
Cognitive Control in the Generation of Random Sequences: 
A Computational Study of Secondary Task Effects 

 
Richard P. Cooper (R.Cooper@bbk.ac.uk) 

Department of Psychological Science, Birkbeck, University of London 
Malet Street, London WC1E 7HX, UK 

 
 

Abstract 
Cognitive control processes, such as those involved in 
response inhibition or task switching, have been the focus of 
much recent research. Few studies, however, have considered 
how such processes work together in tasks that require 
multiple control processes. This paper reports a computational 
study of random sequence generation and the cognitive 
control processes involved therein. The task, which is argued 
to involve multiple control processes, produces several 
dependent measures. These measures are held to be 
differentially dependent on the differential efficacy of the 
various underlying control processes.  Initial simulations 
demonstrate that the model is capable of reproducing subject 
performance on the basic task. Additional simulations explore 
differential interference effects of different secondary tasks 
(held to interfere with different control processes) on the 
different random generation dependent measures. The work 
illustrates how the putative control processes may interact in 
the production of successive responses during the random 
generation task. 

Keywords: Random generation; executive processes; 
cognitive control; response inhibition; set shifting; 
monitoring. 

Introduction 
A substantial body of evidence suggests that behaviour in 
complex tasks is dependent on a number of functionally 
(and anatomically) distinct control functions, such as 
response inhibition, memory updating, task shifting and 
monitoring. One study which well supports this position is 
that of Miyake et al. (2000), who had over 130 subjects 
complete nine relatively simple tasks (three of which were 
primarily held to tap the control function of response 
inhibition, three to tap memory updating and three to tap 
task shifting) and five more complex tasks (such as solving 
Tower of Hanoi problems, which were thought to tap 
multiple control functions). Miyake and colleagues used 
confirmatory factor analysis on performance measures from 
the nine simple tasks to extract three factors, corresponding 
conceptually to response inhibition, memory updating and 
task shifting. They followed this up with structural equation 
modelling, using the three derived factors, to determine the 
involvement of those factors in performance of the complex 
tasks. The analysis supported the involvement of different 
subsets of the three separable factors in performance of the 
different complex tasks. Similar results using different 
batteries of tasks have been obtained with developmental 
(Bull et al., 2004) and neuropsychological (Stuss et al., 
2005; Shallice et al., 2008) samples, while a number of 
other studies have focused on specific control functions (for 

reviews see, e.g., Monsell, 2003, and Vandierendonck et al., 
2010, for task switching, and Aron, et al., 2004, and 
Verbruggen & Logan, 2008, for response inhibition). 

In response to this empirical work, a number of 
computational accounts of the operation of various control 
functions have been proposed. For example, Jones et al. 
(2002) modelled a process of monitoring and adjusting for 
response conflict within a simple interactive activation 
model of two-alternative forced choice by using a measure 
of response conflict to modulate the baseline activity of 
response units – when conflict was high the baseline activity 
was reduced, leading to slower/more deliberate responding 
(see also Botvinick et al., 2001). Other researchers have 
focussed on different control functions. Thus, Gilbert and 
Shallice (2001) were able to account for the behavioural 
effects of task shifting by modifying an existing interactive 
activation model of the Stroop task to allow a form of 
carryover between trials, while O’Reilly and Frank (2006) 
have provided a computational account of possible control 
processes related to working memory. 

As indicated by the preceding discussion, the existence of 
control functions is widely accepted in the behavioural, 
neuropsychological (and neuroimaging) literatures. 
Moreover, specific functions have received substantial 
attention in the computational literature. However, while the 
behavioural literature would suggest that control functions 
are likely to be of most importance during the performance 
of relatively complex tasks, the computational literature has 
focussed on relatively simple tasks (e.g., two-alternative 
forced choice and Stroop). It has, to date, not considered 
how control functions might interact in complex task 
performance. Just as critically, existing cognitive 
architectures such as ACT-R (Anderson et al., 2008) – 
systems that are routinely applied to modelling the 
performance of complex tasks – generally fail to make any 
explicit appeal to control functions of the kind postulated in 
the other literatures. On the basis of this architectural work, 
one might therefore argue that such control functions are 
epiphenomenal (cf. Cooper, 2010). 

The purpose of this paper is to explore, from a 
computational perspective, how different cognitive control 
processes might interact in a task that appears to tap 
multiple such processes. We begin by describing the task – 
random sequence generation – together with a verbal 
account of the control processes that have been held to be 
involved in performance of the task. Target data from a 
dual-task study of random sequence generation is then 
reported which suggests that secondary tasks which tap 
different control processes (specifically, updating and 
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monitoring of working memory, task shifting and response 
inhibition) interfere with random generation in different 
ways. The focus of the paper, however, is a computational 
account of random generation which critically involves the 
control processes of memory updating and monitoring, task 
shifting, and response inhibition. The model is shown to be 
capable of reproducing control performance in the task. 
Additional simulations, aimed at accounting for the different 
dual-task interference effects, explore the possible roles of 
cognitive control processes in the task. The work 
demonstrates how control processes may interact in the 
performance of tasks with complex control requirements 
while providing additional support for the fractionation of 
cognitive control. 

The Random Generation Task 
In random generation tasks subjects are provided with a 
response set (e.g., integers from 0 to 9) and required to 
generate a sequence of responses from this set such that the 
sequence is subjectively random. The task is of interest 
because, despite the apparent loose specification of the task, 
subjects exhibit strong biases, producing sequences that 
deviate from true randomness in reliable ways. For example, 
repeat responses (i.e., the same response on two consecutive 
trials) are typically generated with lower than expected 
frequency (e.g. Rapoport & Budescu, 1997; Towse & 
Valentine, 1997). 

There are numerous ways of measuring the degree to 
which a sequence is random. For example, in a truly random 
sequence one would expect, over the course of a sufficiently 
long sequence, that the frequency of each response is equal. 
One would also expect the frequency of response pairs (i.e., 
R1 followed by R2) to be equal, so that it is not possible to 
predict with greater than chance accuracy the next response 
given the previous response. Towse and Neil (1998) survey 
a range of measures of randomness and show, through 
factor analysis of subjects’ responses, that the different 
measures of randomness cluster into several factors. Thus, 
several measures of randomness index “equality of response 
usage” (i.e., whether all responses are generated with 
roughly equal frequency, or whether there is a bias towards 
some responses and against others). Similarly, several other 
measures index “prepotent associates” (i.e., whether some 
pairs or “bi-grams” of responses – associates – occur more 
frequently than would be expected by chance). 

The various measures of randomness are also affected by 
the format of the response. For example, responses may be 
generated verbally (Baddeley et al., 1998; Towse, 1998), in 
writing (Towse & Valentine, 1997), or using a keyboard 
(Baddeley, et al., 1998; Towse, 1998). If responses are 
generated with two hands on a keyboard, then subjects tend 
to alternate hands more frequently than appropriate. Biases 
towards prepotent associates are therefore specific to the 
format of the response. In a similar vein, equality of 
response usage tends to be poorer when the response set is 
internalised (as in verbal digit generation), in contrast to 
when the response set is externally realised (as in selection 

from a keyboard) and hence when random generation 
involves selecting from that externally realised set. 

Random generation tasks have a surprisingly long history 
in psychological research (see Wagenaar, 1972, for an early 
review) and have been widely used in examining cognitive 
control processes (e.g., Baddeley, et al., 1998; Miyake et al., 
2000). To understand why control processes might be 
relevant, it is useful to consider a possible process model of 
random generation. Suppose one is attempting to generate 
the nth response in a series, having already generated n-1 
responses. A possible response somehow comes to mind, 
perhaps because it is in some way associated with the 
previous response (e.g., if generating digits and the previous 
response was 8, the possible response 4 might come to 
mind, corresponding to a half of 8). Before producing the 
response, one must then decide if it is sufficiently random 
given the previous n-1 responses. Thus it is necessary to 
monitor ones likely responses, maintain an up-to-date record 
of previous responses, and possibly inhibit a potential 
response if it is deemed “too predictable”. 

This process account of random generation is basically 
that of Baddeley et al. (1998; see also Rapoport & Budescu, 
1997), but random generation was also one of the complex 
tasks investigated by Miyake et al. (2000). Rather than 
considering a specific processing account of random 
generation, Miyake et al. used an analysis of individual 
differences together with structural equation modelling to 
determine the relation between their three specific control 
processes – response inhibition, memory monitoring and 
updating and task shifting – and the factors found (by factor 
analysis) to underlie random generation. They found that 
measures of randomness associated strongly with “equality 
of response usage” were correlated with the control process 
of memory monitoring and updating. That is, subjects who 
performed well on memory monitoring and updating tasks 
tended in random generation to produce all responses with 
roughly equal frequencies, in contrast to subjects who 
performed poorly on memory monitoring and updating 
tasks, who tended to show biases towards some responses 
and away from others. Similarly, measures of randomness 
associated strongly with “prepotent associates” were 
inversely correlated with the efficacy of the putative control 
process of response inhibition. Thus, subjects who 
performed poorly at response inhibition tasks tended in 
random generation to produce some pairs of responses more 
frequently than others. These findings seem plausible, but 
they would benefit from being embedded within a process 
model for a complete understanding of the operation of 
control processes in random generation. 

Secondary Task Effects on 
Random Generation 

Cooper et al. (submitted) take an alternative approach to 
determining the control process requirements of random 
generation. In their study, subjects completed a random 
generation task under four conditions; first as a solitary task 
and then within a dual-task paradigm concurrently with each 
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of three secondary tasks. The random generation task 
involved using a mouse to select responses from a clock-
face type of display with ten options (see Figure 1). Thus 
the response set was externally realised. Moreover two types 
of prepotent associates specific to the task can be identified: 
opposite associates, where successive responses are 180o 
apart (A-F, B-G, C-H, etc.), and adjacent associates, where 
successive responses are adjacent in a clockwise or anti-
clockwise direction (A-B, A-J, B-A, B-C, etc.). 

The three secondary tasks were designed to primarily tap 
different control processes. Thus the digit-switching task 
was held to tap the process of task-shifting, the 2-back task 
to tap memory monitoring and updating processes, and the 
go-no go task to tap response inhibition. In each of the three 
dual-task conditions subjects were required simultaneously 
to complete the random generation task (which was visual-
manual in nature) and one of these secondary tasks (which 
were each auditory-vocal in nature). The full procedure is 
described in Cooper et al. (submitted). 

The effects of condition on five measures of randomness 
are shown in Table 1. The measures are: R (which measures 
equality of response usage); RNG (which measures equality 
of bi-gram usage); RR (the proportion of responses that are 
repeats); AA (the proportion of responses that are adjacent 
associates) and OA the proportion of responses that are 
opposite associates). Figure 2 shows the data in a way that 
more clearly shows the effect of condition on each 

dependent measure. In this figure, the means and standard 
deviations of each dependent measure in the control 
condition were used to convert scores from the three 
experimental conditions into z-scores, clarifying the effect 
of each condition on the different dependent measures. As 
can be seen from the figure, digit-switching and 2-back have 
similar large effects on R, with go-no go having a lesser 
effect. In contrast, 2-back has the largest effect on RNG, 
RR, AA and OA, with digit-switching and go-no go having 
similar lesser effects. (All effects apparent in the figure were 
statistically significant except those concerning RR, for 
which statistical power was limited by a floor effect.) 

These results appear to conflict with those of Miyake et 
al. (2000) described in the previous section. For example, 
while the 2-back task – held to tap memory monitoring and 
updating – had a significant effect on the R measure (as 
would be predicted), its effect was similar to that of the 
digit-switching task – held to tap set shifting (which would 
not be predicted). More critically, the effect of the go-no go 
task – held to tap response inhibition – on bi-gram measures 
(RNG, RR, AA and OA) was less than that of the memory 
monitoring and updating task. In contrast, the results seem 
more consistent with the verbal process model of Baddeley 
et al. (1998) described in the previous section. The 
following two sections present a computational model of the 
task based on this verbal process account, together with 
simulations that explore the possible effects of secondary 
tasks and hence the relevant control processes. 

A Model of the Random Generation Task 
The model of random generation described here was 
developed within COGENT (Cooper & Fox, 1998), a 
graphical object-oriented environment for cognitive 
modelling. COGENT allows information processing models 
to be sketched as box-and-arrow diagrams. Such a diagram 
may then be fleshed out into a fully functioning model by 
providing if/then rules and property settings for each box. 
Figure 3 shows the box-and-arrow structure of the random 
generation model. The model consists of three buffers 
(shown as rounded rectangular boxes) and four processes 

 
Figure 1: The clock-face layout of the random generation task of 
Cooper et al. (submitted). Subjects were required to click with the 
mouse on one letter on each trial. The mouse was then 
automatically repositioned in the central circle. 

 
Figure 2: z-scores for measures of randomness in the three dual-
task conditions, based on means and standard deviations of the 
control condition. Error bars indicate the standard error of the mean 
z-score in each condition. 

Table 1: Mean values of measures of randomness in the control 
condition and each of the three experimental conditions. (CTRL = 
control, DS = digit-switching, 2B = 2-back, GnG = go-no go.) 
 

 R RNG RR AA OA 
CTRL 0.962 0.300 0.014 0.259 0.131 
DS 2.048 0.410 0.004 0.328 0.136 
2B 1.979 0.461 0.002 0.424 0.097 
GnG 1.196 0.388 0.005 0.334 0.130 
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(shown as hexagonal boxes). Buffers store information 
while processes transform information or copy it from one 
buffer to another. Arrows with pointed heads show 
information flow (implemented by message passing), while 
arrows with blunt heads indicate querying of buffer contents 
by processes. 

The model functions as follows. When prompted by the 
Experimenter (the faded rectangular box), Propose 
Response attempts to propose a single random response 
from the response set. How this is done is discussed below, 
but the result is added to Response Buffer, a temporary 
storage device with a capacity of just one item. When an 
element is present in Response Buffer, the Check Random? 
process evaluates that response in the context of previous 
responses to determine whether it is subjectively random. If 
so, the Generate Response process is triggered and the 
proposed response is generated (and sent to the 
Experimenter). If not, an additional process, Inhibit & 
Switch, is invoked to inhibit generation of the proposed 
response. This process also switches the current schema that 
is used to produce a potential response by Propose 
Response. This process can then propose an alternative 
response, which will then be added to Response Buffer and a 
further round of evaluation for randomness will take place. 
This part of the model will loop until a proposed response is 
considered by Check Random? to be sufficiently random. 

On the first trial Propose Response generates its proposal 
by selecting at random from the response set. On subsequent 
trials, however, it selects a response by applying a “schema” 
to (its recollection of) the previous response. Schemas 
implement associations between responses. Thus one 
schema might implement the association of selecting the 
opposite response, while other schemas might implement 
the associations of selecting an adjacent response. Current 
Schema stores the schema that is, at a given point in time, 
being used to generate responses. Like Response Buffer, it is 
limited to storing just one item (i.e., one schema) at a time. 
The schema itself is generated by Inhibit & Switch. We 
assume that schema generation may itself be modelled as a 
random process with the probability of generating any 
particular schema being a function of that schema’s 
prepotency. For example, the schema for selecting a 
response that is diametrically opposite to the previous 
response is assumed to be selected more frequently than the 

schema for, say, selecting a response that is 72o clockwise 
from the previous response. 

Recent Responses maintains a record of recently 
generated responses. This record is used in two ways: Check 
Random? uses it to test whether a proposed response is 
subjectively random. Propose Responses uses it to provide 
the seed for generating the next proposed response from the 
model’s (recollection of its) previous response and the 
current schema. Thus, unlike the other buffers its capacity is 
not limited to one. For the purposes of the simulations 
reported here, it is allowed an unlimited capacity but decay 
is imposed on its elements. Thus, there is a small probability 
that an element placed in the buffer on processing cycle n 
will disappear from the buffer on each subsequent 
processing cycle. 

How should Check Random? work? Random generation 
is known to be a task that produces large individual 
differences, and one aspect of the task that may be open to 
individual differences is the subjective assessment of what 
is or is not random. One could certainly envisage this being 
a complex process – at least for subjects who perform well 
on the task. For current purposes, however, we adopt a very 
simplistic criterion of subjective randomness: namely that if 
a response is present in Recent Responses then it cannot be 
sufficiently random. While this might seem implausible, 
simulations demonstrate that it yields a surprisingly good 
account of the experimental data. 

The model as described is underspecified in two critical 
ways. Neither the rate of decay of elements from Recent 
Responses nor the probability distribution of schemas (as 
required by the schema generation sub-process of Inhibit & 
Switch) have been specified. These are effectively free 
parameters of the model. A series of simulations was 
performed to explore the effects of these parameters. In each 
case, 36 blocks of 100 trials were simulated (corresponding 
to the 36 subjects tested by Cooper et al., submitted), and 
the resultant sequences scored according to the measures of 

 
Figure 3: The box-and-arrow diagram of the random generation 
model. 

Table 2: Mean simulated values of measures of randomness as a 
function of memory decay rate for two distributions of prepotent 
responses. (Note: The memory decay rate is the half-life in cycles 
of memory elements, that is, the number of cycles an element 
remains in a buffer on average before the probability of it decaying 
is 50%.) 
 

Half-Life R RNG RR AA OA 
10 0.937 0.405 0.006 0.379 0.016 
20 0.737 0.275 0.014 0.260 0.045 
30 0.790 0.262 0.018 0.241 0.054 
40 0.885 0.251 0.019 0.234 0.064 

a) All schemas equi-probable. 
 
Half-Life R RNG RR AA OA 

10 0.621 0.398 0.011 0.433 0.059 
20 0.753 0.278 0.014 0.327 0.108 
30 0.771 0.263 0.018 0.285 0.131 
40 0.924 0.256 0.024 0.281 0.141 

b) Strong bias towards opposite and adjacent responses. 
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randomness described in the previous section. Results are 
shown in Table 2. 

Consider first the case where all schemas are equi-
probable (Table 2a). Here, R scores (which can in theory 
range from 0 to 100) are reasonably similar to those 
obtained from human subjects (which ranged from 0.962 in 
the control condition to 2.048 in the digit-switching 
condition; see Table 1). RNG scores are also comparable to 
those obtained with human subjects. The three measures 
related to specific bi-grams show that the primary difference 
between sequences generated by human subjects and the 
model lies in the model’s tendency to produce too few 
opposite associates (around 6 in 100 when the half-life of 
recent responses is greater than 20, compared to 13 in 100 
for human subjects). 

But why, given the mechanism for checking randomness, 
do repeat responses occur at al? In fact, such responses can 
be proposed for two reasons: either the “generate repeat” 
schema is selected and applied to the immediately preceding 
response, or the immediately preceding response decays 
from Recent Responses and the schema that was applied 
(successfully) to the response produced on trial n-2 to 
generate a proposed response on trial n-1 is applied again on 
trial n with the response from trial n-2. Repeat responses 
proposed via the first of these are typically rejected by 
Check Random? as being insufficiently random (because 
unless they decay at a critical moment they will still be in 
Recent Responses). Thus, repeat responses are generally 
produced by the model because it essentially “forgets” that 
it has produced the same response on the previous trial. 

The low rate of opposite associates arises from a similar 
interaction of processes. Here the issue is that the “generate 
opposite” schema is unusual in that applying it twice in 
succession will produce the sequence R1 R2 R1. If R1 has not 
decayed from Recent Responses when it is generated the 
second time it will be suppressed by Check Random?, thus 
causing the model to produce fewer repeat responses than 
would be expected by chance. 

The low rate of opposite associates may be ameliorated 
by assuming that the “generate opposite” schema has a 
relatively high probability of controlling Propose Response. 
The figures in Table 2b were generated by assuming that 
this schema was three times more likely to be selected by 
the switching sub-process of Inhibit & Switch than the 
“generate adjacent” schemas, which were in turn slightly 
more likely than the schemas for generating responses that 
bear other relations to the previous response. Note in 
particular that both of the last two lines of Table 2b provide 
a reasonable fit to the subject data from the control 
condition, with all simulated data being within one standard 
deviation of the observed means. 

Modelling Secondary Task Effects 
How might concurrent performance of a secondary task 
affect random generation? Given the simulations reported 
above, one can rule out one simple possibility. Suppose the 
effect of secondary task performance (whatever the task) 

was merely to impair working memory maintenance 
(modelled by increasing the speed with which elements 
decay from Recent Responses). The simulations reported in 
Table 2b show that while this provides a good account of 
the effects of secondary task performance on bi-gram 
measures (RNG, RR, AA and OA), it fails to account for the 
effect of any of the secondary tasks on the R score. Recall 
that this score increases in all dual-task conditions. 
Impairing working memory by decreasing the half-life of 
elements in Recent Responses has the reverse effect. 

Two further possibilities may also be rejected. First, 
suppose that performance of a secondary task were to 
decrease the accuracy of the Check Random? process. Space 
limitations prevent presentation of full results, but 
simulations show that decreasing the accuracy of the 
relevant rule results in a large increase in the OA score – 
again contrary to what is observed in any of the conditions 
for the human data. Second, suppose that performance of a 
secondary task were to impair the encoding of responses as 
they are generated. Simulations show that decreasing the 
success of this process results in a large increase in the RR 
score – yet again contrary to what is observed in any of the 
conditions for the human data.  

The simulations thus far argue against an account of the 
data of Cooper et al. (submitted) in terms of reduced 
efficiency or effectiveness of a single process or function. 
Consider then one further manipulation, namely reducing 
the effectiveness of the switching sub-process following 
proposal of an apparently non-random response, and 
consider this in conjunction with reduced maintenance of 
memory elements. Table 3 shows the effect of 
simultaneously reducing switching efficiency to 10% and 
decreasing the half-life of elements in Repeat Responses. 
Here the results are more positive. In particular, this 
manipulation results in increased R scores and RNG scores, 
coupled with decreased OA scores. AA scores are also 
generally higher than in the equivalent simulations when 
switching is 100% efficient, replicating the effect seen in all 
dual-task conditions of secondary task on AA. 

Discussion 
The above results do not provide a perfect fit to any of the 
experimental conditions, but they are suggestive. One 
possibility is that all secondary tasks impose some common 
load on random generation, the effect of which is to limit 
memory for previous responses. From Table 2 this may 
explain the increase in RNG and AA scores in all secondary 

Table 3: Mean simulated values of measures of randomness as a 
function of memory decay rate when switching efficiency is 
reduced to 10%. (Cf. Table 2.) 
 

Half-Life R RNG RR AA OA 
10 3.792 0.667 0.049 0.393 0.112 
20 1.993 0.451 0.074 0.355 0.100 
30 1.451 0.337 0.082 0.307 0.098 
40 1.454 0.328 0.081 0.349 0.103 
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task conditions, coupled with the corresponding decrease in 
RR and OA scores in those conditions. On this account, the 
digit-switching and go-no go tasks would appear to impose 
similar memory burdens, while the 2-back task imposes a 
greater burden (cf. Figure 2). This is consistent with the 2-
back task being a demanding memory task. 

In addition to these task-general effects, however, task-
specific effects seem to be required to explain the increase 
in R score in the digit-switching and 2-back dual-task 
conditions. Decreasing the efficiency of the switching sub-
process can certainly account for an increase in R, as shown 
in Table 3, and the fit between the data in line 2 of Table 3 
and subject data when random generation is coupled with 
the 2-back task (line 2 of Table 1) is of particular note. Yet 
this leaves a puzzle. The 2-back task was not intended to be 
a switching task. Note however that any dual-task situation 
is likely to result in switching between the two tasks, and 
this would be expected to impair the efficiency of switching 
between schemas within the primary random generation 
task. This still leaves a question over the production of 
repeat responses – if switching failure is behind the 
performance in the 2-back condition this does not explain 
the very low RR score in that condition. However, a 
limitation of the current model is that all representations are 
discrete. Thus, elements are either in or not in a buffer. 
Elsewhere, low RR scores have been attributed to inhibition 
of a response following its production. Elaborating the 
model within an activation-based system may be necessary 
in order to account for the effects of condition on RR. 

We began by considering the role of cognitive control in 
complex tasks, and in particular in the generation of random 
sequences. The simulation results reported here provide a 
simple yet empirically adequate account of the basic task. 
Capturing the dual-task data of Cooper et al. (submitted) has 
proved to be more difficult, but in attempting to do so the 
model suggests that (a) all tasks impose an increased load 
which may be simulated by an increase in decay of the store 
of recent responses, and (b) that an additional load on the 
switching function may account for the increase in R score 
observed in two of Cooper et al.’s dual-task conditions.  
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