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Abstract

To date, most computational models of infant word segmenta-
tion have worked from phonemic or phonetic input, or have used
toy datasets. In this paper, we present an algorithm for word
extraction that works directly from naturalistic acoustic input:
infant-directed speech from the CHILDES corpus. The algo-
rithm identifies recurring acoustic patterns that are candidates
for identification as words or phrases, and then clusters together
the most similar patterns. The recurring patterns are found in
a single pass through the corpus using an incremental method,
where only a small number of utterances are considered at once.
Despite this limitation, we show that the algorithm is able to
extract a number of recurring words, including some that infants
learn earliest, such as Mommy and the child’s name. We also
introduce a novel information-theoretic evaluation measure.

Keywords: language acquisition; word segmentation; speech
recognition; computational modelling.

Introduction

One of the first problems children face in learning language is
how to segment individual words from the continuous stream
of acoustic input they hear. Experimental evidence suggests
that infants are sensitive to the statistical patterns created by
strings of words in a nonsense language (Saffran, Newport, &
Aslin, 1996), and can use these statistical cues to distinguish
words from non-words at an earlier age than other cues such
as stress (Thiessen & Saffran, 2003). Since this evidence be-
gan to surface, a number of computational models have been
proposed to explain how infants might exploit the statistical
information in the speech input in order to identify words
or word boundaries (e.g., Brent, 1999; Christiansen, Allen,
& Seidenberg, 1998; Goldwater, Griffiths, & Johnson, 2009;
Rytting, 2007). Nearly all such models have assumed a string
of phonemic or phonetic symbols as input, though recently
some researchers have begun to explore the problem of word
identification in a less idealized scenario, using acoustic fea-
ture vectors as input (Aimetti, 2009; Driesen, ten Bosch, &
Van hamme, 2009; Risdnen, 2010). The work described here
falls into the latter category, and is motivated by evidence that
infants begin to segment some words as early as six months
old, while their native language phonology is still incomplete
(Bortfeld, Morgan, Golinkoff, & Rathbun, 2005). This sug-
gests the possibility that some early words may be learned as
a whole from the acoustic signal, without any sub-word level
of representation.

The algorithm we present is similar to that of Aimetti (2009),
in that both are based on recent work by Park and Glass (2008)
(henceforth, P&G). However, our work differs from these and
other recent papers in two important ways. First, we use a
corpus of naturalistic infant-directed speech as input. This
contrasts with P&G, who use adult-directed speech, and with
Aimetti (2009), Driesen et al. (2009), and Résédnen (2010),
who all use a carefully constructed corpus of utterances with

a specified form and a small vocabulary. Second, P&G’s al-
gorithm (the only other one to be tested on unscripted speech)
processes the entire input corpus at once, searching for acous-
tically similar fragments. Here, we develop an incremental
version of the algorithm that processes only a few utterances
at a time, simulating the limited memory of an infant learner.
Although the incremental algorithm does not perform as well
as the batch algorithm, it is still able to extract a number of
words and phrases from the input. This success is due in part
to the structure of infant-directed speech: since words are
often repeated close together, a simple matching algorithm
can find and extract such repetitions even when only a few
utterances are considered at a time. Although we do not claim
that the particular matching procedure used here is necessarily
similar to one used by infants, our results do suggest that an in-
cremental acoustic matching procedure could be a successful
way to extract words despite variability in the speech signal.

In addition to these simulation results, we develop a novel
entropy-based evaluation measure. Previous researchers work-
ing with P&G’s algorithm have mostly used qualitative evalu-
ation; quantitative evaluation was slow, limited in scope, and
often subjective because it required examining the output by
hand. An exception is presented by Jansen, Church, and Her-
mansky (2010), but their method depends on an information-
retrieval task. Our evaluation method can be applied automat-
ically (assuming a phonemic forced alignment is available),
which makes quantitative comparisons between different con-
ditions or learning algorithms much easier.

In the remainder of the paper, we first present the pattern
extraction algorithm and the evaluation measure. We then de-
scribe our experiments, presenting both qualitative and quanti-
tative results. We conclude with a discussion of our findings
and directions for further work.

Pattern Extraction Algorithm

Our algorithm is a modification of the segmental dynamic
time warping (DTW) algorithm of P&G. The input is a set
of utterances, each represented by a sequence of acoustic
frames (MFCC feature vectors, as standardly used for auto-
matic speech recognition). The output is a set of clusters, with
each cluster consisting of a set of acoustically similar speech
fragments (subsequences of frames from the input). The inten-
tion is that each cluster should contain instances of a single
word or phrase that occurs repeatedly in the input.

The algorithm has two stages (described in more detail in
the following subsections): DTW matching, in which pairs
of utterances are compared to identify any similar fragments;
and clustering, in which the matched fragments are grouped
together across the whole set of utterances using a graph-based
clustering method. In P&G’s original algorithm, every utter-
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Figure 1: DTW matching of an utterance pair (with ortho-
graphic and phonemic transcriptions). See explanation in text.

ance is compared against every other utterance in the DTW
matching stage. As a possible model of whole-word segmen-
tation by human infants, this method is implausible because
it requires all utterances to be stored in memory at once, and
because the amount of computation grows as the square of the
number of utterances heard. Here, we present an incremental
version of the matching algorithm where utterances are only
compared to other utterances within a fixed recency window.
Any utterance in the more distant past (outside the window) is
represented in memory only by the fragments already found
in it. Our complete algorithm is not yet fully incremental,
because individual fragments are stored separately in memory
until the entire corpus has been processed, at which point all
fragments are clustered. However, this already represents a
large decrease in memory over storing the entire corpus, and
we anticipate that further modifications to implement incre-
mental clustering would be possible.

DTW Matching

Dynamic time warping is a standard algorithm in the speech
recognition literature, used to align sequences of acoustic
frames in such a way as to minimize the spectral distortion (the
sum of the distances between aligned frames). It is a dynamic
programming algorithm, conceptually similar to weighted
minimum-edit-distance string matching. The segmental ver-
sion introduced by P&G is intended to identify and align only
those subsequences of frames that are relatively similar, and
therefore might be different instances of the same word.
Figure 1 illustrates, using the utterances rolled away and it
rolled away. The actual acoustic frames are not shown, but
would range along the x-axis for one utterance (earlier frames
to the left), and along the y-axis for the other (earlier frames
at the bottom). Transcriptions are shown for illustration only,
and are not used as input to the algorithm (although the phone-
mic transcripts are used during evaluation). The solid lines
represent alignments between the two utterances, with diago-
nal parts indicating matches where consecutive frames in one
utterance are matched to consecutive frames in the other, and
horizontal or vertical parts indicating matches where consec-

utive frames in one utterance are matched to the same frame
in the other (allowing for duration differences). If the two
utterances were identical, then the best alignment would be
a single diagonal line from the origin to the upper right cor-
ner of the graph. P&G’s algorithm works by first identifying
the optimal alignment path within each diagonal band (dashed
lines; these bands constrain the algorithm so that only a certain
amount of time offset is allowed in the alignment — otherwise
it would be possible to align all frames of one utterance to the
first frame of the other, or similar trivial solutions). It then
extracts fragments of the alignments that have low spectral
distortion — good matches.

We made a number of small modifications to the P&G
matching procedure to improve its performance before imple-
menting the incremental version. First, we constrain align-
ment paths so that any horizontal or vertical step must be
preceded by a diagonal step (as in the “Type I constraints
of Myers, Rabiner, & Rosenberg, 1980), in order to mini-
mize distortion in the time alignment. Second, to extract
fragments with low spectral distortion, we take those paths of
at least length min_path_len in which all the frame-to-frame
distortions are below a threshold core_thr. This replaces the
length-constrained minimum average algorithm of P&G, and
has the advantage that multiple matching regions can be found
within one diagonal band. The matching regions are then ex-
tended to include any nearby low-distortion matches, where
up to max_hi consecutive points with higher distortion are al-
lowed between low-distortion regions. Finally, we merge any
matched regions in the adjacent diagonal bands that overlap in
both the x and y directions (as shown in Figure 1). This allows
the final path fragment to cross diagonal band boundaries,
which may be important for longer words and phrases whose
duration can vary substantially.

The above algorithm produces a set of matched fragment
pairs, each with a known mean distortion. However, common
words tend to create multiple overlapping fragments in the
same utterance, each linked to a different instance of the word
elsewhere in the data. For example, the words it rolled away
might contain two fragments with slightly different start and
end points, one linked to an utterance with another instance
of it rolled away, and one linked to a different utterance with
the words rolled away. Even if all three utterances contain the
same words, the start and end points for each pair of matching
fragments might not be exactly the same.

This proliferation of largely overlapping fragments not only
seems cognitively implausible, but also complicates the clus-
tering step of the algorithm, discussed below. We therefore
refined the algorithm to include a fragment adjustment process
in which temporally similar fragments are conflated so that
each extracted word or phrase is associated with a single start
and end point in the data. With this change, an incremental
version of the algorithm can be developed which stores in
memory only a single fragment for each extracted word or
phrase, along with a small number of complete utterances
inside the current processing window W. The final algorithm
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processes the current utterance u as follows:
1. Match u against all previously extracted fragments. !

2. Match u against all previous utterances in W and against
itself (disallowing overlapping fragments in the latter case).
Extract only those fragment pairs where the fragment in the
previous utterance does not clash with a fragment existing
before step 1. Two fragments are deemed to clash if neither
has at least a specified proportion (min_frac_distinct) of its
duration outside the other, i.e., they have a high degree
of overlap. (The rationale is that the relevant part of the
previous utterance has already been matched against the
current utterance in step 1.)

3. Sort the fragments from u in ascending order of mean dis-
tortion, and test for clashes between fragments; in case of a
clash, adjust the start and end points of the higher-distortion
fragment y to match those of the lower-distortion fragment
x, and perform a new DTW match between x and the frag-
ment or region to which y was originally matched. If y’s
matched fragment was from an utterance in W, then this new
match may change the start and end points of that fragment,
otherwise it just recomputes the mean distortion.

4. Repeat step 3 for the remaining utterances in W.

This algorithm is designed to operate with a limited window
size, but can also be applied to the case with unlimited memory
by setting the window size to include all previous utterances
in the data set. In either case, the output is a set of matched
fragment pairs with no clashes between fragments.

Clustering

Once the DTW matching has been completed for all the input
utterances, the mean distortions are converted to similarity
scores between pairs of fragments, and then the fragments
are clustered using a graph-based clustering algorithm. The
graph contains a node for each fragment, and an edge be-
tween each pair of DTW-matched fragments.” Each edge is
assigned a weight according to the similarity between the pair
of fragments it connects. Similarity is computed as

S(P) = (6 —D(P))*/6* )

where D(P) is the mean distortion for the DTW alignment path
P between the two fragments (for 0 < D(P) < 0), and 0 is a
distortion threshold, so that paths with D(P) > 6 are assigned
similarity O or (equivalently) ignored in the clustering.

Given the weighted graph, we follow P&G in using the
agglomerative clustering algorithm of Newman (2004). The

I'The utterance-to-fragment matching uses a form of DTW which
finds, for each possible end frame in the utterance, the start frame
achieving the best match between the interval [start,end] and the
predefined fragment; a match is recorded at any local minimum of
the resulting mean distortion that is below a specified value.

2Because we eliminated overlapping fragments in the matching
phase, this method of graph construction is much simpler than the
one presented by P&G.

algorithm works in a greedy fashion, at each step maximizing
the increase in the modularity defined as

_ Liei
Yia;

where e;; is the fraction of all edges (weighted by strength) that
connect nodes within the ith cluster, and g; is the (weighted)
fraction of all ends of edges that are attached to nodes within
cluster i. The motivation for this measure is that } ; e;; is the
proportion of all edges that are within clusters and }; ai2 is the
expected proportion of edges that would fall within clusters
if the ends were connected at random. Thus Q is a ratio
measuring how much better than random the fit between the
current clustering and the edge strengths is.’

Q )

Information-Theoretic Evaluation Measure

Having defined our learning algorithm, we are left with the
question of how to evaluate its performance. The most obvious
measures include the number, sizes, and purities of the output
clusters, and the proportion of frequently occurring content
words that are found. While these measures are intuitive, for
this task they involve some subjective decisions (e.g., how to
define cluster purity given that some fragments in the clusters
correspond to partial words, while others may be complete
words). Moreover, they require examining the algorithm out-
put and transcripts by hand, which slows down comparisons
between versions of the algorithm during development.

To address these problems, we developed a new evaluation
measure based on the idea that fragments within a cluster
should be more phonemically similar to each other than to the
average speech in the corpus. Put another way, we should be
able to predict the phonemic content of a fragment better by
using knowledge gleaned from other fragments in the same
cluster. Specifically, we compute the phonemic entropy of
each fragment both with and without using cluster-based in-
formation; the difference between the two gives a measure of
the information provided by the clustering. We assume that
a time-aligned phonemic transcription of the data is available
for evaluation purposes (we use an automatic forced align-
ment in our experiments), and we compute the entropies of
the phonemic transcripts of each extracted fragment. The en-
tropy of a fragment without cluster information is computed
using a phone bigram model trained on the full corpus. The
entropy with cluster information is computed by estimating
the probability of the fragment’s phone sequence based on the
phone sequences of the other fragments in the same cluster.
The computations are described in more detail below.

Entropy without Cluster Information

Given a set of speech fragments with phonemic transcripts, we
use a phone bigram model to compute the total entropy (neg-
ative log probability) of the transcripts without using cluster

3P&G used a slightly different Q measure, taking the difference
between Y e;; and Zaiz rather than the ratio. We found that using the
ratio reduced the incidence of large clusters of low purity.
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information. Specifically, we compute the bigram probability
of the ith fragment transcript ¢;, consisting of phones x ...x,,
as Pyg(;) = [T}, P(xjlxj—1). The probabilities P(x;|x;1)
are estimated from the corpus of phonemic transcripts, using
smoothing to avoid setting any probability to 0. The entropy
of ¢; is then

Hiyg(17) = —logy Py (1) 3)
and the total entropy of all fragment transcripts is ¥, Hpg (t;).

Entropy using Cluster Information

To compute the fragment transcript probabilities (and thus
entropies) using cluster information, we assume an ordering
on the fragments in each cluster. We compute the probability
of the first fragment using the bigram model above, and then
compute the probability of each subsequent fragment using
the transcript of the previous fragment, as described below.
The resulting negative log probabilities are averaged across all
possible orderings of the fragments within the cluster.

The model for predicting a phone sequence (the current
fragment transcript) given another phone sequence (the tran-
script of the predecessor fragment) incorporates probabilities
for all possible phone insertions, deletions, and substitutions
(including substituting a phone for itself, which usually has
a high probability). A recursion on possible alignments of
the predictor and predicted phone sequences is performed
to obtain the sum of the probabilities corresponding to all
sequences of substitutions, insertions and deletions which
transform the predictor sequence into the predicted one. The
substitution, insertion and deletion probabilities are estimated
from a corpus of transcript pairs representing within-cluster
pairs of fragments, by an iterative process in which alignment
of the transcripts (by dynamic programming) alternates with
reestimation of the probabilities until the estimates converge.

When a cluster consists of fragments with identical or near-
identical transcripts, the cluster-based prediction gives a higher
probability than the bigram-based prediction; but when a clus-
ter contains phonemically mismatched fragments the cluster-
based probability can be substantially lower than the bigram-
based one. To obtain a more robust prediction of the tran-
scripts, we interpolate the cluster-based and bigram-based
prediction probabilities, yielding the following expression for
the entropy of the ith fragment transcript:

Het(1) = - (Hag() + Hio (1) @

with

H,p(t;) = Z (— IOgZ(OLPaI(Ii‘tj) +(1- (X)Pbg(t,‘)) 5)
J

where n is the size of the cluster containing f;, O is an in-
terpolation weight, P(#;]¢;) is the probability of #; obtained
by deriving it from #; using the align+edit method described
above, and j ranges over the n — 1 other fragments in the
cluster.

Entropy Reduction

For fragment transcript ¢;, the reduction in entropy obtained
by using the clustering information to augment the baseline
bigram model is given by

n—1

Hbg(ti) *Hcl(ti) = T (Hbg(ti) - Hf(’l([i)) ’ (6)

n—1

with the total entropy reduction over a set of utterances being
the sum of the above quantity over all the extracted and clus-
tered fragments. Expressing the reduction in this form makes
clear its dependence both on the consistency of the transcripts
within the cluster (which will tend to increase the probabilities
Py (t;|t;) from Eq. 5, in turn increasing the parenthesized fac-
tor in Eq. 6) and on the cluster size n (which, as it increases,
will push the (n — 1)/n factor closer to 1). Internally consis-
tent clusters are better than inconsistent ones; and, for a given
level of within-cluster consistency, large clusters are better
than small ones, so that it is better to generate a single cluster
containing (71 +ny) instances of the same word or phrase than
separate clusters of n; and n; instances.

Experiments
Data

The data for our experiments comes from the Brent cor-
pus (Brent & Siskind, 2001) in the CHILDES database
(MacWhinney & Snow, 1985), which consists of recordings
of mothers speaking to their infants (aged nine to 15 months)
in a naturalistic setting. We used the “Brent33” subset of the
corpus defined by Rytting (2007), which contains 7811 utter-
ances from 15 recording sessions (three or four from each of
four mother-infant dyads). This subset also contains a forced
time-alignment of the audio to a phonemic transcript, which
was produced by Rytting (2007) and which we use for evalua-
tion purposes. The forced alignment uses a standard American
English phone set, except that voiced and unvoiced closure are
treated as phones in their own right, yielding transcripts such
as/l eh cl s vcl g ow/ (let’s go).

The acoustic feature representation used in segmental DTW
consisted of a vector of 12 mel cepstral coefficients (computed
in a 20ms window) and 12 delta coefficients every Sms. The
delta coefficients accompanying the cepstral vector ¢, at frame
n were derived as 0.3 X (¢p1 —Cy—1).

Procedure

We ran our algorithm separately on the data from each session,
using the following parameters: core_thr = 1.2, min_path_len
=90 (i.e., 0.45 seconds), max_hi = 2, min_frac_distinct = 0.5,
0 = 0.6. This yielded a set of clustered fragments for each
session, which were transcribed using the forced alignments.
A phone spanning the beginning or end of a fragment was
included in its transcript if at least half of the phone’s duration
was within the fragment or if (as occurred for some very long
phones) the phone contained the whole fragment.

For the entropy reduction measure, probabilities for the
bigram-based and cluster-based prediction models were esti-
mated per dyad. The bigram estimation data consisted of the
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Table 1: Per-phone entropy reduction results for different
window sizes w on the original and randomly permuted corpus.

Table 2: Clusters of size > 3 from dyad c1, session 4.

Condition Per dyad Overall
cl fl 2 ql
W =oo .0486 .0077 .0187 .0000  .0231
w=20 .0401 .0067 .0135 .0000 .0185
w=10 .0373 .0075 .0131 .0000 .0177
w=>5 .0341 .0037 .0117 .0000 .0153
w=2 0269 .0043 .0091 .0000 .0124
w =20, perm. .0126 .0000 .0001 .0000  .0040
w =10, perm. .0078 .0002 .0001 .0000 .0025
w=>5,perm. .0079 .0002 .0001 .0000  .0025
w=2,perm. .0075 .0000 .0000 .0000 .0023

phonemic transcripts of all the utterances. The cluster-based
estimation data consisted of the transcripts of the extracted and
clustered fragments, combined into all possible within-cluster
pairs, with weight 1/(n— 1) on each pair in a cluster of size
n. The interpolation weight o was set for each dyad so as to
minimize the total entropy Y; H.(f;).

Results and Discussion

Table 1 shows results for a fixed window size w ranging from
2 to 20, as well as for w = oo (batch processing: each utterance
is matched against all other utterances in the session). For
comparison, we also show results for w = 2 to 20 when the
order of utterances is randomly permuted within each session.
For each condition, entropy reductions are shown for each of
the four dyads (c1, f1, 2, and q1) and overall, normalized by
the total numbers of phones in the utterances.

Several trends are worth noting. First, although the results
with fixed window sizes are not as good as the batch pro-
cessing algorithm, the difference is not great, especially for
the larger window sizes. Results on the permuted corpus are
uniformly bad, with results for w = 20 generally worse than
even the smallest window size (w = 2) on the corresponding
correctly ordered corpus. These results are consistent with the
hypothesis that frequent nearby repetitions in infant-directed
speech are useful for extracting words, especially for an in-
cremental learner. Unfortunately, due to the small number of
dyads, the statistical significance of these results is weak. The
recordings for dyad ql are somewhat noisier than the others,
which may explain the null results on this dyad.

Although we cannot draw statistical conclusions from the
entropy reduction numbers, we can gain further insight into
the algorithm by examining its output in more detail. Table 2
shows the clusters of size > 3 obtained in the w = 10 condition
from a typical cl session (containing 547 utterances; entropy
reduction = .0273 per phone). The word or phrase shown in
the first column is the most frequent word or phrase in the
cluster; the purity is the percentage of fragments matching
this word or phrase. As noted above, purity scores necessarily
involve subjective judgements since fragment start and end
points may not correspond exactly to word boundaries or to

Word(s) Purity  Segment transcriptions
look at the 67 look at the look at the
look at the -s look at the
you’re just taking book is tha-
sweetie or 33 sweetie sweetie -e page
Mommy -ng swee- -t’s Mommy go-
-t’s Mommy
yeah 100 yeahisth- yeah that’s
yeah d- yeah yeah is th-
[that’s the [60] -t’stheye- -’stheye- -t’sthe ye-
yellow] -t’splay ag- -t’s a pret-
- - ohyous- uh-oh whatdowe
turn the -th Mommy
[fun] [40] do- fu- fu- down -sandlo-
book 100 book book book books
sweetie 100 -ngsweetie -ng sweetie
a sweetie -ng sweetie
Morgan 100 -t Morgan Morgan Morgan
Morgan
read 50 Morg- -n’tw- gonnaread th-
-n you read th-
on 50 -elfh- -ay -oton on
[points] [100] -oints -oints -oints -oints
[book] [100] aboo- -n’sboo- -n’sboo-
-ther boo-
[lots] [50] -own off the sh- -ots a-
and lots of -ong swee-
yeah 100 yeah yeah yeahi-
kitty-cat 100 kitty-ca- Kkitty-ca-  kitty-ca-
ball 100 ball ball -ow ball
points 100 points points points
two points 100  two poi- two poi- two poi-
yeah 100 yeah yeah yeah
books 67 books d- whatfu- books d-
[doggie] [100] -gie -gie -gie
[what’s in [67] yeah -’sinhe- -’sin he-
here]
[yay] [67] hea- -ay -ay

other fragments in the cluster. Scores in brackets indicate that
a substantial part of the word or phrase is missing from some
or all of the fragment transcriptions.

Looking at Table 2, we can see that although the algorithm
does not extract a large number of words (either types or
tokens), most of the clusters it finds are lexically consistent,
i.e., have a high purity. This is true also of the 32 clusters of
size 2 found in this session (not shown for reasons of space),
of which 23 (72%) had a consistent lexical or phrasal identity.
The algorithm is not entirely successful at pinpointing the
exact start and end points of the words, but does surprisingly
well given the unconstrained nature of the task. It is also worth
noting that of the 14 content words that occurred more than 10
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times in the data for this session, the algorithm detected at least
some occurrences of 10 of them. As far as the particular words
that are found, we see that some words (e.g., book and ball)
reflect specific activities during the session, whereas others
(e.g., Mommy and the child’s name Morgan) are common to
many sessions’ results. Out of the 15 total sessions, the child’s
name was detected in 11 of them, and the words Mommy or
Mama in eight. This is particularly notable since these words
constitute some of infants’ earliest vocabulary, and have been
shown to help them segment other words as early as six months
(Bortfeld et al., 2005).

General Discussion

The algorithm presented here represents one possible way
to begin the process of extracting and learning words from
continuous speech. As an incremental algorithm, it is more
cognitively plausible than the original P&G version, and we
have shown that it is sufficient to extract at least a small number
of high-frequency words. Like the models of Aimetti (2009),
Driesen et al. (2009), and Résinen (2010), it operates directly
at the acoustic level, without using intermediate-level units
such as phonemes or syllables (in contrast to the algorithm of
Neubig, Mimura, Mori, and Kawahara (2010), for example);
this accords with the observation that familiarity effects in
infant listening behavior appear to operate at a whole-word
rather than subword level (Jusczyk, Houston, & Newsome,
1999). Unlike these previous models, however, ours has been
shown to work on real child-directed speech, not just hand-
built test corpora. It is selective rather than exhaustive, in the
sense that it extracts selected intervals as instances of recurring
patterns rather than attempting a complete segmentation of
the input utterances; this seems plausible as a model of word
segmentation in the early stages of learning, when only a
few words are known. The patterns discovered are a mixture
of words, parts of words, and sequences of words or part-
words; further processing, perhaps using relative frequencies
and partial similarities between patterns, would be required to
distinguish the words from the other patterns.

As developed here, our algorithm is exemplar-based: all
the extracted fragments are individually stored and compared
against each new utterance. Thus, although only a fixed num-
ber of utterances are held in memory, memory and processing
requirements still grow fairly rapidly with the amount of data.
One way to reduce these requirements would be to develop
a more compact representation of the extracted fragments,
similar to a prototype-based model. This could be achieved
either by creating a statistical model for each pattern as soon
as it is discovered (combining the information from the initial
two instances of the pattern) and then incorporating further
instances into the model; or by starting with exemplars (as
now) but then deriving a single model for each pattern when
sufficient evidence has accumulated.
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