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Abstract Moreover, such form—meaning regularities have been

- _shown to influence language learning. Two-year-old childre
Early language development critically depends on thetghili  5p yse the alternation structure of a novel verb to predict a
to form abstract representations of linguistic knowledayag

to generalize that knowledge to new situations. In verb know  Pects of its meaning (Naigles, 1996; Scott & Fisher, 2009),
edge, much generalization appears to be driven by varigisre  and somewhat older children can also use aspects of a verb’s

ularities between form and meaning, butitis difficult to@s  meaning to predict its range of acceptable syntactic strast
how these factors interact in a complex learning envirortmen

We extend a hierarchical Bayesian model to acquire abstract (Ambridge et al., 2011; Kline & Demuth, 2010). This kind
knowledge of verbs from naturalistic child-directed sggec  of inference in language acquisition appears to involvérthe

Chid behaviotr, We uss the syntacic allemation streain . teraction of many complex factors, including frequencybwe
novel verb to infer aspects of its meaning, and use the mean- Meaning, and animacy of the arguments. Human and com-
ing of a novel verb to predict its range of acceptable syitact  putational experiments have clearly demonstrated theafole
forms. The model provides a useful framework to investigate  statistical regularities over such factors in guiding gahe
the interaction of complex factors in verb learning. o .
ization behaviourég., Merlo & Stevenson, 2001; Scott &
Fisher, 2009; Perfors et al., 2010). The next step is a com-
putational model of child language acquisition that models
Introducti such inferences over verb alternations in the face of noisy,
ntroduction real-world data.

The productivity of language lies in the ability to gener- In this work, we use a probabilistic model that has been
alize linguistic knowledge to new situations. The emer-shown to learn abstract knowledge of verb argument struc-
gence of generalizations in language development signalsire and verb classes from naturalistic child-directedeshe
important changes in children’s representation of lingicis (Parisien & Stevenson, 2010). We extend the model to cap-
knowledge—in particular, the learning of abstract repnése  ture form—meaning regularities relevant to alternatiotr pa
tions is at the core of these generalizations. To underskdsid terns. We show that the complex probabilistic abstractions
developmental process, we must investigate both how chilacquired by the model are robust enough to capture key be-
dren can find the right abstractions over their input, and hovhaviours of children and adults in generalizing over verb al
those abstractions can actually guide generalization. ternation knowledge. We argue that this kind of probalidist

Several lines of research, including recent usage-based apepresentation is critical for learning about alternagimince
proaches €g., Langacker, 2000; Goldberg, 2006) as well it gives an explicit role for input frequency and allows de-
as earlier perspectiveg.§., Pinker, 1989), suggest that, in tailed interactions between frequency and the cooccuerehc
many situations, children’s ability to generalize is gowvadt  various form and meaning features. Moreover, by using verb
by strong regularities between form and meaning. Much diselasses to capture general tendencies over alternatidghs in
cussion in this area has centred on the notioaltefnations  data, this representation alleviates the effect of noiskusm
in verb argument structure, in which verbs show differemt pa certainty inherent in real-world usages of verbs, whichasho
terns in how they can express their semantic arguments imdividual variation in their adherence to typical altetina
syntactic forms. For example, the English véreak com-  patterns. These properties make this a useful framework for

Keywords: Verb learning; language acquisition; Bayesian
modelling; computational modelling.

monly participates in the causative/inchoative alteorati investigating the predictions that arise from the manyrinte
(1) Johmgentbroke the vasgyient / The vasgatientbroke. acting factors in verb learing.
The verblaugh also occurs in both transitive and intransitive Related Bayesian Models

forms, but with differing semantic roles, such that theantr

sitive is much more frequent: Previous computational approaches have used probabilisti

models to capture relationships between form and meaning
(2) Jan@gentlaughed her glegeme / Jan@gentlaughed. in children’s verb learning. Alishahi and Stevenson (2008)
Such patterns are not accidental: the pattern Wwitak is  used a Bayesian model to simulate the acquisition of verb ar-
common with change of state verbise€ze, split), while that  gument structure constructions, showing that a probaibilis
of laugh is typical of expression verbsrfy, snort). Alterna-  representation of constructions can explain a variety of ge
tion patterns thus capture a connection between the sesrantieralization behaviours. However, the model does not captur
of verbs and their syntactic expression which reflects aipossalternation patterns and the generalizations that deppod u
ble class structure of verbs (Levin, 1993). them. Another Bayesian model of verb learning acquires
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classes of verbs based on different alternation pattesas, e(4) The window broke.

hibiting appropriate generalizations over those pattesmesn ( NUMSLOTS =1, SUBJ = inanimate,

learning novel verbs (Perfors et al., 2010). However, the CHANGE-STATE, RESULT)

model is applied to a limited number of verbs and construc- . .

tions, and FL)JZes idealized semantic knowledge that inda'cateTheh'eramhICaI model of verb knowledge

the verb classes. It remains to be shown that semantic ésaturOur model in Parisien and Stevenson (2010) follows on a

realistically available in verb usages can appropriately-c large body of research in nonparametric Bayesian topic mod-

strain alternation behaviour, across many verbs and classe €lling (e.g., Teh et al., 2006; Wallach, 2008), a robust method
We recently presented a probabilistic model to acquire @f discovering syntactic and semantic structure in vergdar

broad range of verb argument structures and verb classas frodatasets. In this section, we give an overview of the model as

large, naturalistic corpora (Parisien & Stevenson, 20The it relates to the interaction between verb alternationselas

model operated only on syntactic features of the input an@nd verb semantics. (For mathematical details, pleasetcefe

did not address semantic generalization. In this work, we exParisien & Stevenson, 2010.)

tend the model to capture semantic properties of argument Adopting a usage-based approach to languagg, (an-

structure and show how this influences generalization at thgacker, 2000; Goldberg, 2006), we view the acquisition of

level of verb alternations. We use a representative corpus ¢’€rb argument structure as a category-learning probtém (

child-directed speech to model this acquisition in the esnt  Alishahi & Stevenson, 2008). By grouping together similar

of many constructions, verbs, and alternations. items found in the input, the model comes to recognize com-
mon underlying structures and to efficiently represent pat-
Model description terns of verb use. The model consists of a hierarchy wherein

each level corresponds to a different level of abstractia@r o

Representation of Verb Usages N ) )
) o ) such commonalities in verb knowledge. Figure 1 provides an
Our representation of individual verb usages comprisels bot;itive description of these levels of inference.

syntactic and semantic information. For the syntactic,siae At level 1, the lowest level of abstraction in the hierar-

use thg representation from Parisien and Stevenson QOlQ)my, individual verb usages are represented by sets of syn-
which includes 14 features for the number and type of syni,ctic and semantic features as described above. At level 2,

tactic arguments occurring with a verb. The arguments argye model probabilistically groups similar verb usages int
recorded individually, under the assumption that childsén ¢j,sters. This set of clusters captures a range of argument

this developmental stage can identify these various sjintac gyrycture constructions, where each of these constriiion
arguments in the input, without necessarily being able épke represented by a set of probability distributions over gre s
track of full subcategorization frames (a more difficultdps  (4ctic and semantic features in the input. In this way, the
In this work, we have extended the representation to adéhge| acquires probabilistic associations between forch an
a further 15 binary features which capture general Sema”t'&eaning, a central notion in construction grammar and usage
information abqut a verb usage. The firs.t of these featureggseqd language acquisition. We need not specify the total
denotes the animacy of the syntactic subject, a method presymper of constructions to learn; the model itself selents a
viously used to help distinguish the Agent from other r°|e3appropriate set of constructions to represent the input.
in subject positioné.g., Merlo & Stevenson, 2001; Joanis |, |evel 3, for each verb in the input, we estimate a dis-
et al., 2008). The next 14 features denote the presence @fhtion over the range of possible argument structure con

absence of various coarse-grained semantic properties CoByyctions. This gives a general pattern of usage for eath ve
cerning the event described by the verb. We use general feg; ihe lexicon. For example, in Figure treak would have

tures (not tied to specific verbs or classes) that capturga wi 4 high probability for at least two constructions: the tran-
range of verb semantic characteristics, thereby enabtieg t gjijye change-of-state constructiodokin broke the window)
model to distinguish important aspects of verb semantis di ang an intransitive formThe window broke). A key benefit
cussed in the acquisition literature. While the behavidur 0 of this kind of representation is that it can distinguisleaie-
the model is not dependent on any specific set of featuresye constructions by their degree of entrenchment. While i
in this work we adopt the following semantic predicates thatg possible to use a verb likaugh transitively Jane laughed
have been used in the VerbNet verb classification (Kipperper glee), it is far more likely to be used as an intransitive.
Schuler, 2005): cause, exist, motion, direction, contacte,  The intransitive form ofaugh should be more entrenched in
has-possession, perceive, experience, expressionpé&ap  the |exicon, and should have a greater effect on generializat
emit, change-state, and result. . _ patterns fotaugh and other verbs of expression.

The following examples show this representation. (Binary | evel 4 of the hierarchy allows the model to acquire classes
features with a value of 1 are listed, along with the value ofys syntactically and semantically similar verbs. The model

non-binary features.) groups together verbs with similar patterns of argumentstr

(3) John broke the window. ture use—precisely the probability distributions acqdine
( OBJ, NUMSLOTS = 2, SUBJ = animate, level 3. Each one of the verb classes in level 4 is represented
CAUSE, CONTACT, CHANGE-STATE, RESULT by another distribution over argument structure consioust
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Level 4: nod, laugh, break, cut,

Verb classes wink, ... cry, ... freeze, ... chop, ...
Level 3: nod wink laugh cry break freeze cut chop
Verbs I: : : :I
Level 2: Intransitive Transitive Intransitive Intransitive Transitive Conati
Constructions Motion Reaction Expression  Change of state Change of state onative
Level 1: . ) . | . |
he nodded she laughed her excitement she laughed my chair broke John broke the window she cut at the rope
Usages they walked nod your approval they hissed ice freezes Dad dries the dishes Brian wiped at the counter

Figure 1: Structure of the model. Each level in the hieraryesponds to a distinct level of abstraction in verb kreolgk.

but this time accounting for the patternsadf of the verbsin  syntactic and semantic features yields a noisy represemtat
the class as a group. that is reasonable given the capabilities of young childinen
These levels in the model—of abstractions over verbdetermining such properties.
usages—are central to its ability to generalize verb knowl- As described in Parisien and Stevenson (2010), the model
edge beyond the data explicitly seen in the input. Each levek defined by the parameters of a set of probability distribu-
in the hierarchy provides a more general form of knowledgedions representing each level of abstraction. To estintnetec
that can be used to make predictions about the level below iparameters, we use Gibbs sampling, a Markov Chain Monte
so that all levels play a role in generalization. In this wag, Carlo (MCMC) method (Teh et al., 2006). This is an iterative
can predict the usage patterns of a relatively infrequerit ve process that results in a large number of samples from the
like rend using knowledge of similar verbs likareak, split, posterior distribution—e., the model parameters given the
andcrack. As we discuss below, these generalizations allowobserved data. On development data, the parameters always
the model to predict syntactic and semantic aspects of novelonverge within 3,000 iterations. We perform 10 randomly

verbs, capturing important aspects of child behaviour. initialized MCMC simulations on the evaluation data, run-
. ning each simulation for 5,550 iterations, discarding tht fi
Experimental set-up 3,050 as burn-in. We record a sample of the model parameters

We use the Thomas corpus, a longitudinal study of a Britiston every 25th iteration after the burn-in, giving 100 saraple

English-speaking boy from 2 to 5 years of age (Lieven et al.per simulation, for 1,000 in total. In the experiments, we av

2009), part of the CHILDES database (MacWhinney, 2000)erage over this set of samples to estimate what the model has

Our input includes all child-directed utterances from tos-  learned about the input.

pus that have at least one verb, using every second sentencen the simulations, the model acquires approximately 100

for development data and the rest for evaluation. The evalargument structure constructions and 90-100 verb classes.

uation dataset contains 170,076 verb usages and 1,393 vePlarticularly in the smaller classes, low frequency verbsl te

types. All reported results are obtained from evaluatidla.da to be placed in several different classes over differerdipar
The 14 syntactic features for each verb usage are extracteder samples, which is a reflection of the uncertainty in-clas

using the parser of Sagae et al. (2007). We manually annaifying infrequent verbs.

tate as animate or inanimate all 4,213 noun phrases that occu )

as subjects in the input. We estimate the 14 event seman- Experiments

tic features for each usage using VerbNet (Kipper-Schulerysing its abstract knowledge, the model exhibits two impor-

2005): We look up all the argument frames in VerbNet (overtant forms of syntactic and semantic generalization. jrst

all senses/classes of the verb) that are compatible with thge show how the model can use distributional cues in the

syntactic frame of the current usage, and extract all the sealternation structure of a novel verb to infer previouslpbn

mantic primitives associated with each such frame. Thenserved aspects of its meaning. Secondly, we demonstrate tha

each semantic feature for that usage is marked as True if fhe model uses the semantic class of a novel verb to appropri-

is contained in the extracted set. This procedure resuls in ately constrain its expected alternation behaviour.

very noisy representation of the semantics of a verb usage. ] ]

In particular, because the features for a usage are drawn froFr0m alternations to verb meaning

all possible senses of the verb in that frame (and not just itwo-year-old children have been shown to use the alterna-

intended sense in the usage), the semantics includesdsatution structure of a novel verb to infer aspects of the verb’s

from VerbNet classes that are irrelevant to that usage. ,Thusneaning (Naigles, 1996; Scott & Fisher, 2009). For exam-

while we use VerbNet to enable us to automatically determingle, in Scott and Fisher (2009), children first heard a diagog

the semantic features, this process does not simply buitd pe(audio-only) containing a novel verb used with one of two

fect information about the VerbNet classes of the verb usagedifferent alternation patterns—i.e., two combinationgrah-

into our input. Moreover, the automatic extraction of bdtb t sitive and intransitive usages with varying animacy of the a
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Experimental Transitive Intransitive

X 100 )

condition Anim. Inanim.| Anim. Inanim. 3 s ey
Alt-AnimCS 9 3 6 6 3 %0 ’
Alt-AnimEX 9 3 12 0 2 gl
Intrans-AnimCS 0 0 12 12 2
Intrans-AnimEX 0 0 24 0 L
Table 1: Training conditions for the novel verb in Exp. 1. §’ 2

o 0

Alterr;ating Intransit}ve—only
guments. They were then shown two videos with two diffe. Syntactic frame condition

ent events and asked to find the event matching the just-heard

novel verb. Although the children were not shown a depictionFigure 2: Using the alternation and animacy patterns of a
of the novel verb when they heard the dialogue, they werd0Vel verb to infer meaning. The plot shows the percentage
able to map the verb to the semantically-appropriate visuapreference for the scene with change of state semantics.
scene based solely on its alternation pattern.

Experimental Design. We test our model’s ability to gen- sion verb, which is predominantly intransitive. Within siee
eralize in this way from alternation patterns to verb seman<onditions, we manipulate the animacy of subjects in intran
tics, as follows. We present a novel verb to the model in ssitive frames, reflecting idealized proportions of a chaofje
particular alternation pattern, but without any event sema state verb AnimCS) or an expression vertAGimeX). In all
tics (i.e., the 14 semantic features corresponding to génerconditions, all of the event semantic features of the pitesken
verb semantics are left blank). We then compare the likeliusages are left unspecified, corresponding to the child-hear
hood of two possible events paired with the verb, one muclhing a dialogue with a particular alternation pattern andhwit
more compatible with a verb class displaying that alteamati no accompanying depiction of the verb.
and one much less. The event that is deemed more likely by For each of these four conditions, we present the model
the model should be the one with the semantic features thatith two test frames. Both are intransitive with an animate
match those expected for a verb with the given alternatien besubject (consistent with a novel verb of either semantisgla
haviour. In other words, the model should use the alternatioand one has the semantics of a change of state verb, while the
pattern of a novel verb to choose a scene with appropriatelgther has the semantics of an expression verb, as follows:
matching event semantics. _ (5) ( SUBJ = animate, CHANGE-STATE, RESULT

We_use.novel verbs comparable to tV\{O English verb classe&s) ( SUBJ = animate, EXPRESSION
that differ in overall alternation patterns: change ofestaq.,
break, freeze, dry) and nonverbal expressioed., laugh, gig- We then compare the preference in the model for each of these
gle, cry). Both types of verbs occur in both transitive and in- tWo frames, to see whether the model can infer appropriate
transitive usages (see Examples 1 and 2), but with diffegnc Semantics from an alternation pattern.
in two important aspects. First, they differ in the relatire Experimental Results. Given the observed usages of the
guency of occurrences in these frames. The change of sta@®Vel verb,Ynay, in one of the four conditionsilt-AnimCS,
verbs overall occur equally in each frame, while the expresAlt-ANIMEX; Intrans-AnimCS, Intrans-AnimEX, we estimate
sion verbs occur predominantly in the intransitive. Segondthe likelihood of each test framges using the acquired ar-
because of the differing roles taken by their subjects, the@gument structure constructioksnd verb classes
have diff_erent patterns of supject animacy (since Agemd te P(Ytes|Ynov) = Z z P(Ytes |[K)P(KIC)P(C|Ynov) (1)
to be animate more than Patients). Change of state verbs have c
animate subjects about 70% of the time in the transitive and his estimate considers how likely the test frame would be
50% in the intransitive, while expression verbs have arématif the novel verb happened to be a member of each dass
subjects about 80% of the time in both frames. weighted by the probability that the observed patt®mgy,

We present the model with usages of a novel verb in foucould have been generated by a verb in that class. We nor-
different conditions (independently), each having 24 esag malize these likelihoods over the two test frames, and aeera
in one of four alternation patterns, shown in Table 1. Thethe preference over all 1,000 samples from the simulation.
alternation patterns are a combination of varying proparti Figure 2 shows the percentage preference in the model for
of transitive/intransitive usage, and varying proportidani-  the test frame with the change of state semantics. When the
mate subjects, with each variation reflecting idealizedjasa input alternates between transitive and intransitive #am
of the two types of verbs. This allows us to examine a possithere is a strong preference for the change of state scene.
ble interaction between the syntactic frame patterns ahd su There is a small effect of animacy here, such that the animacy
ject animacy patterns. THet conditions correspond to atyp- pattern of an expression verb reduces this preferencelgligh
ical frame pattern of change of state verbs, which altemateWhen the input consists entirely of intransitive usages, we
freely between a transitive and intransitive usage. [fitrans ~ see preferences in line with the predictions of the animacy
conditions correspond to the frame pattern of atypicalespr feature: there is a preference for the change of state soene i
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the AnimCS animacy condition, and for the expression scer -
Non-alternating:

givenAni mEX animacy. Il Disappearance
There is thus a strong interaction between the alternati 08f | I Dir-motion

cues and the animacy cues. When animacy reflects a cha 06} |- Fxpressm

of state verb (the black bars in Figure 2), the alternation h plematng:  otion

EN

no effect on the preference. When animacy reflects an expr 041 | = Change-state
sion verb (the white bars in Figure 2), the alternation patte 2f 1

has a strong effect. Verb usage patterns in the corpus gov

a strong bias for a change of state interpretation of a noy 0 2 8 24

verb, and the model requires two strong cues (frequent - Input frequency (intransitive)

transitives as well as frequent animate subjects) in omler t
pull its interpretation in favour of an expression verb. 3te
results show that the model can use the distributional infor
mation carried over multiple syntactic frames to help infer

the meaning of a novel verb. Moreover, this shows how twang to five different semantic classes, the same classes used

distinct features interact to guide generalization betavi by Ambridge et al. Verbs in the first three classes occuryreel
Scott and Fisher (2009) discuss possible mechanisms chiin the intransitive, but are much less likely to be used in the

dren might use in making this generalization. They consader transitive: disappearance.d., disappear, die), directed mo-

category-mediated process, similar in principle to our model, tion (fall, tumble), and nonverbal expressiokaggh, giggle).

as well as adirect inference process, by which children di- The other two classes are likely to alternate between transi

rectly employ distributional cues to interpret the novetbve  tive and intransitive forms: manner of motiami(, spin) and
without recourse to a previously learned class. Using the eshange of statebteak, split).

timated model parameters, we repeat the above experimentyy present the model with a set of either 2, 8, or 24

using one possible method of direct inference. Rather tha[htransitive frames of a novel verb, coupled with semantic

measuring the scene preference by comparing the novel vethyes from one of the following five verb class conditions:
to each verb class, as in Equation 1, we instead compare the

novel verb directly against each of the known verbs from the_NOn-alternating classes

input. By doing so, in all four training conditions, we ob- DiSappearance: ( DISAPPEAR)

serve a 96-98% preference for the change of state scene, wittPirected motion: ~— (MOTION, DIRECTION)

no clear effect of syntactic frame or animacy use. This is a Nonverbal expression: ( EXPRESSION

result of drawing inferences over 1,393 verbs, where noise i Alternating classes

the data is compounded over such a large number of com-Manner of motion: { MOTION )

parisons. By using verb classes to capture general tereenci Change of state: { CHANGE-STATE, RESULT)

in the data, a category-mediated model helps to alleviae th : . . .
: ) : : ) As with the previous experiment, we set the proportion of
effect of noise, providing better inference in generalat

frames with animate versus inanimate subjects in accokd wit
From verb meaning to alternations the proportions for these classes in our corpus data.

The previous experiment considered cases where the alterna Experimental Results. Given the training conditions of
tion structure of a novel verb can help determine the verb'éhe novel verb—i.e., a set of intransitive usages with each
meaning. The reverse can also be true: information about &f 5 possible semantics (as indicated above), at a given fre-
novel verb's semantic class constrains adults’ and childre quency level (2, 8, 24)—we use Equation 1 to measure the
expectations Concerning the Syntactic structures thatean likelihood of an intransitive and a transitive test fram@hé
used with the verb (Ambridge et al., 2011; Kline & Demuth, test frames each have an animate subject, since those age mor
2010). For example, in the Ambridge et al. experiments, subfrequent overall.) Since the test frame likelihoods prastlic
jects were taught a novel verb that was used only in intransiby this method cannot be directly compared with acceptabil-
tive frames, then asked to rate the verb in a transitive usagdly ratings (as in the human experiments), we instead report
Subjects were more ||ke|y to rate the transitive use of thib ve the likelihood of the transitive frame relative to that o tim-
as acceptable if its semantics matched a class of verbs whidfansitive. That is, we divide the transitive likelihood the
display a transitive/intransitive alternation, than iethlass  intransitive likelihood and report this ratio in Figure 3.
was predominantly intransitive. That is, the semanticxtds Firstly, Ambridge et al. (2011) observed that when the
the novel verb constrains its generalization to a previoust  meaning of the novel verb matched a class of alternating
observed syntactic usage. Here, we show how verb semantigsrbs, participants rated transitive uses as more acdeptab
and entrenchment can similarly be used to constrain generahan if the meaning matched a non-alternating class. In our
ization in our model. results, transitive verb usages are more acceptable in the
Experimental Design. We simulate this experiment by manner-of-motion and change-of-state conditions thahen t
presenting our model with novel verbs comparable in meanether three cases. That is, when the novel verb has a meaning

0

N

Transitive / Intransitive likelihood

Figure 3: Using the meaning of a novel verb, shown only as
an intransitive, to constrain the likelihood of the traivsit
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similar to a class of alternating verbs, it is more expected t framework to investigate the interaction of multiple fasto

alternate, despite only ever being seen inthe intrandgive.  verb learning in a complex environment.

The model uses information about the semantic class of the

novel verb to appropriately constrain generalizationgratt, ~ Acknowledgments We are very grateful to NSERC and to the
Secondly, Ambridge et al. expected to find an effect of in-University of Toronto for financial support.
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