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Abstract

Cognitive control processes, such as those involved in
response inhibition or task switching, have been the focus of
much recent research. Few studies, however, have considered
how such processes work together in tasks that require
multiple control processes. This paper reports a computational
study of random sequence generation and the cognitive
control processes involved therein. The task, which is argued
to involve multiple control processes, produces several
dependent measures. These measures are held to be
differentially dependent on the differential efficacy of the
various underlying control processes. Initial simulations
demonstrate that the model is capable of reproducing subject
performance on the basic task. Additional simulations explore
differential interference effects of different secondary tasks
(held to interfere with different control processes) on the
different random generation dependent measures. The work
illustrates how the putative control processes may interact in
the production of successive responses during the random
generation task.

Keywords: Random generation; executive processes;
cognitive control; response inhibition; set shifting;
monitoring.

Introduction

A substantial body of evidence suggests that behaviour in
complex tasks is dependent on a number of functionally
(and anatomically) distinct control functions, such as
response inhibition, memory updating, task shifting and
monitoring. One study which well supports this position is
that of Miyake et al. (2000), who had over 130 subjects
complete nine relatively simple tasks (three of which were
primarily held to tap the control function of response
inhibition, three to tap memory updating and three to tap
task shifting) and five more complex tasks (such as solving
Tower of Hanoi problems, which were thought to tap
multiple control functions). Miyake and colleagues used
confirmatory factor analysis on performance measures from
the nine simple tasks to extract three factors, corresponding
conceptually to response inhibition, memory updating and
task shifting. They followed this up with structural equation
modelling, using the three derived factors, to determine the
involvement of those factors in performance of the complex
tasks. The analysis supported the involvement of different
subsets of the three separable factors in performance of the
different complex tasks. Similar results using different
batteries of tasks have been obtained with developmental
(Bull et al., 2004) and neuropsychological (Stuss et al.,
2005; Shallice et al., 2008) samples, while a number of
other studies have focused on specific control functions (for

reviews see, e.g., Monsell, 2003, and Vandierendonck et al.,
2010, for task switching, and Aron, et al., 2004, and
Verbruggen & Logan, 2008, for response inhibition).

In response to this empirical work, a number of
computational accounts of the operation of various control
functions have been proposed. For example, Jones et al.
(2002) modelled a process of monitoring and adjusting for
response conflict within a simple interactive activation
model of two-alternative forced choice by using a measure
of response conflict to modulate the baseline activity of
response units — when conflict was high the baseline activity
was reduced, leading to slower/more deliberate responding
(see also Botvinick et al., 2001). Other researchers have
focussed on different control functions. Thus, Gilbert and
Shallice (2001) were able to account for the behavioural
effects of task shifting by modifying an existing interactive
activation model of the Stroop task to allow a form of
carryover between trials, while O’Reilly and Frank (2006)
have provided a computational account of possible control
processes related to working memory.

As indicated by the preceding discussion, the existence of
control functions is widely accepted in the behavioural,
neuropsychological (and  neuroimaging) literatures.
Moreover, specific functions have received substantial
attention in the computational literature. However, while the
behavioural literature would suggest that control functions
are likely to be of most importance during the performance
of relatively complex tasks, the computational literature has
focussed on relatively simple tasks (e.g., two-alternative
forced choice and Stroop). It has, to date, not considered
how control functions might interact in complex task
performance. Just as critically, existing cognitive
architectures such as ACT-R (Anderson et al., 2008) —
systems that are routinely applied to modelling the
performance of complex tasks — generally fail to make any
explicit appeal to control functions of the kind postulated in
the other literatures. On the basis of this architectural work,
one might therefore argue that such control functions are
epiphenomenal (cf. Cooper, 2010).

The purpose of this paper is to explore, from a
computational perspective, how different cognitive control
processes might interact in a task that appears to tap
multiple such processes. We begin by describing the task —
random sequence generation — together with a verbal
account of the control processes that have been held to be
involved in performance of the task. Target data from a
dual-task study of random sequence generation is then
reported which suggests that secondary tasks which tap
different control processes (specifically, updating and
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monitoring of working memory, task shifting and response
inhibition) interfere with random generation in different
ways. The focus of the paper, however, is a computational
account of random generation which critically involves the
control processes of memory updating and monitoring, task
shifting, and response inhibition. The model is shown to be
capable of reproducing control performance in the task.
Additional simulations, aimed at accounting for the different
dual-task interference effects, explore the possible roles of
cognitive control processes in the task. The work
demonstrates how control processes may interact in the
performance of tasks with complex control requirements
while providing additional support for the fractionation of
cognitive control.

The Random Generation Task

In random generation tasks subjects are provided with a
response set (e.g., integers from 0 to 9) and required to
generate a sequence of responses from this set such that the
sequence is subjectively random. The task is of interest
because, despite the apparent loose specification of the task,
subjects exhibit strong biases, producing sequences that
deviate from true randomness in reliable ways. For example,
repeat responses (i.e., the same response on two consecutive
trials) are typically generated with lower than expected
frequency (e.g. Rapoport & Budescu, 1997; Towse &
Valentine, 1997).

There are numerous ways of measuring the degree to
which a sequence is random. For example, in a truly random
sequence one would expect, over the course of a sufficiently
long sequence, that the frequency of each response is equal.
One would also expect the frequency of response pairs (i.e.,
R, followed by R;) to be equal, so that it is not possible to
predict with greater than chance accuracy the next response
given the previous response. Towse and Neil (1998) survey
a range of measures of randomness and show, through
factor analysis of subjects’ responses, that the different
measures of randomness cluster into several factors. Thus,
several measures of randomness index “equality of response
usage” (i.e., whether all responses are generated with
roughly equal frequency, or whether there is a bias towards
some responses and against others). Similarly, several other
measures index “prepotent associates” (i.e., whether some
pairs or “bi-grams” of responses — associates — occur more
frequently than would be expected by chance).

The various measures of randomness are also affected by
the format of the response. For example, responses may be
generated verbally (Baddeley et al., 1998; Towse, 1998), in
writing (Towse & Valentine, 1997), or using a keyboard
(Baddeley, et al., 1998; Towse, 1998). If responses are
generated with two hands on a keyboard, then subjects tend
to alternate hands more frequently than appropriate. Biases
towards prepotent associates are therefore specific to the
format of the response. In a similar vein, equality of
response usage tends to be poorer when the response set is
internalised (as in verbal digit generation), in contrast to
when the response set is externally realised (as in selection

from a keyboard) and hence when random generation
involves selecting from that externally realised set.

Random generation tasks have a surprisingly long history
in psychological research (see Wagenaar, 1972, for an early
review) and have been widely used in examining cognitive
control processes (e.g., Baddeley, et al., 1998; Miyake et al.,
2000). To understand why control processes might be
relevant, it is useful to consider a possible process model of
random generation. Suppose one is attempting to generate
the n” response in a series, having already generated n-I/
responses. A possible response somehow comes to mind,
perhaps because it is in some way associated with the
previous response (e.g., if generating digits and the previous
response was 8, the possible response 4 might come to
mind, corresponding to a half of 8). Before producing the
response, one must then decide if it is sufficiently random
given the previous n-/ responses. Thus it is necessary to
monitor ones likely responses, maintain an up-to-date record
of previous responses, and possibly inhibit a potential
response if it is deemed “too predictable”.

This process account of random generation is basically
that of Baddeley et al. (1998; see also Rapoport & Budescu,
1997), but random generation was also one of the complex
tasks investigated by Miyake et al. (2000). Rather than
considering a specific processing account of random
generation, Miyake et al. used an analysis of individual
differences together with structural equation modelling to
determine the relation between their three specific control
processes — response inhibition, memory monitoring and
updating and task shifting — and the factors found (by factor
analysis) to underlie random generation. They found that
measures of randomness associated strongly with “equality
of response usage” were correlated with the control process
of memory monitoring and updating. That is, subjects who
performed well on memory monitoring and updating tasks
tended in random generation to produce all responses with
roughly equal frequencies, in contrast to subjects who
performed poorly on memory monitoring and updating
tasks, who tended to show biases towards some responses
and away from others. Similarly, measures of randomness
associated strongly with “prepotent associates” were
inversely correlated with the efficacy of the putative control
process of response inhibition. Thus, subjects who
performed poorly at response inhibition tasks tended in
random generation to produce some pairs of responses more
frequently than others. These findings seem plausible, but
they would benefit from being embedded within a process
model for a complete understanding of the operation of
control processes in random generation.

Secondary Task Effects on
Random Generation

Cooper et al. (submitted) take an alternative approach to
determining the control process requirements of random
generation. In their study, subjects completed a random
generation task under four conditions; first as a solitary task
and then within a dual-task paradigm concurrently with each
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Figure 1: The clock-face layout of the random generation task of
Cooper et al. (submitted). Subjects were required to click with the
mouse on one letter on each trial. The mouse was then
automatically repositioned in the central circle.

of three secondary tasks. The random generation task
involved using a mouse to select responses from a clock-
face type of display with ten options (see Figure 1). Thus
the response set was externally realised. Moreover two types
of prepotent associates specific to the task can be identified:
opposite associates, where successive responses are 180°
apart (A-F, B-G, C-H, etc.), and adjacent associates, where
successive responses are adjacent in a clockwise or anti-
clockwise direction (A-B, A-J, B-A, B-C, etc.).

The three secondary tasks were designed to primarily tap
different control processes. Thus the digit-switching task
was held to tap the process of task-shifting, the 2-back task
to tap memory monitoring and updating processes, and the
go-no go task to tap response inhibition. In each of the three
dual-task conditions subjects were required simultaneously
to complete the random generation task (which was visual-
manual in nature) and one of these secondary tasks (which
were each auditory-vocal in nature). The full procedure is
described in Cooper et al. (submitted).

The effects of condition on five measures of randomness
are shown in Table 1. The measures are: R (which measures
equality of response usage); RNG (which measures equality
of bi-gram usage); RR (the proportion of responses that are
repeats); AA (the proportion of responses that are adjacent
associates) and OA the proportion of responses that are
opposite associates). Figure 2 shows the data in a way that
more clearly shows the effect of condition on each

Table 1: Mean values of measures of randomness in the control
condition and each of the three experimental conditions. (CTRL =
control, DS = digit-switching, 2B = 2-back, GnG = go-no go.)

R RNG RR AA OA

CTRL 0962 0300 0.014 0.259 0.131
DS 2.048 0410 0.004 0.328 0.136
2B 1.979 0461 0.002 0424 0.097
GnG 1.196 0.388 0.005 0.334 0.130
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Figure 2: z-scores for measures of randomness in the three dual-
task conditions, based on means and standard deviations of the
control condition. Error bars indicate the standard error of the mean
z-score in each condition.

dependent measure. In this figure, the means and standard
deviations of each dependent measure in the control
condition were used to convert scores from the three
experimental conditions into z-scores, clarifying the effect
of each condition on the different dependent measures. As
can be seen from the figure, digit-switching and 2-back have
similar large effects on R, with go-no go having a lesser
effect. In contrast, 2-back has the largest effect on RNG,
RR, AA and OA, with digit-switching and go-no go having
similar lesser effects. (All effects apparent in the figure were
statistically significant except those concerning RR, for
which statistical power was limited by a floor effect.)

These results appear to conflict with those of Miyake et
al. (2000) described in the previous section. For example,
while the 2-back task — held to tap memory monitoring and
updating — had a significant effect on the R measure (as
would be predicted), its effect was similar to that of the
digit-switching task — held to tap set shifting (which would
not be predicted). More critically, the effect of the go-no go
task — held to tap response inhibition — on bi-gram measures
(RNG, RR, AA and OA) was less than that of the memory
monitoring and updating task. In contrast, the results seem
more consistent with the verbal process model of Baddeley
et al. (1998) described in the previous section. The
following two sections present a computational model of the
task based on this verbal process account, together with
simulations that explore the possible effects of secondary
tasks and hence the relevant control processes.

A Model of the Random Generation Task

The model of random generation described here was
developed within COGENT (Cooper & Fox, 1998), a
graphical object-oriented environment for cognitive
modelling. COGENT allows information processing models
to be sketched as box-and-arrow diagrams. Such a diagram
may then be fleshed out into a fully functioning model by
providing if/then rules and property settings for each box.
Figure 3 shows the box-and-arrow structure of the random
generation model. The model consists of three buffers
(shown as rounded rectangular boxes) and four processes
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Figure 3: The box-and-arrow diagram of the random generation
model.

(shown as hexagonal boxes). Buffers store information
while processes transform information or copy it from one
buffer to another. Arrows with pointed heads show
information flow (implemented by message passing), while
arrows with blunt heads indicate querying of buffer contents
by processes.

The model functions as follows. When prompted by the
Experimenter (the faded rectangular box), Propose
Response attempts to propose a single random response
from the response set. How this is done is discussed below,
but the result is added to Response Buffer, a temporary
storage device with a capacity of just one item. When an
element is present in Response Buffer, the Check Random?
process evaluates that response in the context of previous
responses to determine whether it is subjectively random. If
so, the Generate Response process is triggered and the
proposed response is generated (and sent to the
Experimenter). If not, an additional process, Inhibit &
Switch, is invoked to inhibit generation of the proposed
response. This process also switches the current schema that
is used to produce a potential response by Propose
Response. This process can then propose an alternative
response, which will then be added to Response Buffer and a
further round of evaluation for randomness will take place.
This part of the model will loop until a proposed response is
considered by Check Random? to be sufficiently random.

On the first trial Propose Response generates its proposal
by selecting at random from the response set. On subsequent
trials, however, it selects a response by applying a “schema”
to (its recollection of) the previous response. Schemas
implement associations between responses. Thus one
schema might implement the association of selecting the
opposite response, while other schemas might implement
the associations of selecting an adjacent response. Current
Schema stores the schema that is, at a given point in time,
being used to generate responses. Like Response Buffer, it is
limited to storing just one item (i.e., one schema) at a time.
The schema itself is generated by Inhibit & Switch. We
assume that schema generation may itself be modelled as a
random process with the probability of generating any
particular schema being a function of that schema’s
prepotency. For example, the schema for selecting a
response that is diametrically opposite to the previous
response is assumed to be selected more frequently than the

schema for, say, selecting a response that is 72° clockwise
from the previous response.

Recent Responses maintains a record of recently
generated responses. This record is used in two ways: Check
Random? uses it to test whether a proposed response is
subjectively random. Propose Responses uses it to provide
the seed for generating the next proposed response from the
model’s (recollection of its) previous response and the
current schema. Thus, unlike the other buffers its capacity is
not limited to one. For the purposes of the simulations
reported here, it is allowed an unlimited capacity but decay
is imposed on its elements. Thus, there is a small probability
that an element placed in the buffer on processing cycle n
will disappear from the buffer on each subsequent
processing cycle.

How should Check Random? work? Random generation
is known to be a task that produces large individual
differences, and one aspect of the task that may be open to
individual differences is the subjective assessment of what
is or is not random. One could certainly envisage this being
a complex process — at least for subjects who perform well
on the task. For current purposes, however, we adopt a very
simplistic criterion of subjective randomness: namely that if
a response is present in Recent Responses then it cannot be
sufficiently random. While this might seem implausible,
simulations demonstrate that it yields a surprisingly good
account of the experimental data.

The model as described is underspecified in two critical
ways. Neither the rate of decay of elements from Recent
Responses nor the probability distribution of schemas (as
required by the schema generation sub-process of Inhibit &
Switch) have been specified. These are effectively free
parameters of the model. A series of simulations was
performed to explore the effects of these parameters. In each
case, 36 blocks of 100 trials were simulated (corresponding
to the 36 subjects tested by Cooper et al., submitted), and
the resultant sequences scored according to the measures of

Table 2: Mean simulated values of measures of randomness as a
function of memory decay rate for two distributions of prepotent
responses. (Note: The memory decay rate is the half-life in cycles
of memory elements, that is, the number of cycles an element
remains in a buffer on average before the probability of it decaying
is 50%.)

Half-Life R RNG RR AA OA
10 0.937 0405 0.006 0379 0.016
20 0.737 0.275 0.014 0.260 0.045
30 0.790 0.262 0.018 0.241 0.054
40 0.885 0.251 0.019 0.234 0.064

a) All schemas equi-probable.

Half-Life R RNG RR AA OA
10 0.621 0.398 0.011 0433 0.059
20 0.753 0.278 0.014 0.327 0.108
30 0.771 0.263 0.018 0.285 0.131
40 0924 0.256 0.024 0.281 0.141

b) Strong bias towards opposite and adjacent responses.
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randomness described in the previous section. Results are
shown in Table 2.

Consider first the case where all schemas are equi-
probable (Table 2a). Here, R scores (which can in theory
range from O to 100) are reasonably similar to those
obtained from human subjects (which ranged from 0.962 in
the control condition to 2.048 in the digit-switching
condition; see Table 1). RNG scores are also comparable to
those obtained with human subjects. The three measures
related to specific bi-grams show that the primary difference
between sequences generated by human subjects and the
model lies in the model’s tendency to produce too few
opposite associates (around 6 in 100 when the half-life of
recent responses is greater than 20, compared to 13 in 100
for human subjects).

But why, given the mechanism for checking randomness,
do repeat responses occur at al? In fact, such responses can
be proposed for two reasons: either the “generate repeat”
schema is selected and applied to the immediately preceding
response, or the immediately preceding response decays
from Recent Responses and the schema that was applied
(successfully) to the response produced on trial n-2 to
generate a proposed response on trial n-/ is applied again on
trial » with the response from trial n-2. Repeat responses
proposed via the first of these are typically rejected by
Check Random? as being insufficiently random (because
unless they decay at a critical moment they will still be in
Recent Responses). Thus, repeat responses are generally
produced by the model because it essentially “forgets” that
it has produced the same response on the previous trial.

The low rate of opposite associates arises from a similar
interaction of processes. Here the issue is that the “generate
opposite” schema is unusual in that applying it twice in
succession will produce the sequence R; R, R;. If Ry has not
decayed from Recent Responses when it is generated the
second time it will be suppressed by Check Random?, thus
causing the model to produce fewer repeat responses than
would be expected by chance.

The low rate of opposite associates may be ameliorated
by assuming that the “generate opposite” schema has a
relatively high probability of controlling Propose Response.
The figures in Table 2b were generated by assuming that
this schema was three times more likely to be selected by
the switching sub-process of Inhibit & Switch than the
“generate adjacent” schemas, which were in turn slightly
more likely than the schemas for generating responses that
bear other relations to the previous response. Note in
particular that both of the last two lines of Table 2b provide
a reasonable fit to the subject data from the control
condition, with all simulated data being within one standard
deviation of the observed means.

Modelling Secondary Task Effects

How might concurrent performance of a secondary task
affect random generation? Given the simulations reported
above, one can rule out one simple possibility. Suppose the
effect of secondary task performance (whatever the task)

Table 3: Mean simulated values of measures of randomness as a
function of memory decay rate when switching efficiency is
reduced to 10%. (Cf. Table 2.)

Half-Life R RNG RR AA OA
10 3.792 0.667 0.049 0393 0.112
20 1.993 0451 0.074 0.355 0.100
30 1.451 0337 0.082 0307 0.098
40 1454 0.328 0.081 0.349 0.103

was merely to impair working memory maintenance
(modelled by increasing the speed with which elements
decay from Recent Responses). The simulations reported in
Table 2b show that while this provides a good account of
the effects of secondary task performance on bi-gram
measures (RNG, RR, AA and OA), it fails to account for the
effect of any of the secondary tasks on the R score. Recall
that this score increases in all dual-task conditions.
Impairing working memory by decreasing the half-life of
elements in Recent Responses has the reverse effect.

Two further possibilities may also be rejected. First,
suppose that performance of a secondary task were to
decrease the accuracy of the Check Random? process. Space
limitations prevent presentation of full results, but
simulations show that decreasing the accuracy of the
relevant rule results in a large increase in the OA score —
again contrary to what is observed in any of the conditions
for the human data. Second, suppose that performance of a
secondary task were to impair the encoding of responses as
they are generated. Simulations show that decreasing the
success of this process results in a large increase in the RR
score — yet again contrary to what is observed in any of the
conditions for the human data.

The simulations thus far argue against an account of the
data of Cooper et al. (submitted) in terms of reduced
efficiency or effectiveness of a single process or function.
Consider then one further manipulation, namely reducing
the effectiveness of the switching sub-process following
proposal of an apparently non-random response, and
consider this in conjunction with reduced maintenance of
memory elements. Table 3 shows the effect of
simultaneously reducing switching efficiency to 10% and
decreasing the half-life of elements in Repeat Responses.
Here the results are more positive. In particular, this
manipulation results in increased R scores and RNG scores,
coupled with decreased OA scores. AA scores are also
generally higher than in the equivalent simulations when
switching is 100% efficient, replicating the effect seen in all
dual-task conditions of secondary task on AA.

Discussion

The above results do not provide a perfect fit to any of the
experimental conditions, but they are suggestive. One
possibility is that all secondary tasks impose some common
load on random generation, the effect of which is to limit
memory for previous responses. From Table 2 this may
explain the increase in RNG and AA scores in all secondary
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task conditions, coupled with the corresponding decrease in
RR and OA scores in those conditions. On this account, the
digit-switching and go-no go tasks would appear to impose
similar memory burdens, while the 2-back task imposes a
greater burden (cf. Figure 2). This is consistent with the 2-
back task being a demanding memory task.

In addition to these task-general effects, however, task-
specific effects seem to be required to explain the increase
in R score in the digit-switching and 2-back dual-task
conditions. Decreasing the efficiency of the switching sub-
process can certainly account for an increase in R, as shown
in Table 3, and the fit between the data in line 2 of Table 3
and subject data when random generation is coupled with
the 2-back task (line 2 of Table 1) is of particular note. Yet
this leaves a puzzle. The 2-back task was not intended to be
a switching task. Note however that any dual-task situation
is likely to result in switching between the two tasks, and
this would be expected to impair the efficiency of switching
between schemas within the primary random generation
task. This still leaves a question over the production of
repeat responses — if switching failure is behind the
performance in the 2-back condition this does not explain
the very low RR score in that condition. However, a
limitation of the current model is that all representations are
discrete. Thus, elements are either in or not in a buffer.
Elsewhere, low RR scores have been attributed to inhibition
of a response following its production. Elaborating the
model within an activation-based system may be necessary
in order to account for the effects of condition on RR.

We began by considering the role of cognitive control in
complex tasks, and in particular in the generation of random
sequences. The simulation results reported here provide a
simple yet empirically adequate account of the basic task.
Capturing the dual-task data of Cooper et al. (submitted) has
proved to be more difficult, but in attempting to do so the
model suggests that (a) all tasks impose an increased load
which may be simulated by an increase in decay of the store
of recent responses, and (b) that an additional load on the
switching function may account for the increase in R score
observed in two of Cooper et al.’s dual-task conditions.
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