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Abstract

Twenty middle-school students participated in semi-
structured interviews in which they were asked to assess the
validity of two mathematical conjectures. In addition to being
free to develop a valid proof as a justification, students were
also asked to generate numeric examples to test the
conjecture. Students demonstrated strategic reasoning in their
empirical approaches by varying the quantity, parity,
magnitude, and typicality of the numbers selected. These
strategies were more developed in students who initially
believed in the truth of the conjecture as well as in students
who generated a valid, deductive proof. Emphasizing
students’ strategic selection of diverse examples parallels
inductive reasoning in other domains. Strategic use of
examples in justifying conjectures has the potential to assist
students’ development of deductive proof strategies.
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Background

Many consider proof to be central to the discipline and
practice of mathematics. Yet surprisingly, the role of proof
in school mathematics has traditionally been peripheral at
best, usually limited to high school geometry. More
recently, however, mathematics educators and researchers
are advocating that proof should play a central role in
mathematics education. Reasoning about the properties,
relationships, and patterns in math, as one does with proofs,
supports the development of mathematical expertise.

Yet, despite the growing emphasis on justifying and
proving in  school  mathematics, students rely
overwhelmingly on examples to justify the truth of
statements rather than using deductive proofs (e.g., Healy &
Hoyles, 2000; Knuth, Choppin, & Bieda, 2009; Koedinger,
1998; Porteous, 1990). Many students fail to understand the
nature of what counts as evidence and justification
(Kloosterman & Lester, 2004). In mathematics, testing
examples is not sufficient for proof — a deductive argument
is necessary to cover all possible cases.

The preceding discussion regarding students’ reliance on
examples to “prove” the truth of statements (i.e., provide

empirical-based justifications) is not meant to imply that
examples do not play an important role in mathematical
activity. Indeed, mathematicians often utilize examples to
gain insight, develop an argument, and verify that an
argument works (Alcock, 2004). The challenge remains,
however, to help students learn to differentiate these
appropriate uses of examples from their use as a primary
means of justification.

Although reasoning inductively' features prominently in
students’ math justifications, the strategies underlying such
reasoning are typically treated by mathematics educators as
stumbling blocks to overcome rather than as objects of
study in their own right or as starting points from which to
foster the development of more sophisticated (deductive)
ways of reasoning. The research has focused primarily on
distinctions between the inductive, empirical approach and
deductive justifications. Questions such as what might make
one example or empirical justification stronger than another
have not been well addressed.

In contrast, inductive strategies have been an ongoing
focus of research in other domains such as biology where
children and adults reason competently using inductive
reasoning (e.g., Gelman & Kalish, 2006; Gopnik et al.,
2004; Rhodes, Brickman, & Gelman, 2008). Inductive
approaches and predictive inferences are appropriate in this
domain, and they are supported by category knowledge. In
particular, empirical justifications are rated as stronger when
based on typical examples with high similarity to the
category (Osherson et al., 1990). Having a diverse set of
examples increases the coverage of the category. People’s
knowledge about the underlying category structure supports
successful inferential reasoning (Osherson et al., 1990).

Effectively employing strategies to select informative
examples depends, at least in part, on intuitions about
similarity and typicality relations. It is unclear to what
degree students have robust intuitions about the relations
and category structure of mathematical objects and the

! Here we refer to making generalizations about a class of numbers
based on observing or testing particular instances of that class, not
mathematical induction, which is a valid method of proof.
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extent to which such intuitions guide inductive inference. In
an exploratory sorting task, middle school students used
mathematically relevant features such as parity and factors
to categorize the numbers (Knuth et al., 2009; in press).
Dimensions such as these could underlie typicality ratings
within a category.

Here, we focus on the qualities of examples chosen by
middle school students to justify mathematical conjectures.
The strategies underlying their inductive reasoning are
explored by examining the typicality and the diversity of the
example sets in order to gain insight into the mathematical
knowledge underlying students’ reasoning. However, as
inductive strategies by themselves are insufficient as formal
justifications in math, we also consider ways in which
inductive strategies interact with the development of
generalized, deductive proofs. Thus, this research initiates
an in-depth investigation of empirical reasoning in
mathematics that parallels research on inductive reasoning
in other domains as it attempts to establish dimensions on
which the strength of mathematical inductive reasoning can
be rated.

Research Questions

In the current study, we address several questions. First,
what approaches are employed by middle school students to
evaluate the truth of conjectures? In answering this, we
focus on a) the qualities of the examples chosen, b) the
strategies that children use to select examples and c) the
relationship between empirical approaches and valid proofs.
Related to this is how initial reactions to the truth of the
conjecture influence their subsequent reasoning.

Methods

We conducted semi-structured, videotaped interviews with
20 middle-school students (11 F, 9 M). The math grade
levels reported (7 sixth-grade, 7 seventh-grade, and 5 eighth-
grade or higher math courses) indicate the course year the
student was currently in or had just completed as 7 students
were in a math course above their year in school.

Each participant was asked to explore the validity of two
mathematical conjectures (see Figure 1) during the first 20
minutes of the interview. The mathematical conjectures
were selected to be statements for which proofs of different
types would be accessible using middle school mathematics.
First, participants were asked whether they believed each
conjecture to be true for every number. The next questions
asked participants “how they knew” their judgment of the
truth and how they would figure it out. The researcher also
asked the students to generate examples to test the
conjectures. Once participants were convinced of the
conjecture’s truth, they were asked again to explain why the
conjecture was always true and how they would show that
to others.

The interviewer also asked participants to discuss the
qualities of the examples they chose to test. Students were
asked to classify the examples as typical or unusual and
explain that classification. In addition, students were asked

whether various pairs of numbers from their example set
were similar or different. For each classification the student
agreed to (typical or unusual; similar or different), the
intentionality and valence of using those types of examples
was assessed. Thus, the follow-up questions focused on
whether the students’ beliefs about typicality and diversity
affected how they generated examples and their overall
satisfaction with the approaches they used. Each student had
multiple opportunities to explain and justify their reasoning
as well as the opportunity to develop generalized proofs.

1) Whole Number Conjecture:

First, pick any whole number.

Second, add this number to the number before it
and the number after it.

Your answer will always equal 3 times the number
you started out with.

2) Even Number Conjecture:

First, pick any even number.

Second, add this number to half of itself.
Your answer will always be divisible by 3.

Figure 1: The mathematical conjectures presented.
Results and Discussion

Initial Reactions to Conjecture Truth

Half (47%) of the students were unwilling to specify an
initial belief about the truth of the conjecture — they were
either not sure or wanted to test the conjecture with a
specific example. Of those students who did provide an
initial reaction, the even conjecture was more frequently
believed to be true (72%) than the whole number conjecture
(40%). With the later analyses, we will see the subgroup of
students who initially believed a conjecture to be true
showed a different pattern of reasoning and justifications.
The initial reaction was related to math experience. Students
who had at least 8" grade math were more likely to proceed
directly to testing the conjecture (60% tested) than 6™
graders (7%) or 7" graders (21%).

Types of Approaches

Overall, students’ attempts to demonstrate the truth of a
mathematical conjecture portrayed a diverse range of
approaches including inductive reasoning through examples
as well as deductively valid proof arguments. Justifications
were coded according to Healy and Hoyles (2000) as being
empirical, narrative, visual, or algebraic. Empirical
justifications were based on the testing of specific examples.
Narrative proofs explained why the property was true using
verbal, deductive language. Visual proofs relied on
drawings showing why the conjecture was true for a generic
case (e.g., illustrating quantities being broken apart).
Algebraic proofs used formal deductive statements of
equality or equations. These latter three justification types
reflect a more deductive approach in which a student
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demonstrates the validity of the conjecture for the general
case; these three approaches will all be considered valid
(i.e., non-empirical) proof strategies here. In contrast,
empirical approaches do not fully justify the truth of the
conjecture.

Empirical approaches were by far the most common
strategy employed by participants (at least one example was
tested in all but one case?), but it is important to remember
that the interviewer explicitly asked the participants to
generate examples to test.

Slightly under half of the conjectures were accompanied
by valid proofs. Five students produced valid proofs for
both conjectures; there were 8 students (evenly divided
between the two conjectures) who produced only one valid
proof, for a total of 18 proofs. Narrative proofs were the
most frequent, followed by visual and algebraic proofs (see
Figure 2). The probabilities of producing a valid proof or a
particular type of proof were not affected by the particular
conjecture.

04 True (n cases = 12)

B False (n cases = 9)
0.3 Test / Not Sure (n cases = 19)

0.2

0.1

Proportion of Cases
Demonstrating Apporach

empirical narrative + visual + algebraic +
only empirical empirical empirical

Figure 2: Empirical approaches predominated, but
students’ approaches’ were affected by initial reaction.

The relatively higher frequencies of narrative proofs,
particularly when the conjecture was believed to be true,
resulted in valid proofs (i.e., non-empirical approaches)
being more likely for subjects who initially believed the
conjecture to be true (58% produced proofs) than other
reactions (36% produced proofs). One possibility is that
students are more inclined to generate valid proofs in order
to support the veracity of their initial reaction. Empirical
reasoning was the only approach used by half of the
subjects, as is commonly found with this age range.

Empirical Justifications and Valid Proofs

Considering the order of the empirical versus valid proof
approaches allows a more thorough assessment of the

% ‘Case’ refers to a students’ response to one of the two problems
as the unit of analysis.

3 As some students produced both narrative and visual proofs on a
given case, the proportions sum to more than 1.

participants’ overall level of competence with justifications
and ways in which empirical and deductive approaches can
be mutually supportive. Only cases on which a valid proof
(n =18 cases) was produced are considered here.

If students view proof as sufficient evidence to support a
conjecture, one would expect the students’ reasoning to end
after generating a valid proof. While this was the case for
the majority (78%) of the conjectures with a valid proof,
some students (22%) tested examples after generating a
proof. However, this can only be interpreted with caution.
While they may have been checking their proof by using
examples, the interview protocol focused on eliciting
examples from participants, and thus, these latter examples
developed as part of a conversation between the interviewer
and student and cannot be considered to be sufficient
evidence that the students were not convinced by the
generality of their proof.

The relative ordering of the empirical and the wvalid
approaches was affected by a student’s initial belief in the
truth of the mathematical conjecture. Proofs only occurred
before the first example (4 cases of this ordering) for
students who believed the conjecture to be true. The
remaining students with proofs (n = 4 believed true, n = 10
other reactions) all tested examples before arriving at their
proofs. Overall, 78% of the valid proofs were preceded by
examples. One student verbalized the approach of using
empirical strategies to support proof generation by
explaining that his arithmetic with the examples led to the
development of his proof. Students were equally likely to
produce examples before a proof and after a proof.

A Focus on the Empirical Strategies

The implementation and complexity of the empirical
approaches varied across students. The interview assessed
ways in which students varied the quantity, diversity (i.e.,
parity and magnitude), and self-reported typicality of the
numbers they tested. As will be seen, the overall complexity
of an empirical approach was influenced by a student’s
initial reaction and whether or not the student generated a
valid proof.

Quantity of Examples Tested Overall, students using an
empirical approach recognized that they needed to test
multiple examples:

“And the more times you try it, the more likely
your study is gonna be right. Or you — but the
better answers you’re gonna get. So if you tried it
with a thousand numbers, you’re gonna have better
data than if you just tried it with three” (student in
8" grade math).

There were nuances to this approach, however. Students
tested fewer examples when the problem was initially
believed to be true, particularly on the whole number
conjecture (see Figure 3). In addition, students who
produced at least one proof tested fewer examples on
average across the two conjectures (M = 3.12) than students
who produced no proofs (M = 3.86), however this was not
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significant (p = .22) overall. It does suggest, however, that
students view examples and proof as mutually supportive,
with fewer examples being required when students
demonstrate a conceptual understanding of the logic of the
conjecture by producing a valid proof.

¥ true ® other reactions

Number of Examples Tested
(M +/- SE)

whole # conjecture even # conjecture

Figure 3: Quantity of examples tested.

Diversity of the Examples Choosing diverse examples
allows a stronger test of a conjecture. A student’s variations
of the magnitude and/or parity of their examples were
selected as an objective measure of the diversity of the set of
examples. Variation in magnitude was operationalized as
having numbers both below and above 20. The domains
specified by the conjectures influenced the features that
students varied in order to establish diverse sets. On the
whole number problem, 74% of the students varied parity
while only 37% varied magnitude. However, on the even
number problem, 75% of the students varied magnitude.

Students who believed the even number conjecture to be
true were less likely to vary magnitude (50%) than students
with other reactions (92% varied magnitude). Although this
pattern is not repeated for variation in magnitude when
testing the whole number conjecture, it does appear in the
students’ probability of wvarying parity. Students who
believed the whole number conjecture to be true were less
likely to vary parity (33% of students) than those with other
initial reactions (81%). Thus, believing the conjecture to be
true reduced the amount of variation implemented in
whichever means the student had selected to vary the
example set. The rarity of co-varying both parity and
magnitude on the whole number problem set (see Table 1)
likely attenuated the effect on this dimension.

Table 1: Covarying magnitude and parity was rare (n).

Varied No Variation in
Magnitude Magnitude
Varied Parity 4 10
No Varlz.ltlon in 3 )
Parity

Thus, it appears that students were less likely to select a
diverse set of examples (as measured by parity and
differences in magnitude) if they initially believed the
problem to be true.

Returning to the subgroup of students with valid proofs,
there was less variation in their example sets than for
students who did not develop proofs. Students who had
proofs were less likely to vary parity on the whole number
problem (41% versus 29%) and were less likely to vary
magnitude on the even number problem. This represents a
similar pattern of findings to the subgroup that initially
believed the responses to be true. While the two findings do
appear to exist independent of each other, it is also
important to remember that proofs were more likely among
participants who believed the conjectures to be true. Thus it
is the students who were more skeptical of the conjecture
who selected more diverse examples. These students
seemed to appreciate that a more diverse set of examples
provides stronger evidence for a conjecture’s truth if a more
deductive approach was not available.

Varying Typicality of Examples The examples students
generated were coded in terms of the students’ self-reported
judgments of typicality as well as in terms of the numbers’
mathematical typicality. When students explained what
made a number typical, they referenced parity, primes,
multiples, and magnitude (odd numbers, primes, large
numbers, and numbers uncommon in everyday life were
considered as unusual). Mathematical typicality was defined
a priori by the researchers based on whether properties of
the number made it mathematically special within the
context of middle school mathematics. Thus, numbers that
have identity relations (0,1), are powers of 2, are prime, or
are multiples of 5 or 10 were defined as mathematically
special. The remaining numbers were coded as
mathematically ordinary.

Overall, there was a positive relationship between varying
self-reported typicality and varying the coded mathematical
typicality, (» (36) = .30, p = .06). Over 70% of the generated
example sets had both mathematically ordinary and
mathematically special numbers. Of these sets, over half
were cases in which the student had reported using typical
and unusual numbers; the remaining students (44%)
reported using only typical numbers. Among the sets that
did not vary mathematical typicality, 8 sets used only
mathematically special numbers and 2 sets used only
mathematically ordinary numbers. Thus, even though they
varied in their self-reported typicality, the tendency was to
use unusual numbers even if the mathematical typicality of
the example set did not vary.

Thus, it appears that varying the mathematical typicality
of numbers was one way students generated sets of
examples to test. Using this as a strategy could indicate that
underlying conceptual knowledge about the properties of
numbers influenced students' example choices.
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Was Varying Self-Reported Typicality a Strategy? As
the interview formats had some variation, responses to
whether varying typicality was intentional and/or a good
strategy are collapsed across the two conjectures and
reported below at the student level.

All students reported that they tested typical numbers at
least once during the interview and that using typical
numbers was a good strategy. The majority (75%) of
students reported testing an unusual number at least once,
and all who were asked (n = 13) indicated at some point that
testing unusual numbers was a good strategy.® For example,
a student taking geometry reported, "if he didn't use unusual
numbers, you know, you can never be sure if his property is
correct". Interestingly, students who produced a valid proof
at least once were more likely to report intentionally
selecting these categories of numbers (see Table 2).

Table 2: Proportion of subjects using a self-reported
category of numbers who did so intentionally.

Typical Unusual
Produced a Valid
Proof at least once 0.82 0.88
No Valid Proofs 0.40 0.25

Most (86%) of subjects who reported using both types of
examples and were asked about the benefits of using both
indicated that using some typical and some unusual was a
good strategy. Thus, although students seemed to recognize
that varying typicality was an important approach, they did
not necessarily do so intentionally, especially if they did not
also construct proofs. Such distinctions between using a
strategy, using it intentionally, and recognizing it as a good
strategy reflect the developing nature of empirical
justification approaches within this sample of students.

How would you show someone else?

When students were asked how they would show
someone else that the conjecture was always true, they were
being asked to implicitly evaluate how convincing their
approaches were. This offers insight into how the students
value the empirical inductive strategy and the deductive
strategies. Focusing on the even number conjecture’, 11
students did not generate valid proofs. Over half (7)
reported that they would use different examples with or
without the current examples,

“I’d try some other examples. Because if I used
some ones that you people wouldn’t normally use,
besides 10, and if I did a little more maybe it

* Three of the five students who reported only testing typical
numbers were asked about the strategy; they thought testing
unusual numbers would not be a good strategy. Their explanations
centered on the computational ease of the typical numbers.

> Only four students were asked on the whole number conjecture.
They had all generated proofs and indicated that they would use
the proof to show someone else.

wouldn’t be or maybe it’d still be true” (student in
6" grade math).

The remaining 4 students without valid proofs
reported that they would use the current examples they
had generated (“these examples because I don’t really
get the logic behind it,” student in 7™ grade math).
Thus, the majority of these students did not believe the
examples they tested were sufficient to convince
someone else of the conjecture’s truth. Their empirical
approach, while it was sufficient to convince them
during the interview, was simultancously deemed
insufficient — necessitating either more logical
approaches or further diversification of the examples.

Valid proofs were generated by eight students. Six of
them reported that they would use their proof to
demonstrate the mathematical property to someone
else, although one indicated that examples should
precede the proof. The students’ explanations of why
they would use the proof to show someone else were
very clear:

“It's way more convincing than all that stuff
[trying examples]. Now that I can like see how it
works out instead of just like finding, oh, it does
work out.” (student in 8" grade math)

"I think I find the second one I said more
convincing 'cause it's a little bit more in general.
And it's not using like one specific number. It's
giving a rule kind of. [It’s] using a variable to some
extent.” (student in 7" grade math)

When students had both the inductive and deductive
approaches available to them, they found the deductive
proofs more convincing. They understood the value of a
valid proof in justifying a conjecture’s general truth. Thus,
although students of this age group are known to rely on
empirical methods and did so in this study, they also
showed a developing understanding of the benefits of proof.

General Discussion

Empirically-based  inductive  strategies to justify
mathematical conjectures can co-exist and complement the
more formal deductive strategies. Strategic use of examples
may be important at the beginning stages of mathematical
justification. While over half of the interviewed students did
treat empirical approaches as if they were valid, they used
the empirical approaches in a strategic manner by varying
the quantity, diversity (parity and magnitude), and typicality
of the tested numbers. Despite the limited sample size, the
analyses of the students’ thinking processes during the
interviews revealed rich and strategic approaches to
justifying ~ mathematical  conjectures.  Given  the
preponderance of empirical-based reasoning demonstrated
here and in other studies, such an in-depth examination of
the use of examples is critical for understanding students’
current approaches and developing ways to leverage these to
support deductive reasoning.

Looking across the different measures, students who
generated a convincing, deductive generalization tested
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fewer examples, intentionally selected the typicality of the
numbers they did test, and had less diversity in their
example set. The students generating proofs correctly placed
less importance on strategic use of empirical strategies than
those who only used an empirical approach. However, it is
not a ‘problem’ that the students who generated proofs had
less variation and fewer examples. In fact, their reports of
more frequent intentional example choices suggest that they
picked examples strategically and they recognized there was
no need for further empirical tests.

The students who did not generate proofs also reasoned
strategically. They generally used multiple examples and
valued diversity in their example sets. At the same time,
however, other aspects of justification are still developing.
For example, students rarely varied parity and magnitude
within the same problem, despite believing variation to be
good. Further, while they considered their chosen examples
to be varied, students who did not produce a proof often said
they would use even more diverse numbers to demonstrate
the truth of the conjecture to someone else. The use of
diversity as a cue for inductive generalization is developing
during the elementary school years in biological reasoning
(Rhodes et al., 2008); perhaps a similar transition occurs in
math.

The exploratory nature of the interviews and the limited
number of conjectures and proofs prevent full consideration
of how empirical approaches interact with proof generation.
Even if one is to take the perspective that inductive
strategies reflect a shortcoming in the long-run,
understanding what students are actually doing in the short-
term could aid the development of their mathematical
knowledge. Empirical justifications can reflect important
mathematical reasoning in their own right. Recognizing that
some sets of examples are better than others might lead
towards considering whether other types of approaches are
better than empirical approaches. Strategic use of examples
could develop from the recognition of the weaknesses that
exist when testing a limited number of similar examples.
This recognition can be harnessed to suggest that similar
weaknesses also exist even when you strategically choose
particular examples, thus supporting the move to deductive
strategies. Our next steps with this research include
surveying students in order to more fully understand the role
of typicality and diversity in their choice of examples.

In sum, using a combination of empirical and deductive
strategies, almost all students in the study were correctly
determined that the conjectures were true. The analysis
presented here revealed that students could use examples to
attempt to falsify conjectures, demonstrate that conjectures
work, and perhaps identify patterns and develop a more
general proof. Further, many students strategically chose
their examples to test, suggesting that they were thinking
critically about the underlying properties of the number
system and the ways in which typical, unusual, and diverse
examples can be used to support mathematical inference-
making. As strategic use of examples is an under-researched
area, the concepts that emerged during these interviews are

important avenues for future research.
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