Dynamics of Neuropsychological Testing

Michael H. Coenl’z, Timothy S. Chang3, Bruce Hermann4, Asenath La Rue’, Mark Sager5

Department of Biostatistics and Medical Informatics’
Department of Computer Sciences”
Institute for Clinical and Translational Research?
Department of Neurology”
Wisconsin Alzheimer’s Institute’
University of Wisconsin, Madison, WI 53706
mhcoen@biostat.wisc.edu, {tschang3, larue, masager}@wisc.edu, hermann@neurology.wisc.edu

Abstract

How should we analyze repeated trials in neuropsychological
testing? It has long been known that experimental subjects
display distinct stages of acclimatization and subsequent
saturation during cognitive testing (Thurstone, 1927). For
example, in list learning tests examining memory, it has been
demonstrated that repeated exposure to a fixed enumeration
of items can improve recall. However, we think it is equally
important to examine acclimatization of the subjects to the
test taking procedure itself. In other words, subjects must
grow comfortable with the paradigm of the test before we can
assume the results correspond with our interpretations of
them. In this paper, we examine results of the Rey Auditory-
Verbal Learning Test administered to the largest Alzheimer’s
disease family history cohort. We demonstrate the most
informative signal in a neuropsychological test may
contradict a priori assumptions about the test’s interpretation.
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Introduction

Psychological tests often employ repeated trials of similar
or identical tasks. Sometimes, these repetitions are intended
to allow subjects to acclimatize to the stimulus and/or
decision making paradigms, e.g., as in forced choice
experiments (Mitchell & Jolley, 2009). Indeed, in
psychoacoustic experiments, subjects may be unable to even
distinguish phenomena of interest without substantial prior
exposure and early practice rounds are commonly discarded
as uninformative.

In neuropsychological tests, it is commonplace to conduct
multiple trials of a test, from which summary scores may be
derived (Lezak et. al, 2004). Multiple trials can also reveal
perseverative errors, which are characteristic of a number of
cognitive pathologies.  However, in tests focused on
evaluating memory, it has been demonstrated that enhanced
performance may occur after repeated examinations
(Benedict & Zgaljardic, 1998). Thus, subjects are often
tested on a smaller number of rounds than might otherwise
be desired for acclimatization.

Although examining summary scores averaged over trials
is commonplace, the individual trial scores can vary

enormously from trial to trial. This may occur even in
simple tests such as the Rey Auditory-Verbal Learning Test
(AVLT), which is repeated only a few times. In this paper,
we provide evidence this is not simply due to naturally
occurring variance. Rather, individual trials can be far more
informative than aggregate summary scores.

We believe that during tests involving a relatively small
number of repetitions, subjects are simultaneously
acclimatizing and responding to the testing procedure itself,
which may conflate interpretations of their responses when
viewed via aggregate summary measures. In other words,
they are still “learning” the test while they are “taking” the
test; we believe the shift between these two processes
accounts for much variance across trials.

We have previously demonstrated (Coen et al., 2009) that
even in non-memory based experiments, such as the
Conceptual Set Shifting Task (Milner, 1964) conducted on
human and macaque subjects, performance varies
substantially but predictably over the course of the trials.
Specifically, subjects’ performance on the first few rounds
is both slow and inaccurate. However, by the third round, it
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Figure 1 — Viewing the Conceptual Set Shifting Task (CSST) by
individual trial. In the CSST, each trial consists of a lengthy procedure
of trying to guess a hidden concept correctly 10 times in a row, after
which a new secret concept is selected for the next trial. By examining
both the times taken per decision and the subjects’ error rates, it
appears clear that the results become meaningful according to the test’s
desiderata by the third trial, whereas the first two trials reflect
acclimatization. We see this in the dramatic decrease in the average
time taken between decisions and the precipitous drop in error rate.
This illustrates both that aggregate summary scores combining all five
trials are conflating (at least) two different phenomena, and it
additionally provides a signal that the subject’s results after trial 3
more meaningfully reflect performance. (Figure adapted from Coen et
al. (2009)).
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appears clear that human subjects have learned how to take
the test, as illustrated in Figure 1. Only after internalizing
the rules of the test, do subjects clearly begin to respond in
ways that meet our expectations.

In this paper, we reexamine results from the Rey
Auditory-Verbal Learning Test obtained from the
Wisconsin Registry for Alzheimer’s Prevention (Sager,
Hermann, & La Rue, 2005). It is the largest family history
cohort of its kind, consisting of approximately 1,200
asymptomatic patients. We demonstrate that in using the
AVLT to separate familial history from control populations,
previously unknown scoring measures found via machine
learning approaches provide far more statistically significant
results than do intuitively designed scoring metrics. This
mirrors our previously cited work that the strongest signal —
which may not be obvious in advance — is contained after
several trials, presumably when subjects have acclimatized
to the experiment framework itself. While the data in this
paper are drawn from a large cohort study of Alzheimer’s
disease (AD), there is nothing specific to AD in these
results, and we believe these findings, buttressed by our
earlier work on the CSST, are of interest in understanding
and analyzing the results of neuropsychological testing more
generally.

Background

The Rey Auditory Verbal Learning Test (AVLT) (Rey,
1964) is a neuropsychological test consisting of eight trials,
of which the first five trials are often scrutinized more
carefully for studying Alzheimer’s disease (La Rue et al.,
2008; Ramakers et al.,, 2010; Woodard, Dunlosky, &
Salthouse, 1999). Briefly, in this test, a psychometrist reads
15 unrelated nouns and the subject repeats as many words as
possible in whatever order he or she finds natural.

Summary scores — such as the number of words recalled
per trial or the total number of recalled words across all
trials — can to varying degrees of confidence differentiate
normal persons from those with early-stage AD (Bigler,
Rosa, Schultz, Hall, & Harris, 1989; Mitrushina, Satz, &
Van Gorp, 1989; Woodard, et al., 1999).

Derivative Performance Measures

Summary scores are often used to create proxy metrics
thought to summarize higher-level cognitive functioning. It
is often the case, as discussed below, that these proxy
measures are averaged across trials to derive aggregate test
scores for evaluating patients. It is this process that we
deem problematic.

In the AVLT, differences have been noted between
persons with mild AD and control groups on serial position
effects and on subjective organization during recall.
Persons with AD, even at mild stages, disproportionately
recall words from the end of a supraspan list (the “recency
effect”) compared to those at the beginning of the list (the
“primacy effect”) (Capitani, Della Sala, Logie, & Spinnler,
1992; Hermann et al., 1996). The interpretation is that

words at the end of the list (i.e., the recent words) are easier
for patients with mild AD to remember.

Such derivative learning measures have also been studied
in non-demented persons who are at increased risk of
developing AD.  Ramakers et al. (2010) measured
subjective organization in the AVLT by examining pairs of
words recalled together in subsequent trials and found
marginal significant differences between patients diagnosed
with mild cognitive impairment that did and did not
progress to AD. More recently, La Rue et al. (2008) showed
a detectable serial position effect in the Wisconsin Registry
for Alzheimer’s Prevention; here, asymptomatic persons
with a parental family history of AD showed increased
reliance on recency in recall compared to controls whose
parents did not have AD.

We note that in all of these studies, populations are
compared via simple hypothesis testing, where significance
is evaluated by a derived p-value. However, it is rarely
asked what these p-values actually mean, whether they can
be compared across different tests, or what it means if one
does so.

Comparison of p-values

It is conceptually and mathematically difficult to compare p-
values derived from different measures. The common
interpretation is a hypothesis test provides the probability
that rejection of the null hypothesis is not due to “chance.”
There is a vast literature on the interpretation of p-values
(Wasserman, 2004; Ott & Locknecker, 2001); its most
simplistic interpretation of p=0.05 is that we believe the
detected difference has only a 5% chance of occurring at
random. Regardless of interpretation, it is difficult to
compare p-values. How much “better” is a hypothesis test
that provides p = 0.01 than one that provides p=0.05? This
is exacerbated when different measures are used to obtain
these values, all the more so when their stability has not
been empirically evaluated.

A standard statistical answer to this question is that
comparing p-values is useful only when it provides
additional insight into the problem at hand. In other words,
comparing p = 0.05 and p = 0.0005 may have little meaning
unless the process by which p was lowered is informative.
Thus, a smaller p value may not be inherently better unless
we have some understanding of how it was obtained. (The
most straightforward example of this would be a lookup
table, which can provide arbitrarily low p-values. However,
if we realize that an approach, for example, simply overfits
the data, it is no longer of any interest.)

Our Approach

In this paper, we construct derivative performance measures
for evaluating the results of neuropsychological testing. By
observing the effects of combining different metrics on test
results, we can derive confidence that incorporating
particular data (or “signals”) does indeed help in hypothesis
testing, namely, in separating test populations. As such, this
is a valid domain for comparing p-values and one where
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doing so makes sense. Namely, it tells us whether including
additional factors in a given hypothesis test makes it more
or less powerful. It simultaneously allows us to include
features that capture the test’s internal dynamics, even when
these are unknown in advance. For example, we may not
know (or even be able to well-define) the transition between
acclimatization, test taking, and saturation. However, we
demonstrate that these can be learned reliably.

Experimental Methodology

Participants

The study methods for the Wisconsin Registry for
Alzheimer’s Prevention (WRAP) began enrollment in 2001;
a detailed summary is in Sager et al. (2005). Briefly,
WRAP participants are English speaking adults between the
ages of 40 and 65 years with at least one parent with
autopsy-confirmed or probable AD (McKhann et al., 1984).
Control participants had mothers surviving to at least 75
years and fathers to at least 70 years without Alzheimer’s
disease, other dementia, or significant memory deficits.

Procedures

A wide assortment of data were collected, including clinical
measures, health history, extensive neuropsychological
testing, including AVLT responses, and chemical panel
data. This included data corresponding to the
Apolipoprotein €4 (APOE) gene, a biomarker widely
suspected to be implicated in onset of AD.

Derivative Measures

Subjective organization as explained in (Ramakers et al.,
2008) was measured for a patient between subsequent trials
for the first five trials (trial 1 and trial 2, trial 2 and trial 3,
trial 3 and trial 4, trial 4 and trial 5). Subjective
organization is calculated for trial i to i+l as j—

2¢=1) \where j is the number of pairs of items recalled on

trial i and i+1 in adjacent positions, ¢ is the number of
common items recalled on both trial, h is the number of
items recalled on trial i and k is the number of items recalled
on trial i+1. Serial position primacy was calculated as
described in (La Rue, et al., 2008) for the first five trials,
where primacy was the percentage of the first four words
from the AVLT that were recalled.

Fine grained AVLT analysis

Reflecting on derivative measure such as primacy and
subjective organization, we noticed they did not capture the
low-level differences in recall or our intuitions of what they
represented.

For example, Figure 2 illustrates the insensitivity of these
measures to seemingly gross differences in performance.
This is largely due to the effects of partitioning responses as
equivalent based on histograms — rather than their actual
recall order. On inspection, it appears that Figures 2b and
2c are much more similar than Figures 2a and 2b.

Therefore, 2a and 2b should not have the same subjective
organization score; nonetheless, they do, as recall order is
ignored entirely.  These examples highlight that very
different recall strategies are not being captured by these
measures. In the present work, we use microstructure in the
test results to find signals that are otherwise lost in analyses
that examine binned regions of recall regardless of their
precise order.

We developed a new derivative measure of AVLT to
investigate details in subject recall using the Euclidean
distance between trials i and i+1. For two recall trials with a
different total number of words recalled, zeros were filled in
at the end of the shorter recall trials. As a concrete example,
we calculate the Euclidean measure for trials [1,2,3,4] and
[8,7,4,3,1,2,6] by calculating the Euclidean distance
between [1,2,3,4,0,0,0] and [8,7,4,3,1,2,6]. We calculated
the measure between sequential trials from the first five
learning trials. We note the signal between trials 3 and 4
was so strong when viewed this way that many other point-
wise distance metrics worked similarly, as described below.
Euclidean distance was selected for its simplicity, although
several more esoteric distance metrics (Deza & Deza, 2009)
provided slightly increased performance in hypothesis
testing.

Metric Combination
We constructed a new aggregate measure using the
aggregate function:

MAggregate (9) = aMPrim(i) + ﬁMSO(j,k) + yMEuc(l.m)

where Mp,.;m ;) is the (normalized) primacy score on trial i,
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Figure 2: We represented the recalled words of a trial by the
position from the original list. This figure showed the recall
position on the x-axis and the original list position on the y-
axis. Each subfigure had example trials that recall the same
words but in different orders. 2a) and 2b) resulted in the same
serial position scoring because order is not taken into
consideration. Yet the recall strategies seem almost opposite.
The subjective organization score when comparing 2b) and 2a)
was identical to comparing 2b) and 2c). However, it seemed
that 2b) and 2c) were much more similar than 2a) and 2b) and
should not have the same subjective organization score if order
were considered. These examples highlight that different recall
strategies are not captured by these measures. Our goal is to
use microstructure in the test results to find signals that are
otherwise lost in analyses that examine binned regions of recall.
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P-values P-values separating by comparin
separating by S Sep g by comparing
trial pairs of successive trials

. - - Subjective Euclidean
Trial | Primacy Trial Organization Distance
1 0.00599 1-2 0.0268 0.604
2 0.0744 2-3 0.449 0.237
3 0.994 3-4 0.0206 5.07x10°%
4 0.852 4-5 0.134 0.536
5 0.361 1-5 0.199 .0212
1-5 0.187

Table 1. ANOVA p-values for family history using individual trials with
primacy and consecutive trials with subjective organization and Euclidean
distance. ANOVA was performed while controlling for a genetic
biomarker, age, sex and education level. For primacy, only trial 1 family
history was significant (p=0.0059). For subjective organization, family
history was significant for trials 1-2 (p=0.0268) and trials 3-4 (p=0.0206).
For the Euclidean measure, family history was significant for trial 3-4
(p=0.000507). SO=subjective organization. The bottom row of each
table shows the summary score for the measure across all trials, which is
typically employed in the literature.

Mo ) is the (normalized) score of subjective organization
between trials j and k, and Mg,.qm) is the (normalized)
Euclidean distance between trials | and m. We normalized
each measure to have a domain between [0, 1] to eliminate
arbitrary scaling differences in their scoring methodology.
For example, the maximum distance for primacy = 1,
whereas the maximum Euclidean distance is approximately
35.21. Thus, we did not want one measure to arbitrarily
dominate the scoring because of variability in its output.

To find parameters 8 = {«, B,v,1,j, k, [, m), we employed
stochastic gradient descent (Bertsekas & Nedic, 2003),
using 6,1 = 6; — @VMyggregare(6;), Where the objective
minimization was over the p-value derived from an unpaired
t-test employing Myggregace (6;). However, we noticed the
following interesting result. Namely, the function appeared
weakly convex over a wide range of values for parameters
a, 8, and y, all of which provided extremely similar results.
This was confirmed via an extensive uniform grid search
over this parameter space, alleviating concerns of over-
fitting. For simplicity, we therefore set a=F=y=1, yielding
a final measure of:

Myggregate = Mprim(1) + Mso(1,2) + MEuc(z.4)

We conducted intensive ANOVA-based permutation tests
to validate this measure. The effects of the combinations of
the measures are shown in Table 2.

Statistical Analysis

We examined each of these terms in isolation and in
combination on the AVLT results. Type 11l sum of squares
analysis of variance (ANOVA) was performed accounting
for family history, genetic biomarkers, age, sex and

primtl | Euct3-4 | SOtl-2 | SOt3-4 p-value
v v 2.83x10®
v v 0.0016
v v 0.2844
v v 3.69x10
v v 0.2415
v v v 7.00x10°%
v v v 0.00658

Table 2. Measure combination p-value from permutation test. Three
combinations have family history p-values lower than the lowest
individual measure which is Euclidean measure trial 3-4 (p=5.07 x 10°%).
These include primacy trial 1 and Euclidean trial 3-4 (p=2.83 x 10%),
Euclidean measure trial 3-4 and subjective organization trial 1-2 (p=3.69
x 10%), and primacy trial 1, Euclidean trial 3-4 and subjective
organization trial 1-2 (p =7.00 x 10°®). prim = primacy, Euc = Euclidean,
SO = subjective organization, t = trial, tx-y = comparing two trials.

education level as predictors and the measures as the
response variable.

We used a permutation test to compute p-values as
proposed by Fischer, employing 107 permutations (Cox &
Hinkley, 1979; Fisher, 1935). Namely, we permuted the
labels of the given predictor and repeatedly derived the p-
values as the test-statistic using ANOVA. We calculated
the percentage of permutations where a p-value was
returned with a lower value than our original ANOVA p-
value. This is known as the Fisher p-value and its iterated
computation provides a far more meaningful rejection of the
null-hypothesis than a single use of an unpaired t-test. It
strongly demonstrates that the predictors and the labels are
not independent of one another. Additionally, we derived
the pairwise Pearson correlation coefficients of the
constituent measures to confirm that they are capturing
different cognitive phenomena.

Results

One major outcome of this effort is that we achieved a
highly reliable Fisher p-value of 7.00x10°® for our aggregate
measure, Myggregate- HOWever, while separating family
history from control populations has been the primary
interest of prior work concerning AD, our concern is
focused on the contribution of each term in this aggregate
towards separating these populations.

Specifically, by using this framework, we can measure the
information provided by each term towards the result of the
hypothesis test. To this end, we determined their Fisher p-
values in isolation, as shown in Table 1, which summarizes
results of ANOVA for primacy, subjective organization and
the Euclidean measure individually. It is clear that these
measures are differentially informative across the trials,
whereas their aggregate, summary scores are far less so.
Surprisingly, primacy is only informative in the first trial,
while subjects are still acclimatizing to the experiment.
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trial 1-2 SO trial 3-4 SO trial 3-4 Euclidean
trial 1 0.188 0.162 0.0277
primacy  (0.135,0.242)  (0.107,0.216)  (-2.81x10?, 8.34x10?)
trial 1-2 0.254 -0.0134
SO (0.201,0.306)  (-6.92x107?, 4.24x10?)
trial 3-4 -0.26
SO (-0.312, -0.207)
Table 3. Pearson Correlation between measures (95%

confidence intervals). The correlation between the significant
measures and trial were between -0.226 and 0.301. These low
Pearson correlation coefficients show weak correlation between
any of these two measures. SO = subjective organization.

This leads us to question what precisely is being measure
here. Similarly, the disconnect between informative trials
for subjective organization seems to indicate that it is a
proxy for some yet unknown measure. On the other hand,
the extremely low p-value for Euclidean distance (and many
other measures, as discussed below) leads us to believe that
something happening here is so significant that one can
almost not help but notice it. Clearly, a significant cognitive
transition is occurring at this point, but it would be
premature to attribute a cause to it.

Table 2 summarizes ANOVA results using the
combination measures, including the one corresponding to
Myggregate- This table allows us to examine how
incorporating various measures increases separability
differentially. The fine-grained Euclidean distance between
trials 3 and 4 dominates clearly here; it provides the
strongest signal for distinguishing these populations. This is
the case even though there was no prior basis for expecting
the difference between trials 3 and 4 was the single most
important factor in distinguishing these populations. Thus,
a simple machine learning approach applied to this problem,
accompanied by a rigorous statistical analysis, revealed a far
more nuanced cognitive transition than has ever been
previously apparent in this test. ~We discuss further
consequences of this below.

Finally, we note that Table 3 presents Pearson correlation
coefficients between these terms using a 95% confidence
interval. This demonstrates they are largely uncorrelated
(i.e., they are measuring different effects). The largest
absolute correlation is 0.312, which is considered small for
the Pearson coefficient in cognitive test (Cohen, 1988).

Conclusions

This paper has made three primary claims:

1) Using aggregate scores in repeated neuropsychological
testing can be highly misleading. Rather, examining
individual trials and the differences between them can
be far more informative than summary measures.

2) In tests with a relatively short number of repetitions, we
believe acclimatization effects will be conflated with
expected test results, particularly in early trials. This
reinforces the point in (1) and stresses the need to look
for “signals” in the results that may reflect a transition

from reliance on working memory to engagement of
secondary memory processes or are indicative of other
cognitive phenomena. It is clear that different,
independent measures were sensitive to different
aspects of the learning and recall process. Note that we
do not claim to understand why the transition from
trials three to four is so significant. Clearly, further
investigation is called for.

3) Postulating “expected” cognitive phenomena, such as
Subjective Organization, may not be the most profitable
avenue for analyzing neuropsychological testing results.
Rather, there is value in “listening” to the data.
Namely, by looking for signals that demonstrate a
significant event has occurred, we may arrive at new
understandings for cognitive phenomena underpinning
the test that could not have been expected a priori.

A contribution of this paper is the demonstration that a
simple machine learning framework, along with a rigorous
statistical treatment, can reveal previously unknown
cognitive phenomena. We note that the a variety of
measures more exotic than Euclidean distance, such as
Smith-Waterman alignment (Durbin, Eddy, Krogh, &
Mitchison, 1998), were highly sensitive to the transition
between trials 3 and 4, sometimes decreasing p by orders of
magnitude. Thus, there appears to be something highly
significant happening at this point in the test. It is
interesting that a similar strong “transition” signal in a later
trial has been shown to be highly significant in another
neuropsychological test (Coen et al., 2009). This transition
may be indicative of a shift in how subjects are approaching
the test; reflecting a transition from reliance on working
memory to engagement of secondary memory processes; or
demonstrating cognitive adaptation or other effects.

More speculatively, because we can demonstrate that each
additional measure contributes something new, we are
constructing more informative methods for separating
populations in neuropsychological tests. Our goal is to
explore minimizing the Bayes error between the groups to
the point where we can tentatively classify individuals,
rather than distinguish populations.

While this paper has demonstrated clear benefits with
respect to AVLT evaluation, we believe its approach is quite
general and can be applied to a variety of conventional
neuropsychological tests. As such, it supports the view that
performance measures should not be viewed as competing
with one another. Rather, each evaluation method can tell a
different story about a patient’s performance during the
dynamic and complex cognitive processes involved in
neuropsychological testing.
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