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Abstract

Comprehension of goal-directed, intentional motion is an im-
portant but understudied visual function. To study it, we
created a two-dimensional virtual environment populated by
independently-programmed autonomous virtual agents, which
navigate the environment, collecting food and competing with
one another. Their behavior is modulated by a small number of
distinct “mental states”: exploring, gathering food, attacking,
and fleeing. In two experiments, we studied subjects’ ability
to detect and classify the agents’ continually changing men-
tal states on the basis of their motions and interactions. Our
analyses compared subjects’ classifications to the ground truth
state occupied by the observed agent’s autonomous program.
Although the true mental state is inherently hidden and must
be inferred, subjects showed both high validity (correlation
with ground truth) and high reliability (correlation with one an-
other). The data provide intriguing evidence about the factors
that influence estimates of mental state—a key step towards a
true “psychophysics of intention.”
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tionality; action understanding; goal inference.

Introduction

Comprehension of the goals and intentions of other intelligent
agents is an essential aspect of cognition. Motion is an espe-
cially important cue to intention, as vividly illustrated by the
famous short film by Heider and Simmel (1944). The “cast”
of this film consists only of two triangles and a circle, but the
motions of these simple geometrical figures are universally
interpreted in terms of dramatic narrative. Indeed, it is practi-
cally impossible to understand many naturally occurring mo-
tions without comprehending the intentions that helped cause
them: a person running is interpreted as trying to get some-
where; a hand lifting a Coke can is automatically understood
as a person intending to raise the can, not simply as two ob-
jects moving upwards together (Mann, Jepson, & Siskind,
1997). Much of the motion in a natural environment—and
certainly some of the most behaviorally important motion—
is caused by other agents, and is impossible to understand
except in terms of how and why they might have caused it.
Human subjects readily attribute mentality and goal-
directedness to moving objects as a function of properties
of their motion (Tremoulet & Feldman, 2000), and in par-
ticular on how that motion seems to relate to the motion of
other agents and objects in the environment (Blythe, Todd,
& Miller, 1999; Dittrich & Lea, 1994; Gao, McCarthy, &
Scholl, 2010; Pantelis & Feldman, 2010; Tremoulet & Feld-
man, 2006; Zacks, Kumar, Abrams, & Mehta, 2009). The
broad problem of attributing mentality to others has received
a great deal of attention in the philosophical literature (of-
ten under the term mindreading), and has been most widely
studied in infants and children (Gelman, Durgin, & Kaufman,

1995; Johnson, 2000). But the adult capacity to understand
animate motion in terms of intelligent behavior has been re-
searched less. Computational approaches to the problem of
intention estimation are still scarce (Baker, Tenenbaum, &
Saxe, 2006; Feldman & Tremoulet, 2008), in part because
of the difficulty in specifying the problem in computational
terms.

Almost without exception, video stimuli used in past ex-
periments in this area have consisted of hand-crafted an-
imations with motions chosen subjectively by the experi-
menters in order to achieve particular psychological impres-
sions (Porter & Susman, 2000). This makes it difficult to in-
vestigate the way subjects estimate intentionality, because the
object of the estimation procedure—the actual mental state of
the agent under observation—does not actually exist. Our
proposed solution to this problem is to indeed endow our
stimuli agents with “minds,” which our subjects then attempt
to “read.”

A virtual environment of autonomous agents

We developed a two-dimensional interactive virtual envi-
ronment populated with autonomous virtual agents (Fig. 1).
These agents (referred to as Independent Mobile Personali-
ties, or IMPs), are simple but cognitively independent virtual
robots, equipped with perception, planning, decision making,
and goals. They move about in the virtual environment, in-
teracting with each other, making intelligent though unpre-
dictable decisions and taking steps to achieve simple goals.
The IMPs are endowed with potentially distinct personalities
and cognitive faculties, including variations in intelligence,
memory, aggression, and strategy. The result is a complex,
dynamic microcosm in which goal-directed behavior, and the
perception thereof, can be studied in a controlled way. The
inspiration is taken from the substantial literature on artificial
life (Shao & Terzopoulos, 2007; Yaeger, 1994) in which inter-
actions among virtual creatures have been extensively mod-
eled. But unlike previous environments, our agents are cog-
nitively complete, meaning that their behavior is entirely de-
termined by autonomous decisions based on input they have
received via their own senses, and are presented visually to
subjects so that we may study how their intentions are inter-
preted by observers. Our focus is on what can be understood
from the IMPs’ motion alone; to this end, we depict the IMPs
as triangles, so that they have clearly identifiable main axes
and front ends, but otherwise minimal shape. Because we
have direct access to the “actual” intentions and mental states
of the agents—represented by a simple state variable in the
autonomous program—we can compare this “ground truth”
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to the interpretations formed by human subjects. The inves-
tigation is truly a “psychophysics of intention,” because we
relate a variable in the environment (the target agent’s mental
state) to the subject’s estimate of that variable. This in turn
allows us to study the inference mechanisms that underlie hu-
man judgments about intentional action.

Agent architecture

The IMPs have a simple visual system with a 1D retina
(Fig. 1B), which they use to gather information about the geo-
metric structure of their environment (Fig. 1C,D). The vision
module uses a ray-casting intersection test for objects along a
small number of lines of sight (see Fig. 1B). Rays that inter-
sect with something in the environment are grouped by color
to create simple object representations, which are then added
to a cumulative mental map of the environment. The IMPS’
principal goal is to gather food (bits of inanimate gray ma-
terial randomly positioned in the environment), though that
goal is occasionally interrupted by various subgoals, like the
need to fend off other agents that they encounter and the need
to explore in order to create their environment map. Their de-
cisions are carried out with the help of a path planning mod-
ule that allows them to select the shortest path from their cur-
rent position to remembered locations drawn from the learned
map.

The IMPs’ behavior is modulated by four distinct ac-
tion states: exploring, gathering food, attacking, and flee-
ing (loosely modeled on the “Four Fs” of natural ethology—
feeding, fleeing, fighting and mating; Pribram, 1960). Each
IMP transitions stochastically among these states, conditional
upon its current state, its mental map, and its immediate per-
ceptual input. The states are of course not directly visible to
observers, but rather must be inferred. In our experiments,
we refer to them as the “ground truth” of an IMP’s mental
state, because they represent the actual state of the IMP’s dy-
namic autonomous program at any given time. As reported
below, we asked subjects to estimate these states and detect
changes between them—in effect, to guess the transitions be-
tween qualitatively different behavioral events (Kurby & Za-
cks, 2008). The main focus of our analyses is on subjects’
ability to estimate these transitions, which directly reflects
their ability to interpret the intentional structure of the IMPs’
behavior.

Experiments

Our experiments tested subjects’ ability to infer the agents’
mental states while viewing short (60 s) scenes. In Exp. 1,
we explicitly instructed subjects about the four IMP mental
states, and assigned one response key per state. In Exp. 2, we
allowed subjects to freely invent their own mental states after
viewing some sample scenes, inducing a less constrained (but
also less transparent) response set.

Experiment 1

The first experiment tested subjects ability to successfully cat-
egorize the IMPs’ behaviors and detect transitions among the

Figure 1: (a) The virtual environment with its native IMPs (de-
picted as moving triangles). (b) The IMPs have automonous vision,
and by (c) exploring their environment they can (d) gradually de-
velop a mental map of the obstacles it contains.

IMPs’ “mental states.” In this condition, the possible under-
lying states were known to the subjects.

Subjects. Four undergraduate students in introductory psy-
chology classes at Rutgers University participated in the ex-
periment, and received course credit for their participation.
Each experimental session lasted approximately 30 minutes.

Stimuli. Each subject viewed the same set of 20 scenes,
generated in advance. Each pre-recorded scene was 60 sec-
onds in duration, and was presented within a 400 x 400 pixel
window, horizontally subtending approximately 13.5° of vi-
sual angle. Each scene was populated with 4 identically pa-
rameterized IMPs (described above) at randomized starting
positions, 15 gray food objects (divided evenly into 3 clus-
ters, with each cluster initially placed at a random starting
position), and two square red obstacles (placed at the same
locations in each scene).

Procedure. Five initial training scenes were shown. Sub-
jects were instructed to simply observe the action and try
to determine what was happening within the scenes. Dur-
ing training, each IMP’s true mental state was reflected in its
color (see Fig. 2). After the subject watched these 5 scenes,
they were asked what they thought the IMPs were doing, and
what the colors might mean. It was then explained to them
that the colors actually corresponded to the underlying men-
tal or behavioral state of the IMP, and that an IMP could be
in one of four of these states at a given time: “attacking” an-
other agent, “exploring” its environment, “fleeing” from an-
other agent, or attempting to “gather” food.
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Figure 2: Sample scene from Exp. 1. The red IMP is in an “attack”
state, the purple IMP is “exploring,” the yellow IMP is “fleeing,”
and the green IMP is “gathering.” Note that colors were only shown
during training scenes. All agents maintained the same, neutral color
for the remainder of the experiment.

Each subject then viewed 15 additional scenes, the first of
which was treated as practice and excluded from analysis. In
these scenes, IMPs did not change color; that is, the subjects’
task was to infer the underlying state of an IMP solely from
its behavior and context. The target IMP was colored black,
and the other 3 were colored blue. Subjects were instructed
to pay attention to the black agent in each scene, and indicate
on the keyboard which state they thought this target agent was
in at any given time. Four keys represented the 4 respective
possible states; subjects were instructed to press a key as soon
after a scene began as possible, and thereafter to press a key
only when they thought the target IMP had transitioned into
a new state.

Results. Fig. 3 illustrates how subjects responded as they
observed two example scenes. The ground truth mental state
of the target IMP is shown in the top horizontal bar in each
panel of the figure, with the 4 subjects’ concurrent responses
aligned underneath.

We first examined subjects’ performance by measuring
the proportion of time that their classifications matched the
ground truth state of the target IMP (validity; see Table 1).
Mean accuracy was 47%, with each individual subject per-
forming significantly above chance (p < .001).!

ITo determine chance performance, we simulated a random per-
former that would begin each trial having not yet responded on the
keyboard, and at subsequent time points would randomly select a
response with a probability matched to the behavior of the given

Another critical aspect of subject performance is inter-
subject agreement (reliability). We calculated intersubject
response agreement by tabulating the time that two subjects
gave the same response, evaluating agreement using a strict
criterion (Method 1) or a more relaxed one (Method 2). By
Method 1, subjects were considered to disagree if their clas-
sification differed, including if one had not yet responded. By
Method 2, agreement was not calculated until both had started
responding. Even by the stricter Method 1 (see Table 1), av-
erage inter-subject agreement was higher than accuracy with
respect to ground truth, but using the more relaxed Method
2, inter-subject agreement becomes quite high. Subject 2, for
example, responded in agreement with other subjects a full
70% of the time (in this case, chance would be 25%).

A comparison of estimated mental states to actual ones
shows a number of interesting patterns, as revealed by the
inter-state confusion matrix (Table 2). The analysis reveals
one dominant source of subject “errors.” Subjects generally
did not initiate responding immediately at the start of each
trial; 17% of overall trial time was prior to the initial response
(And, in fact, if one excludes from analysis times when sub-
jects had not yet provided a response, mean subject accuracy
rises to 54%). As IMPs were most likely to be in the explore
state at the beginnings of trials, these errors of omission ac-
count for a large proportion of subjects’ misclassifications for
this action type. Otherwise, subjects’ detection of the explore
state was nearly perfect. Accuracy was lower for the other
states. For example, when an IMP was in the gather state,
subjects were about equally likely to respond gather or ex-
plore. Correct detection of flee was only about 8%.

The pattern of subjects’ errors seems to reflect a sensitiv-
ity to the four mental states’ base rates; the IMPs spend un-
equal amounts of time in each state, and subjects’ responses
reflected that imbalance. As an illustrative example, subjects
misclassified flee as explore 44% of the time. But a suitably
tuned ideal observer would know that explore is about six
times more probable overall than flee, and could in principle
use this prior information to classify more accurately.

The next analysis explored how the IMPs’ objective phys-
ical parameters related to subjects’ classifications of their
mental state. Among the parameters we measured, some are
intrinsic to the agent (including its speed and angular veloc-
ity), while others are context-dependent in that they measure
the agent’s relation to other elements of the scene (including
the distance to the nearest other IMP, and the distance to the
nearest food). In our analysis we attempted to distinguish the
role of these two classes of parameters in accounting for sub-
jects’ responses.

First, we carried out a multinomial logistic regression, at-
tempting to predict subjects’ responses as a function of the
two intrinsic parameters mentioned above (speed and angular
velocity). This analysis echoes that of Blythe et al. (1999),

subject. Under these conditions, chance performance is 20%. We
performed 1000 such simulations for each individual subject, and
none of these random performers achieved performance as high as
their human counterparts.
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Figure 3: Two example scenes from Exp. 1 (left and right panels). Within each panel, the top figure plots physical variables related to the
target IMP, over the course of the 60 s scene. In the left panel, variables intrinsic to the IMP (solid line = speed, dashed line = angular velocity)
are plotted in black; in the right panel, variables related to the IMP’s environmental context are plotted in blue (solid line = distance to nearest
other IMP, dashed line = distance to nearest food). In the bottom figure of each panel, the top bar represents the actual “ground truth” state of
the target IMP (red = “attack”, purple = “explore”, yellow = “flee”, green = “gather”). The other bars represent the corresponding real time
responses of the 4 subjects. Black in the subjects’ bars indicates that the subject had not yet entered a response on the keyboard.

Table 1: Subject agreement with ground truth and other subjects, in
Exp. 1.

Subject
1 2 3 4
vs. ground truth 50 52 46 .38

vs. other subjects (method 1) 50 56 48 43
vs. other subjects (method2) 6 70 67 59

who similarly classified agent motion as a function of simple,
objective motion properties. Fitting the model’s parameters to
each subject separately yielded correct response predictions
41%, 41%, 41%, and 40% of the time (or 41% when fitting
the pooled data). The same model predicts ground truth 49%
of the time.

We then added the two context-dependent parameters (dis-
tance to nearest other IMP, distance to nearest food) to the
model, allowing it to reflect not only the agent’s motions but
also its reaction to the objects around it (cf. Tremoulet &
Feldman, 2006). This led to correct predictions of individual
subjects’ responses of respectively 47%, 62%, 46%, and 46%
(43% when fitting pooled data)—somewhat better than with
the intrinsic parameters alone. This model predicted ground
truth 73% of the time, reflecting the fact that the ground truth
state is, in fact, conditioned on context, as IMP state tran-
sitions can be triggered by nearby agents and food. These
logistic models are admittedly simplistic, and clearly leave a
substantial part of subjects’ responses unexplained; we view
them simply as baselines against which to compare a more
psychologically rich future computational account.

Table 2: Confusion matrix for subjects’ responses in Exp. 1 (aver-
aged across subjects). Mean proportion of IMP time spent in each
state is in parentheses, and mean proportion of time subjects spent
in each response category is at the bottom of each column.

Choice
Actual None Attack Explore Flee Gather
Attack (.16) 07 39 43 08 03
Explore (.42) | 29 02 61 03 05
Flee (.07) 08 23 A4 08 18
Gather (.35) 08 06 35 12 40
17 11 43 07 18

Experiment 2

In Exp. 2, subjects performed the same task as in Exp. 1 ex-
cept they classified the target agent into action categories that
they themselves invented.

Subjects. Three undergraduate students participated in an
approximately 30 minute experimental session in exchange
for course credit.

Stimuli. Each subject viewed the same 20 pre-recorded
scenes that were utilized in Exp. 1, 60 s each in duration.
Procedure. Five initial training scenes were shown, and
subjects were instructed to observe the action and try to de-
termine what was happening in the scenes. Unlike Exp. 1,
the IMPs colors did not change color according to their men-
tal states, so as not to bias the subjects’ future classifications.
Subjects were told that while the IMPs might have an overar-
ching goal that they are trying to achieve, at any given time an
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IMP might need to achieve a subgoal which would have a cor-
responding mental or intentional state. An analogy was made
to basketball: the overarching goal is to score more points
than the opponent, but at any given time a player might be
shooting, passing, defending the goal, attempting to steal the
ball, etc. Subjects were instructed that later they would be
asked to classify the behavior of agents according to action
categories of their own invention, and to keep this in mind as
they watched. After watching the 5 scenes, each subject re-
ported the categories they would be using. While we allowed
anywhere from 2 to 6 categories, all subjects elected to use
exactly 4—unlikely to be a coincidence given that this was in
fact the true number of states underlying the IMP behaviors.

Subjects each then viewed 15 additional scenes, the first
of which was treated as practice and excluded from analysis.
The target IMP was colored black, and the other 3 were col-
ored blue. Subjects were instructed to pay attention to the
black agent in each scene, and to indicate on the keyboard
which state they thought this target agent was in at any given
time. Keys were assigned to each of the states previously pro-
vided by the subjects. Subjects were instructed to press a key
as soon after a scene began as possible, and thereafter to press
a key only when they thought the target IMP had transitioned
into a new state.

Results. Because Exp. 2’s subjects each used his or her own
invented response categories, different subjects’ responses
cannot be simply aggregated as they were in Exp. 1. In-
stead, our analysis focuses on the overlap between each indi-
vidual response pattern and ground truth, and on the overlap
between the response patterns invented by the various sub-
jects. State classification patterns among the various subjects
were broadly correlated. For example, the number of state
transitions perceived in each scene were correlated between
subjects (Subj. 1 vs. Subj. 2: [r(12) = .65,p < .05]; Subj.
1 vs. Subj. 3: [r(12) = .57,p < .05]; Subj. 2 vs. Subj. 3
[r(12) = .53, p = .052]).

A more detailed analysis of the similarities among various
subjects’ state classifications reveals a variety of intriguing
patterns (see Table 3), though the data are too rich to dis-
cuss in detail here. First, notwithstanding the different labels
subjects chose for certain IMP behavior patterns, classes in-
vented by one subject often showed consistent correlations
with classes invented by others. For example, Subj. 1’s la-
bels hesitation and confusion were often associated with be-
havior classed by Subjs. 2 and 3 as wandering or confused,
respectively—labels that were, in turn, highly correlated with
each other. As another example, Subj. 1’s use of interaction
showed over 80% overlap with Subj. 2’s use of fighting: De-
spite the varying lexical terms chosen (an interesting subject
itself) the behavioral classes to which these terms refer are
substantially identical.

Discussion

In summary, our data show that subjects are proficient at es-
timating our automonous agents’ true mental states, both in

terms of reliability (intersubjective agreement) and in terms
of validity (accuracy in estimating the true IMP state). Al-
though mental state is only implicit in the IMPs’ behavior,
subjects can divine it; they can “tell what the agents are think-
ing,” and tend to concur with one another.

While the raw physical parameters of the IMP (speed, an-
gular velocity, etc.) can usually predict the true mental state
of the IMP (regression results above), the same parameters do
not generally predict subjects’ responses, suggesting that sub-
jects’ classifications are based on a different computational
synthesis of features. A number of authors have argued that
animacy judgments, rather than depending solely on proper-
ties of motion (e.g. the ability to expend energy and initiate
motion) rest critically on an assessment of the agents’ appar-
ent mental reactions to environmental stimuli (Tremoulet &
Feldman, 2006; Gelman et al., 1995). Our results reflect this
phenomenon, in that subjects’ classifications were more ac-
curately predicted when IMPs’ relations with their environ-
ment were taken into account. That is, a simple model re-
flecting only the agents’ raw motions—without incorporating
their context—misses some of what is driving subjects’ re-
sponses.

Naturally, subjects’ performance is not perfect, and we
found that under-segmentation of the state trajectory was far
more common than over-segmentation. That is, subjects of-
ten missed brief excursions into other states, but rarely hallu-
cinated a transition between states when one had not occurred
(see Fig. 3). Of course, most such brief excursions entail vir-
tually no observable change in behavior. This finding merely
reinforces the idea that detecting a change in intentional state
is a concrete computational process that requires sufficient
data or evidence in order to yield useful, robust results.

Conclusion

Our methods pave the way towards a true “psychophysics of
intention,” in which the subjects’ perception of psychological
characteristics of motion in the environment can be studied in
the same way that perception of physical properties has been
studied for decades. Our results confirm that subjects can in-
deed detect mental states systematically (though of course not
perfectly) and make it possible to more directly investigate
the computational mechanisms underlying this essential cog-
nitive function—a key next step for building on these prelimi-
nary results culled from a small number of subjects. In future
work, we hope to expand the range of behaviors and degree of
intelligence exhibited by our IMPs, which, after all, are still
extremely limited compared to human agents. Eventually, our
hope is to use a future version of our environment to study
comprehension of more cognitively complex phenomena—
that is, to move beyond the “Four F’s” and closer to the range
of behavior exhibited by real human agents.
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Table 3: Overlap among subjects’ uses of categories in Exp. 2. top: Subj. 1 vs. Subjs. 2 and 3; middle: Subj. 2 vs. Subjs. 1 and 3; bottom:
Subj. 3 vs. Subjs. 1 and 2. The proportion of time a subject spent in each response category is shown in parentheses. As instances when one
or both of the subjects had not yet responded are not included in this analysis, many rows and columns deviate strongly from summing to 1.

Subject 2 Subject 3
Subject 1 “Competition” “Fighting” “Taking...” “Wandering...” “Confused” “Collecting...” “Eating” “Following”
“Hesitance” (.35) .06 .04 .30 .60 54 29 .03 .06
“Going for Gray Objects” (.12) .06 .00 .59 .36 15 40 42 .03
“Confusion” (.10) .06 .03 .03 .88 85 .02 .00 12
“Interaction” (.10) .02 89 .00 .09 .59 .00 .00 41
Subject 1 Subject 3
Subject 2 “Hesitance” “Going for...” “Confusion” “Interaction...” “Confused” “Collecting...” “Eating” “Following”
“Competition” (.04) .59 .19 17 .06 28 27 .00 45
“Fighting” (.11) 17 .00 .03 .81 59 .01 .00 39
“Taking Food” (.18) .58 .39 .02 .00 .04 73 23 .00
“Wandering/Searching” (.55) .38 .08 17 .02 .67 .02 .04 .05
Subject 1 Subject 2
Subject 3 “Hesitance” “Going for...” “Confusion” “Interaction”™ “Competition” “Fighting” “Taking...” “Wandering...”
“Confused” (.45) 40 .04 .19 13 .02 13 .01 .80
“Collecting/Grabbing” (.15) .66 31 .02 .00 .05 .01 88 .06
“Eating” (.06) 19 .81 .00 .00 .00 .00 .65 .35
“Following” (.09) 25 .05 .14 44 15 51 .01 34
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