 
the domain of spoken word comprehension using the “visual 
world paradigm” (VWP). In a typical VWP experiment, 4 
pictures of objects are shown and the participant is 
instructed to select a named target object. Previous studies 
using this paradigm have shown that participants are more 
likely to look at pictures of objects that are semantically 
related to the target than at unrelated objects (e.g., Huettig & 
Altmann, 2005; Mirman & Magnuson, 2009; Yee & Sedivy, 
2006), though not at objects that are only related by lexical 
co-occurrence with no semantic relationship (Yee, Overton, 
& Thompson-Schill, 2009). The present study specifically 
distinguished taxonomic semantic similarity and thematic 
semantic similarity. 

Methods 

Participants. Fifteen older adult participants (53% females; 
27% African American) completed the study. They were 
selected to be approximately the same age and education 
level as the aphasic participants in the VLSM study 
(Schwartz et al., in press). Their mean age was 63 (range: 
42-72) and mean years of education was 15 (range: 12-20). 
All participants had English as their native language and no 
major psychiatric or neurologic co-morbidities. Mean score 
on the Mini-Mental State Exam was 29 (range: 26-30). 
Participants were paid for their participation and reimbursed 
for travel and related expenses. 

Materials. A normed set of 260 color line drawings of 
common objects (Rossion & Pourtois, 2004) was used for 
the picture stimuli. Images had a maximum size of 200 x 
200 pixels and were scaled such that at least one dimension 

was 200 pixels. Critical pairs were selected on the basis of 
sharing a semantic category (taxonomically related) or 
frequently participating in an event (thematic relation). 
Target and competitor words were matched on word 
frequency, familiarity, length, and neighborhood density 
across the two conditions (all p > 0.15). Stimulus words 
were recorded by a native English speaker at 44.1kHz. The 
individual words were edited to eliminate silence at the 
beginning and end of each sound file. 

Apparatus. Participants were seated approximately 24 
inches away from a 17-inch monitor with the resolution set 
to 1024x768 dpi.  Stimuli were presented using E-Prime 
Professional 2.0 experimental design software.  Responses 
were recorded using a mouse.  During the testing session, a 
remote Eyelink 1000 eye tracker was used to record 
participants’ left eye gaze position at 250 Hz. 

Procedure. Each trial was initiated by the participant by 
clicking on a plus sign (+) in the center of the screen, which 
caused a four-image display to appear with each image near 
one of the screen corners. The position of the four pictures 
was randomized. The display was presented for a 1300ms 
preview to allow for initial fixations that are driven by 
visual salience rather than word processing. During the last 
300ms of the preview, a red circle appeared in the center of 
the screen in order to drive the attention back to the neutral 
central location. After the 1300ms preview, participants 
heard the target word through speakers and had to click on 
the image that corresponded to the target word.  Each 
display contained a target object image, a semantic 
competitor (taxonomic or thematic), and two unrelated 
distractors. There were a total of 70 trials: 10 practice trials 
(on which feedback was provided), 20 trials with taxonomic 
competitors, 20 trials with thematic competitors, and 20 
filler trials where none of the images were related to each 
other. 

Results and Discussion 
Accuracy was very high (> 99% correct in both conditions, 
p > 0.3) and mean response times were approximately 
2000ms from word onset with no difference between 
conditions (Taxonomic: M = 2018, SD = 396; Thematic: M 
= 1959, SD = 496; F < 1, p > 0.3). Only correct response 
trials were included in the fixation analysis. Figure 3 shows 
the time course of fixations to the target, semantically 
related competitor, and unrelated distractors (average of the 
two distractors) from word onset. Participants were more 
likely to fixate semantically related competitors than 
unrelated distractors in both the Taxonomic and Thematic 
conditions.  

To quantify the time course of the semantic competition 
effects we used Growth Curve Analysis (GCA), a multilevel 
regression modeling technique using fourth-order 
orthogonal polynomials (for details see Mirman, Dixon, & 
Magnuson, 2008). The analysis considered semantic 
competitor and unrelated distractor fixations from 500ms   

2214



after target word onset (shortly before the target fixations 
begin to separate from the other conditions, indicating that 
fixations are starting to be driven by linguistic/semantic 
processing) to 1700ms after word onset (at which point 
competition has been mostly resolved and competitor 
fixations are nearly at floor). The GCA results confirmed 
semantic competition in both conditions with statistically 
significant effects of object type (competitor vs. unrelated) 
on the intercept term (overall more fixations to the semantic 
competitor than the unrelated distractor) and on the 
quadratic term (steeper fixation curve rise and fall for the 
semantic competitor than the unrelated distractor), as well as 
other, less relevant, model terms (full GCA results are in 
Table 2). 

Table 2. Growth curve analysis results for semantic 
competition in the two conditions. Parameter estimates are 
for the semantically related competitor relative to the 
unrelated distractor. 

 Thematic Taxonomic 
 Est. t p < Est. t p < 

Intercept 0.036 9.2 0.00001 0.086 12.3 0.00001 
Linear 0.037 1.1 n.s. 0.15 2.9 0.01 
Quadratic -0.084 2.3 0.05 -0.24 10.0 0.00001 
Cubic -0.030 2.2 0.05 0.086 6.2 0.00001 
Quartic 0.033 2.4 0.05 0.04 3.0 0.01 
 

The semantic competition effect was also substantially 
larger and peaked earlier in the Taxonomic condition than in 
the Thematic condition. The Taxonomic competition effect 
peaked approximately 900ms after target word onset and the 
Thematic competition effect peaked approximately 1100ms 
after target word onset. GCA of the full data set examining 
the interaction of object (competitor vs. unrelated) and 
condition (Taxonomic vs. Thematic) revealed a clear 
difference in overall effect size (interaction effect on 

intercept term: Est. = -0.049, t = 4.88, p < 0.0001) and a 
difference in time course (interaction effect on quadratic 
term: Est. = 0.156, t = 3.17, p < 0.01; and on cubic term: 
Est. = -0.116, t = 5.77, p < 0.0001; interaction effects on 
linear and quartic term were not significant). The degree of 
semantic relatedness contributes to the magnitude and time 
course of semantic competition effects (e.g., Mirman & 
Magnuson, 2009), but the current results are also strikingly 
consistent with the simulations reported above. 

In sum, the experiment revealed that thematically and 
taxonomically related competitors are both activated in the 
course of spoken word recognition and suggested that 
taxonomic competitors are activated more quickly and more 
strongly than thematic competitors. These results are 
consistent with the predictions of a computational model, 
which also accounted for behavioral and neuroanatomical 
results from a large-scale study of aphasic picture naming 
errors (Schwartz et al., in press). 

Conclusions 
Based on behavioral, neuroimaging, and VLSM data, 
Schwartz et al. (in press) proposed that there are two parallel 
semantic systems. One system, with ATL as a critical hub, 
captures taxonomic relations based on feature overlap and is 
particularly important for single object processing and 
identification. A second system, with TPJ as a critical hub, 
captures thematic relations based on complementary roles in 
events and is possibly more relevant for relational 
processing (e.g., Wu et al., 2007) and sentence processing. 
We described a computational model that is a concrete 
implementation of this theory. The model accounted for the 
one-way behavioral dissociation in aphasic picture naming 
errors (more taxonomic errors than thematic errors) and the 
neuroanatomical double dissociation (damaging feature 
representations leads to relatively more taxonomic errors, 
damaging event representations leads to relatively more 
thematic errors).  

Figure 3. The average time course of fixation proportions to the target (T),
semantically related competitor (C), and unrelated distractor (U) objects starting
at target word onset. Error bars indicate ±1SE. 
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In addition, the model predicted that both taxonomic and 
thematic competitors should be automatically activated 
during single word processing, with taxonomic competitors 
activated more quickly and more strongly. Results from a 
spoken word comprehension experiment using eye tracking 
to assess the time course of competitor activation were 
consistent with these predictions. 

These results suggest that semantic knowledge is 
represented in two parallel systems – one that is primarily 
sensitive to semantic feature overlap and taxonomic 
relations with ATL as the critical hub, and one that is 
primarily sensitive to event and thematic role relations with 
TPJ as the critical hub. 
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