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Abstract

Behavioral, neuroimaging, and lesion analysis data suggest
two parallel semantic systems. One system, with anterior
temporal lobe as critical hub, captures taxonomic relations
based on feature overlap. A second system, with temporo-
parietal junction as critical hub, captures thematic relations
based on complementary roles in events. We describe a
computational model of this theory that accounted for a one-
way behavioral dissociation in aphasic picture naming errors
(more taxonomic errors than thematic errors) and a
neuroanatomical double dissociation (damaging feature
representations led to relatively more taxonomic errors,
damaging event representations led to relatively more
thematic errors). The model also predicted that both
taxonomic and thematic competitors should be automatically
activated during single word processing, with taxonomic
competitors activated more quickly and more strongly. These
predictions were tested and confirmed in a spoken word
comprehension experiment using eye tracking to assess the
time course of competitor activation.

Keywords: semantic knowledge; taxonomic relations;
thematic relations; event processing; computational modeling;
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Introduction

A core question in cognitive science is how semantic
knowledge is represented. The study of semantic knowledge
is typically intertwined with the study of feature-based or
hierarchical conceptual categories. Feature-based accounts
can explain a very broad range of phenomena (e.g., Rogers
& McClelland, 2004) and are particularly effective in
capturing the categorical, or taxonomic, structure of
conceptual knowledge (e.g., Rogers & McClelland, 2004;
O’Connor, Cree, & McRae, 2009). However, thematic
conceptual knowledge - the grouping of concepts by
participation in the same scenario or event (e.g., Estes,
Galonka, & Jones, 2011) — is not as well captured by
traditional feature-based accounts. On feature-based
accounts, semantic similarity is a function of feature overlap
(e.g., Cree, McRae, & McNorgan, 1999; Mirman &
Magnuson, 2009; Rogers & McClelland, 2004), but
thematically related objects typically share few, if any,
features. Rather, they have complementary features that are
related to the complementary roles the objects play in
events.

There is a long history of behavioral studies
demonstrating that thematic knowledge plays an important
role in adult conceptual knowledge (e.g., Goldwater,

Markman, & Stilwell, 2011; Hare et al., 2009; Lin &
Murphy, 2001; for a review, see Estes et al., 2011). One
recent study used voxel-based lesion-symptom mapping
(VLSM) to examine the neural basis of taxonomic and
thematic processing (Schwartz et al., in press). Schwartz et
al. analyzed picture-naming errors generated by a large
sample of individuals with left hemisphere stroke aphasia
(N=86), distinguishing between taxonomic errors (e.g.,
apple named as “pear” or “grape”) and thematic errors (e.g.,
apple named as “worm” or dog named as “bone”).
Taxonomic errors were defined as category coordinates,
superordinates, or subordinates; thematic errors were
defined as incorrect responses which come from a different
category but frequently play a complementary role with the
target in events. The behavioral results showed a single
dissociation: there were far more taxonomic errors than
thematic errors (approximately 5:1 ratio) and all but two
patients made more taxonomic errors than thematic errors.
However, the lesion analysis revealed a neuroanatomical
double dissociation in the relative proportion of taxonomic
to thematic errors. Patients with lesions affecting the left
anterior temporal lobe (ATL; Brodmann area 38 and the
anterior portions of BA 20 and 21) tended to produce a
higher proportion of taxonomic errors relative to thematic
errors. In contrast, patients with lesions affecting the left
temporo-parietal junction (TPJ; BA 39, posterior BA 21 and
22, superior BA 37, and BA 41 and 42) tended to produce a
higher proportion of thematic errors relative to taxonomic
errors.

The ATL effect is consistent with previous studies
demonstrating its critical role in lexical-semantic processing
(e.g., Hodges, Graham, & Patterson, 1995; Lambon Ralph et
al., 2001; Patterson, Nestor, & Rogers, 2007; Schwartz et
al.,, 2009). The TPJ effect makes contact with studies
suggesting an important role for TPJ in thematic relations
(e.g., Kalenine et al., 2009) and relational knowledge more
generally (e.g., Wu, Waller, & Chatterjee, 2007; for a recent
comprehensive review of neuroimaging studies of semantic
representations see Binder et al., 2009).

Our first goal was to develop a formal computational
model of these complementary semantic systems that can
account for the neuroanatomical double dissociation as well
as the one-way behavioral dissociation. Our model is related
to previous work by Plaut (1995), who distinguished
between semantic relatedness based on semantic feature
overlap and semantic association based on temporal co-
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occurrence to account for differences between associative
and semantic priming effects in visual word recognition. We
tested whether this distinction, combined with an explicit
event representation, can capture both the one-way
behavioral dissociation and the neuroanatomical double
dissociation.

Like previous models of related phenomena (e.g., Plaut,
1995), our model predicts that thematically-related concepts
are automatically activated during single word processing
even when such activation is not required by task demands.
This prediction is consistent with recent priming studies that
demonstrate fast activation of event-based relations (e.g.,
Hare et al., 2009). We further tested this prediction in a
spoken word-to-picture matching task with eye tracking to
examine the time course of taxonomic and thematic
competition.

Computational Model

The model follows in the parallel distributed processing
tradition of modeling cognition as the bidirectional, graded,
and nonlinear interactions among many simple processing
units. Each unit is associated with an activation state, which
is determined by the strength of its input and a sigmoid
activation function. Units interact through weighted
connections and the weights are learned over the course of
training. The structure of the model was based on three core
principles: (1) Taxonomic structure: individual concepts are
represented by sets of semantic features, which tend to be
shared by concepts within a category. (2) Thematic/event
structure: normal word production is situated in an event or
sentence context, which imposes regularities on which
objects will co-occur. (3) Distinct representation of event
information and semantic feature information based on the
neuroanatomical and psychological evidence.

Output Lexicon
16 units
Lexical Semantics
-— 20units

Semantic Features
32 units

Figure 1. Architecture of the model.

Model Architecture

The model had 4 groups of units representing Semantic
Features, Events, Lexical Semantics, and the Output
Lexicon. The architecture of the model is shown in Figure 1.
The arrows indicate full connectivity between layers (and
fully recurrent connections between units in the Lexical

Semantics layer). Since the model was primarily designed to
capture word production data, external input was provided
to the Semantic Features and Event layers. Conceptually,
the model was trained to perform a simplified analog of
event description: there was a constant event input (i.e., the
model is describing a single, ongoing event), a sequence of
individual concept representations chosen (input) for
production, and a corresponding sequence of target word
outputs. The model was tested on picture naming by
presenting input to the Semantic Features layer and
evaluating the Output Lexicon activations. The simulations
were conducted in LENS:
(www.stanford.edu/group/mbc/LENSManual/index.html).

Representations

The Output Lexicon was a localist representation of 16
words where each unit represented a unique concept name.
The 16 concepts were divided into 4 categories, each with 4
category members. The 32 units in the Semantic Features
layer were divided into 4 sets of 8 units, with each set
representing the possible features for a single category. For
each concept there were 2 category coordinates that shared
50% of the object’s features and the remaining category
coordinate shared 0% of the object’s features. Across
categories, concepts shared 0% of their features.

The 8 units in the Event group represented four general
event types (e.g., eating) with two directions for each event
that implicitly specify the roles of the two event participants
(e.g., “eats” vs. “is eaten by”). Each event involved two
participants from a set of four possible concepts (one from
each category).

Model Training

The model was trained on a simplified analog of sentence
production. All of the sentences consisted of two concept
names produced in a particular sequence that coincided with
semantic feature input that changed from concept to concept
and constant event representation input. At the start of each
training trial, activations for all units were initialized to a
small value (0.2), with a default soft-clamp (clamp strength:
0.2) at a value of 0.0. When groups received external input,
their clamp strength was changed to 0.8. First, one event
unit was soft-clamped to a value of 1.0, then the semantic
features corresponding to the first concept in the sentence
were also soft-clamped to a value of 1.0. Once these inputs
were set, activation was allowed to propagate through the
network for up to 10 time ticks with target activations
defined for the output lexicon and semantic features layers.
This corresponded to the production of the first word in the
sentence. At the end of those 10 ticks, or if all activations
were within 0.5 of their targets, all targets were removed
and new external inputs for the semantic features layer were
set, corresponding to the second concept in the sentence.
Activation was again allowed to propagate through the
network for up to 10 ticks with target activations defined for
the semantic features and output lexicon. The connection
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weights were updated after each training trial (i.e.,
production of each two-word sentence) using the error back-
propagation through time algorithm (Pearlmutter, 1995)
with learning rate set to 0.1 and momentum set to 0.9.

There were 32 possible example sentences: 4 event types
with 4 possible first concepts and 2 possible second
concepts. The model was trained for 5000 trials, at which
point cross-entropy error had approached an asymptotic
minimum.

Model Testing

The critical model test was an analog of the picture naming
task. External inputs specifying a single concept were hard-
clamped to the semantic features units and no external input
was provided to the event layer. Output lexicon activations
were recorded for 20 ticks. No weight changes occurred on
test trials. To compute a model analog of picture naming
response, we considered the cumulative activation received
by each word type (target, taxonomic competitor, and
thematic competitor) over the first 15 ticks of processing
(since at that point the target word was no longer the most
active output unit). These summed activations were then
normalized to compute a proportion of activation received
by each response type. ATL lesions were modeled by
removing 20% of the connections between the semantic
features layer and the lexical semantics layer; TPJ lesions
were modeled by removing 50% of the connections between
the event layer and the lexical semantics layer.

Results and Discussion

The simulations were repeated for 20 models, using
different random starting weights and different random
lesions. Figure 2 shows the average activation patterns for
the target word, its taxonomic competitors, and its thematic
(event) competitors for the fully trained control (unlesioned)
model (left panel), following a lesion disrupting
communication between event representations and lexical
semantics (i.e., a TPJ lesion, middle panel), and following a
lesion disrupting communication between semantic features
and lexical semantics (i.e., an ATL lesion, right panel). The

target word was by far the most active word, indicating that
although the model was trained to perform two-word
sentence production, it was quite capable of performing
single word production without an event context (i.e., no
event input). This was true even after damage, indicating
that our lesion implementation did not eliminate naming
performance. Critically, both taxonomic and thematic
competitors were activated, though with somewhat different
time courses. Taxonomic competitors were strongly
activated early in concept processing, but this activation was
transient, peaking well before the target activation reached
its peak (for a similar time course in spoken word
recognition, and its implications, see Mirman & Magnuson,
2009). In contrast, thematic competitors were initially
weakly activated and the activation grew steadily late into
the course of the trial. This pattern arose because the model
was trained to produce thematically-grouped two-word
sequences, so even in single word production there was a
residual tendency to prepare to produce a thematically
related word.

Table 1 shows the normalized summed (over the first 15
time ticks) activation for the taxonomic and thematic
competitors for each of the three conditions. The one-way
behavioral dissociation is very clear: normalized summed
activation for the taxonomic competitors is substantially
higher than for the thematic competitors in all three model
tests. The model also exhibits the neuroanatomical double
dissociation: the event lesion increases the normalized
summed activation for the thematic competitors much more
than for the taxonomic competitors, and the semantic
features lesion increases the normalized summed activation
for the taxonomic competitors much more than for the
thematic competitors.

A simple model trained to produce two-word sequences
based on a stable event representation and a sequential
semantic feature-based representation of individual concepts
was able to perform single word production. Importantly,
the model captured both of the key data patterns from the
picture naming VLSM study (Schwartz et al., in press).
There was a one-way behavioral dissociation such that
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Figure 2. Average activation for target word (circles), taxonomically related words (triangles), and thematically related words

(squares) in the trained unlesioned model and two lesion models.
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activation of taxonomic responses was higher than
activation of thematic responses and a neuroanatomical
double dissociation such that damage to semantic feature
representations produced increased activation of taxonomic
responses relative to thematic responses and damage to
event representations produced increased activation of
thematic responses relative to taxonomic responses.

Table 1. Normalized summed activations for targets,
taxonomically related competitors, and thematically related
competitors for each of the three models.

Model Targets Taxonomic  Thematic
Competitors  Competitors
Control 0.703 0.158 0.139
Event Lesion 0.687 0.159 0.154
Sem. Feat. Lesion  0.661 0.181 0.158
Experiment

This experiment was designed to test two behavioral
predictions from the simulations reported above: (1)
taxonomic and thematic competitors are both activated
automatically during single word processing, even when the
task demands do not require it, and (2) taxonomic
competitors are activated more quickly and more strongly
than thematic competitors. These predictions were tested in
the domain of spoken word comprehension using the “visual
world paradigm” (VWP). In a typical VWP experiment, 4
pictures of objects are shown and the participant is
instructed to select a named target object. Previous studies
using this paradigm have shown that participants are more
likely to look at pictures of objects that are semantically
related to the target than at unrelated objects (e.g., Huettig &
Altmann, 2005; Mirman & Magnuson, 2009; Yee & Sedivy,
2006), though not at objects that are only related by lexical
co-occurrence with no semantic relationship (Yee, Overton,
& Thompson-Schill, 2009). The present study specifically
distinguished taxonomic semantic similarity and thematic
semantic similarity.

Methods

Participants. Fifteen older adult participants (53% females;
27% African American) completed the study. They were
selected to be approximately the same age and education
level as the aphasic participants in the VLSM study
(Schwartz et al., in press). Their mean age was 63 (range:
42-72) and mean years of education was 15 (range: 12-20).
All participants had English as their native language and no
major psychiatric or neurologic co-morbidities. Mean score
on the Mini-Mental State Exam was 29 (range: 26-30).
Participants were paid for their participation and reimbursed
for travel and related expenses.

Materials. A normed set of 260 color line drawings of
common objects (Rossion & Pourtois, 2004) was used for
the picture stimuli. Images had a maximum size of 200 x
200 pixels and were scaled such that at least one dimension

was 200 pixels. Critical pairs were selected on the basis of
sharing a semantic category (taxonomically related) or
frequently participating in an event (thematic relation).
Target and competitor words were matched on word
frequency, familiarity, length, and neighborhood density
across the two conditions (all p > 0.15). Stimulus words
were recorded by a native English speaker at 44.1kHz. The
individual words were edited to eliminate silence at the
beginning and end of each sound file.

Apparatus. Participants were seated approximately 24
inches away from a 17-inch monitor with the resolution set
to 1024x768 dpi. Stimuli were presented using E-Prime
Professional 2.0 experimental design software. Responses
were recorded using a mouse. During the testing session, a
remote Eyelink 1000 eye tracker was used to record
participants’ left eye gaze position at 250 Hz.

Procedure. Each trial was initiated by the participant by
clicking on a plus sign (+) in the center of the screen, which
caused a four-image display to appear with each image near
one of the screen corners. The position of the four pictures
was randomized. The display was presented for a 1300ms
preview to allow for initial fixations that are driven by
visual salience rather than word processing. During the last
300ms of the preview, a red circle appeared in the center of
the screen in order to drive the attention back to the neutral
central location. After the 1300ms preview, participants
heard the target word through speakers and had to click on
the image that corresponded to the target word. Each
display contained a target object image, a semantic
competitor (taxonomic or thematic), and two unrelated
distractors. There were a total of 70 trials: 10 practice trials
(on which feedback was provided), 20 trials with taxonomic
competitors, 20 trials with thematic competitors, and 20
filler trials where none of the images were related to each
other.

Results and Discussion

Accuracy was very high (> 99% correct in both conditions,
p > 0.3) and mean response times were approximately
2000ms from word onset with no difference between
conditions (Taxonomic: M = 2018, SD = 396; Thematic: M
= 1959, SD = 496; F < 1, p > 0.3). Only correct response
trials were included in the fixation analysis. Figure 3 shows
the time course of fixations to the target, semantically
related competitor, and unrelated distractors (average of the
two distractors) from word onset. Participants were more
likely to fixate semantically related competitors than
unrelated distractors in both the Taxonomic and Thematic
conditions.

To quantify the time course of the semantic competition
effects we used Growth Curve Analysis (GCA), a multilevel
regression modeling  technique using  fourth-order
orthogonal polynomials (for details see Mirman, Dixon, &
Magnuson, 2008). The analysis considered semantic
competitor and unrelated distractor fixations from 500ms
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Figure 3. The average time course of fixation proportions to the target (T),
semantically related competitor (C), and unrelated distractor (U) objects starting
at target word onset. Error bars indicate +1SE.

after target word onset (shortly before the target fixations
begin to separate from the other conditions, indicating that
fixations are starting to be driven by linguistic/semantic
processing) to 1700ms after word onset (at which point
competition has been mostly resolved and competitor
fixations are nearly at floor). The GCA results confirmed
semantic competition in both conditions with statistically
significant effects of object type (competitor vs. unrelated)
on the intercept term (overall more fixations to the semantic
competitor than the unrelated distractor) and on the
quadratic term (steeper fixation curve rise and fall for the
semantic competitor than the unrelated distractor), as well as
other, less relevant, model terms (full GCA results are in
Table 2).

Table 2. Growth curve analysis results for semantic
competition in the two conditions. Parameter estimates are
for the semantically related competitor relative to the
unrelated distractor.

Thematic Taxonomic
Est. t p < Est. t p<
Intercept 0.036 9.2 0.00001 | 0.086 12.3 0.00001
Linear 0.037 1.1 ns. 0.15 29 0.01
Quadratic -0.084 2.3 0.05 -0.24 10.0 0.00001
Cubic -0.030 2.2 0.05 0.086 6.2 0.00001
Quartic  0.033 2.4 0.05 0.04 3.0 o0.01

The semantic competition effect was also substantially
larger and peaked earlier in the Taxonomic condition than in
the Thematic condition. The Taxonomic competition effect
peaked approximately 900ms after target word onset and the
Thematic competition effect peaked approximately 1100ms
after target word onset. GCA of the full data set examining
the interaction of object (competitor vs. unrelated) and
condition (Taxonomic vs. Thematic) revealed a clear
difference in overall effect size (interaction effect on

intercept term: Est. = -0.049, t = 4.88, p < 0.0001) and a
difference in time course (interaction effect on quadratic
term: Est. = 0.156, t = 3.17, p < 0.01; and on cubic term:
Est. = -0.116, t = 5.77, p < 0.0001; interaction effects on
linear and quartic term were not significant). The degree of
semantic relatedness contributes to the magnitude and time
course of semantic competition effects (e.g., Mirman &
Magnuson, 2009), but the current results are also strikingly
consistent with the simulations reported above.

In sum, the experiment revealed that thematically and
taxonomically related competitors are both activated in the
course of spoken word recognition and suggested that
taxonomic competitors are activated more quickly and more
strongly than thematic competitors. These results are
consistent with the predictions of a computational model,
which also accounted for behavioral and neuroanatomical
results from a large-scale study of aphasic picture naming
errors (Schwartz et al., in press).

Conclusions

Based on behavioral, neuroimaging, and VLSM data,
Schwartz et al. (in press) proposed that there are two parallel
semantic systems. One system, with ATL as a critical hub,
captures taxonomic relations based on feature overlap and is
particularly important for single object processing and
identification. A second system, with TPJ as a critical hub,
captures thematic relations based on complementary roles in
events and is possibly more relevant for relational
processing (e.g., Wu et al., 2007) and sentence processing.
We described a computational model that is a concrete
implementation of this theory. The model accounted for the
one-way behavioral dissociation in aphasic picture naming
errors (more taxonomic errors than thematic errors) and the
neuroanatomical double dissociation (damaging feature
representations leads to relatively more taxonomic errors,
damaging event representations leads to relatively more
thematic errors).
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In addition, the model predicted that both taxonomic and
thematic competitors should be automatically activated
during single word processing, with taxonomic competitors
activated more quickly and more strongly. Results from a
spoken word comprehension experiment using eye tracking
to assess the time course of competitor activation were
consistent with these predictions.

These results suggest that semantic knowledge is
represented in two parallel systems — one that is primarily
sensitive to semantic feature overlap and taxonomic
relations with ATL as the critical hub, and one that is
primarily sensitive to event and thematic role relations with
TPJ as the critical hub.
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