
Modeling Decision Making on the Use of Automation
Junya Morita (j-morita@jaist.ac.jp)

School of Knowledge Science, Japan Advanced Institute of Science and Technology, Japan

Kazuhisa Miwa (miwa@is.nagoya-u.ac.jp)
Akihiro Maehigashi (mhigashi@cog.human.nagoya-u.ac.jp), Hitoshi Terai (terai@is.nagoya-u.ac.jp)

Graduate School of Information Science, Nagoya University, Japan

Kazuaki Kojima (koj@aoni.waseda.jp)
Faculty of Human Sciences, Waseda University, Japan

Frank E. Ritter (frank.ritter@psu.edu)
College of Information Sciences and Technology, Penn State, USA

Abstract

This paper presents a cognitive model that simulates reliance
on automation using a line-tracing task similar to driving
where an operator has to track a moving line with a circle
by pressing keys on a keyboard (manual control) or rely on
automation (auto control). An operator can switch between
auto and manual control during the task. The success proba-
bilities of each control mode were systematically varied. An
ACT-R model to perform this task was constructed by repre-
senting reliance on the automation as production. The model
performs this task through productions that manage the per-
ceptual/motor modules. The utility values of these productions
are updated based on the rewards in every screen update. We
also introduce a meta-level monitoring the internal state of the
model. A preliminary run of this model simulated the overall
trends of the behavioral data, suggesting some validity of the
assumptions made in our model.
Keywords: Automation; ACT-R; Trust.

Introduction
We unconsciously use automation systems like e-mail spam
filters, spell checkers, and electronic toll collection (ETC)
systems. These systems save time and help us lead more ef-
ficient lives. We, however, sometimes face difficult choices
about whether to use these systems (Bainbridge, 1983). It has
also been pointed out that human decision making using such
systems is not always optimal. For example, Parasuraman
and Riley (1997) stated that there are two types of maladap-
tive choices of using automation: misuse, the over-reliance of
automation, and disuse, the underutilization of automation.
Some studies indicated that human users have an automa-
tion bias towards misuse of automation systems (Bahner, Hu-
per, & Manzey, 2008; Singh, Molloy, & Parasuraman, 1997;
Skita, Moiser, & Burdick, 2000). On the other hand, other
research indicated that human users have a manual bias, a
bias towards disuse of automation systems consistent with
a need for control (Beck, McKinney, Dzindolet, & Pierce,
2009; Dzindolet, Peterson, Pomranky, Pierce, & Beck, 2003;
Dzindolet, Pierce, Beck, & Dawe, 2002).

Vries, Midden, and Bouwhuis (2003) experimentally re-
vealed that the reliance of automation is influenced by both
the Capability of Manual control (Cm) and the Capability of
Auto controls (Ca). To explain these effects, Gao and Lee

(2006) proposed the Extended Decision Field Theory (EDFT
model; Figure 1). The model constructs belief of Ca and Cm
(Bca, Bcm) based on partially displayed these values. From
the belief values, trust (T) and self-confidence (SC) are con-
structed. Preference of automation (P) is determined by sub-
tracting T from SC. If P exceeds an upper threshold (θ), then
the model turns the current control mode to auto. If P falls
below a lower threshold (-θ), then the model turns the cur-
rent control mode to manual. In every cycle, values of Bca,
Bcm, T, and SC are updated by differential equations. Al-
though this model clearly explains the reliance on automation
in dynamic situations, the model does not have any knowl-
edge about tasks. It cannot interact with a task environment,
and it provides no human performance predictions.

This report describes a cognitive process model that in-
teracts with a specific task environment where sequential
decision-making is made. Especially, we extend our previ-
ous model (Morita et al., in-press) to improve its motor con-
trol. To do this, we use ACT-R, a unified theory of cognition
(Anderson, 2007). The following subsection briefly shows
features of this architecture relating to our model.

ACT-R
One of the most important assumptions of ACT-R is modular-
ity of cognition. ACT-R is composed of several independent
modules: goal, production, declarative, perceptual, and mo-
tor (Anderson, 2007). A goal module holds the current task
goal and other task related information. A production mod-
ule and a declarative module hold procedural and declarative
knowledge respectively. Perceptual modules include a vision
and an audio module, which take information from an exter-
nal environment. A motor module manipulates devices like
a keyboard or a mouse in an external environment. Modules
other than the production module have buffers to hold tem-
porarily information called a chunk. A production module
integrates the other modules by production rules, which con-
sists of a condition/action pair that is used in sequence with
other productions to perform a task. Conditions and actions
in production rules are specified with buffer contents of each
module.

1971



Figure 1: The process of Extended Decision Field Theory
(Gao & Lee, 2006), modified and reproduced from the origi-
nal figure.

ACT-R also includes sub-symbolic cognitive processes. If
several rules match to buffer conditions, conflict resolution
of production rules is made based on utility values assigned
to production rules. The learning of utility is controlled by
equation 1:

Ui(n) = Ui(n−1)+α[Ri(n)−Ui(n−1)] (1)

α is the learning rate; Ri(n) is the reward value given to
production i at time n. The learning occurs when a reward
is triggered, and all productions that have fired since the last
reward are updated. This learning is essentially same as the
process presented in the EDFT model using a basic reinforce-
ment learning method.

So far, ACT-R has been used to model many fields
of human-machine interaction including driving (Salvucci,
2006), teleoperation (Ritter, Kukreja, & Amant, 2007), wa-
ter flow control (Lebiere, Gonzalez, & Warwick, 2009), and
air-traffic control tasks (Taatgen, 2005). The utility update
learning of this architecture also has been applied to strategy
selection (Lovett & Anderson, 1996). Therefore, we consider
that this architecture is suitable to construct a model of de-
cision making on the use of automation. Through this mod-
eling, we try to find behavioral constraints in the model of
decision making on the use of automation.

The Task
To manipulate auto and manual performance in a dynamic
situation, and to understand how users change to use automa-
tion, we developed a simple tracking task, similar to driving.
We call this task the line-tracing task. Figure 2 shows the
screenshot of the task environment. This environment was
developed in Java.

This task requires participants to control the horizontal po-
sition of the vehicle (red circle) to follow the black line that
scrolls down at 24 pixels per second. The screen is updated
every 40 ms. If the vehicle is not on the line, a warning is pre-
sented outside of the window. The line is drawn by randomly
combining 48 pixels height line patterns of varied angles (30,
45, 90, 135, and 150 degrees).

Figure 2: The Line-tracing task environment

The vehicle is controlled by commands of “left”,
“straight”, or “right”. If the vehicle receives a left command,
the vehicle moves 1 pixel left from the original position. The
command is sampled at 48 Hz1. Therefore, maximally, the
vehicle can move 2 pixels per one pixel scroll of the line.

A participant can chose manual or auto controls to send
commands. In the manual control, participants use left and
right arrow keys to send commands. If a participant’s finger
is put on a right arrow key, the vehicle keeps receiving a right
command at every 20 ms until this key is released. In the
auto control, participants monitor that the auto control moves
the vehicle. The auto control tries to follow an optimal line
presented as the green line in Figure 2. An optimal line is the
shortest line to pass “goals” located on each corner. Figure
2 shows goals as blue dots. If the center of the vehicle is off
the optimal line, the auto control system sends a command to
correct the vehicle position. In our experiment presented in
the next section, the optimal line and goals are not visible to
participants.

In both control modes, commands are not always success-
fully sent to the vehicle. Failures occur at specified rates. In
this study, Ca and Cm specify these rates. If Ca or Cm is low,
the vehicle controlled by the corresponding mode is lagged,
and it becomes hard to follow the line. To conduct the task
successfully, participants need to select a suitable mode in
each situation. The participants freely change between modes
by pressing the spacebar.

Experiments
Before describing the model, we summarize here two experi-
ments that examined the use of automation in this task (more
details are reported in Maehigashi et. al., in press) .

In experiment 1, the baseline performance of the manual
and the auto controls were examined. The participants were
required to control the vehicle using the manual control mode.
There were five conditions where Cm values were manipu-
lated from 30% to 70%. Every participant experienced all
the five conditions in random order. Each condition lasted
40 s. The performance of the experiment was compared to

1If a key-press event is detected, a flag of sending commands is
on. This flag is off when a key-release event is detected. Therefore,
the manipulation of the command rate is not influenced by a key-
repeat rate setting in an operating system.

1972



the auto-mode performance measured in the corresponding
Ca conditions. The results confirmed that the manual perfor-
mance is lower than the auto performance in each condition.

Experiment 2 specified the ratio of automation use during
the task. The participants conducted the task with the auto
and manual control modes. They could freely change the
mode during the task. Combining five levels of Ca and Cm
values, 25 experimental conditions were prepared. Every par-
ticipant experienced all 25 conditions. As in experiment 1,
each condition lasted 40 seconds. The results of experiment
2 indicate that participants could adaptively select a suitable
mode in a given situation.

Model
Simulated task environment
The model presented here extends our previous model
(Morita et al., in-press) to become closer to the actual inter-
action with the task environment. The model interacts with a
simulated task environment developed in the ACT-R graphi-
cal user interface that is part of ACT-R 6 (Anderson, 2007).
The simulated environment is same as the original environ-
ment in the keyboard layout, the screen update rates, the line
scrolling speed, the vehicle size, the line width, and the screen
size. The auto control mode is also implemented with Com-
mon Lisp in the simulated task environment. However, unlike
the original environment, visible goal positions are set at each
corner to allow the model to perceive the path.

Process of the model
The model uses the production, goal, vision and motor mod-
ules of ACT-R 6. Eleven production rules are included in the
model. These rules consist of a basic perception-action cycle.
Figure 3 indicates this cycle, presenting the rules in boxes.
The cycle consists of a perceptual (the top part of the figure)
and motor process (the bottom part of the figure) similar to
previous driving models in ACT-R (Salvucci, 2006; Ritter et
al., 2007).

In the perceptual process, the model picks visual informa-
tion from a visual location buffer that holds location informa-
tion of objects in the environment. The FindVehicle rule finds
the horizontal position of the vehicle, and places it into the
goal buffer. The FindGoal rule finds the horizontal position
of the nearest goal position, and placed it into the goal buffer.
The position information in the goal buffer is used in the sub-
sequent motor process. After the motor process, information
in the goal buffer is cleared to begin the next cycle.

The subsequent motor process depends on the current
mode. In each mode, there is a rule to switch the current mode
(ToAuto / ToManual). These mode-switching rules send a
command to release currently pressed keys to the motor mod-
ule. After finishing the key-release, the PressSpace rule sends
a motor command pressing the spacebar.

The mode swiching rules compete with other rules in each
condition. In the auto mode, the ToManual rule conflicts with
the KeepA rule that just clears the goal buffer. In the man-

Figure 3: The basic cycle of the model.

Figure 4: Time flow diagram.

ual mode, the ToAuto rule competes with the KeepM, ToLeft,
ToRight, LtoS, and RtoS rules. These five rules have differ-
ent conditions specifying the vehicle and the goal positions,
and current move-commands (left, right, straight). The ac-
tion clauses of the ToLeft, ToRight, LtoS, RtoS rules send a
command to hold or release a key to the motor module2. The
KeepM rule does not have any action clauses relating the mo-
tor module. This rule just clears the goal buffer.

Figure 4 presents a time flow diagram showing the rela-
tions between the screen updates of the environment and the
model cycles. The environment regularly updates the screen
every 40 ms. Individual rule firings take 50 ms, but the cycle
of the model is not regulated. There are delays in the visual
and motor processes. The process of the visual location mod-
ule itself has no delay. However, encoding the location into
the goal buffer lags 10 ms. from the actual environment. The
delay of the motor control is larger than that of the percep-
tual module. The ACT-R motor module needs preparation
and execution time, which depends on the status of the motor
module. These delays disadvantage manual control compared
to automatic control.

2The default ACT-R implementation does not include key-press
and key-release functions. We used a customised module in which
the time parameter of key-punch is used.

1973



Learning and mode switching
The model adaptively learns to use a suitable mode in a given
situation. We used the default reinforcement-learning algo-
rithm in ACT-R 6 presented in section 1. The model re-
ceives rewards in every screen update. When the vehicle is off
the line, rules used in the previous screen receive no reward
(Ri(n) = 0). Otherwise, rules used in the previous screen re-
ceive positive rewards (Ri(n) = 10). This trigger corresponds
to the warning in the actual task (Figure 2).

This study uses a small learning rate (α = .01) compared to
the default setting (α = .2) because the rewards are frequently
triggered during the task. The noise parameter added to the
utility values (egs) is also set to 1. The initial utility values
of the mode switching rules (UToAuto and UToManual ) are set
to 5, and the initial utility values of other rules are set to 10.
This setting corresponds to the cost of mode switching. The
initial utility values will not change unless the vehicle moves
off the line because positive rewards and the initial values of
utility are the same.

In ACT-R, strategy selection is often modeled by conflict
resolutions based on utility values of rules (Lovett & Ander-
son, 1996). According to this paradigm, the mode-switching
rules fire when its utility values exceed a utility value of a
competing rule. However, our task has differences from tasks
used in the previous studies. As Figure 4 indicates the motor
actions have delays. There are time-gaps between rule firing
and manual control execution. These gaps make rewarding
difficult because the next cycle begins before the motor ac-
tion completes. In addition, the structures of conflict are not
the same between the manual and the auto control modes.
The ToAuto rule conflicts with five rules in the manual mode.
On the other hand, the ToManual rule conflicts with only the
KeepM rule in the auto mode.

To solve this problem, we assumed meta-level decision
making in addition to the standard conflict resolution. The
following code indicates the conditions of the ToAuto rule.

=goal>
isa move-vehicle
- vehicle-loc nil
- goal-loc nil
- previous-rule to.auto
current-mode manual
!eval! (<= *self-conf* *trust*)

The last line is an !eval! condition that has two global vari-
ables, *trust* and *self-conf*3. The ToManual rule also has
a similar condition, “!eval! (>= *self-conf* *trust*).” The Lisp
function outside of the ACT-R model sets the utility values of
the KeepA and KeepM rules into *trust* and *self-conf* re-
spectively. By putting these conditions, ToManual fires only
when *self-conf* exceeds *trust*, and the utility values of
the ToManual rule exceeds that of the KeepA rule. Similarly,
the ToAuto rule fires only when *trust* exceeds *self-conf*,
and the utility values of the ToAutol rule exceeds that of the

3ACT-R architecture provide the !eval! condition to allow the
modeler to add arbitrary conditions to a production rule.

Figure 5: Performance of the model and the data in the base-
line simulation. Error bars represent the standard error of
means (SEM).

competing production rules.

Simulations
In this paper, we present two simulation experiments that sim-
ulate the experiments presented in section 3.

Baseline simulation
First, we conducted a simulation of experiment 1 to confirm
the correspondence of base performance of the auto and man-
ual modes.

Method In experiment 1, the participants could not use the
auto control mode (Data-Manual: n = 65). Similarly, we ran
the model with the initial control mode as the manual, and
removed the ToAuto rule from the model (Model-Manual:
n = 100). We also compared baseline auto performance be-
tween the original environment (Java-Auto: n = 65) and the
simulated environment (CL-Auto: n = 100).

Results Figure 5 indicates the performances of the four
conditions in each Ca/Cm level, showing the ratio of time that
the vehicle is on the line. From this figure, it can be observed
that the performance of the all four lines increases with higher
Ca/Cm levels, consisting with the manipulations of capabil-
ity. In addition, we can confirm that the auto controls are bet-
ter than the manual controls in both the experiment data and
the simulation. This result indicates the manual disadvan-
tages in this task. Although the performance of the model is
relatively lower than that of the data, the correlations between
the experiment and the simulation are high [Auto: r2 = .994,
p < .01. Manual: r2 = .997, p < .01].

Simulation with two modes
This simulation is conducted to simulate experiment 2 that
specifies the automation use ratio.

Method In experiment 2, the participant (n = 35) could use
the auto control mode. They conducted the task in 25 con-
ditions where Ca and Cm levels were manipulated (5 levels
of Ca ranging from 30% to 70% v.s. 5 levels of Cm ranging
from 30% to 70%). Similarly, the model conducted the task
choosing two modes of control in the 25 conditions (n = 50).

1974



Figure 6: Performance of the simulation 2. Error bars represent the standard error of means (SEM).

Figure 7: Auto use ratio of the simulation 2. Error bars represent the standard error of means (SEM).

In each condition, the model conducted the task for 40 sec-
onds. The initial mode was randomly set.

Results Figure 6 presents the performance of the model and
the experimental data. Each of the five graphs indicates the
performance in each Cm level, and the horizontal axis of the
each graph indicates Ca levels. The figure indicates an in-
crease of the performance of the model and the experiment
data with higher Ca and Cm levels. The correlations of the
model and the data are high [r2 = .875, p < .01] although
some differences between the model and the data can be ob-
served. For example, the model is lower than the data in com-
bination of the low Cm and the high Ca levels (e.g., Cm =
30/Ca = 70). Similarly, the performance of the model fell be-
low that of the data in combination of the high Cm and the
low Ca level (e.g., Cm = 70/Ca = 30). These differences sug-
gest some difference in automation use between the model
and the experiment data.

Figure 7 indicates the auto use ratio in each Ca and Cm
level, which represents how long the auto mode is used during
the task. Comparison of the five graphs reveals decreases of
auto use ratio with increases of the Cm level. We can also see
an increase of the auto use ratio with increases of the Cm level
from each graph. The model shares these tendencies with
the data, and we obtained a significant correlation between
the data and the model [r2 = .784, p < .01]. These results
suggest that the adaptive learning on the mode selection was
made in both the experiment and the simulation. The model
is, however, less adaptive compared to the data. The auto
use ratio of the model is lower in the low Cm levels such as
Cm = 30, and the model’s lines is flatter than the data’s line
in Cm = 50.

Conclusion
This paper described an ACT-R model that simulates decision
making about the use of automation. The results of the sim-
ulations show overall correspondence with the experimental
data, suggesting some validity of the assumptions made in our
model.

We consider that this study is characterized as the con-
nection of the cognitive process model (ACT-R) to an ab-
stract model (EDFT). Figure 8 summarizes the process of
our model in the framework of the EDFT model. Like the
EDFT model, the utility module of ACT-R represents Belief
and Trust in automation systems. However, unlike the previ-
ous model, our model has knowledge to execute a task and
simulates performing the task. Our model also does not re-
ceive Ca/Cm directly. Randomized course conditions influ-
ence the performance (success/failure) of the task. Moreover,
complex perceptual/motor factors are involved in the manual
mode performance. Therefore, the reliance of the automation
interacts with the performance of the task in our model. As
Bainbridge (1983) implied, to understanding decision making
about the use of automation, one needs to consider monitor-
ing the performance of auto and manual performance. This
study is a first step to include performance factors into mod-
eling use of automation.

Our model is also different from previous models of strat-
egy selection in ACT-R. Unlike the previous studies, our task
requires and uses a complex perceptual/motor process. In
such a situation, rewarding behavior is not easy problem. We
introduced a function to monitor self-confidence and trust to
solve this problem. We consider that the conditions compar-
ing utility values represents a type of meta-cognitive decision
making, monitoring the internal states of the model. This
monitoring process is not straightforward, but it is influenced
by noise (egs). We need to be careful about assuming this

1975



Figure 8: Correspondence with the EDFT model.

process, but we could not simulate overall trends of the ex-
periment without this assumption. This suggests the default
sub-symbolic computation is not enough for explaining the
use of this automation in this task.

However, using an !eval! condition is not supported by
ACT-R theory. ACT-R is designed as a unified cognitive the-
ory that combines sub models from various fields (Ander-
son, 2007). It is difficult to combine sub models using !eval!
conditions. Therefore, we need to consider other methods
of modeling this mechanism, which can contribute the de-
velopment of a unified theory of cognition, particulary meta-
cognition.

There are several other limitations of this study. Consid-
ering the result in Figure 7, we need to explore mechanisms
that lead to more adaptive learning. We also need to conduct
analysis on more detailed behavior such as the frequency or
timing of mode switching during the task. The task used in
this study is also relatively simple and artificial. Connecting
to more complex tasks is required. The factors involved in au-
tomation use are broad. In future work, we will explore other
factors of automation use, such as cognitive load, emotion,
mental models, and individual differences.

Acknowledgments
This study is supported through the CREST program from
the Japan Science and Technology Agency (JST), and DTRA
(HDTRA 09-1-0054). The authors wish to acknowledge the
helpful comments and suggestions made by Dan Bothell,
William Kennedy, Christian Lebiere, Walt Mankowski, Ling
Rothlock, Matthew Walsh, and John Yen.

References
Anderson, J. R. (2007). How can the human mind occur

in the physical universe? New York: Oxford University
Press.

Bahner, J. E., Huper, A. D., & Manzey, D. (2008). Misuse
of automated decision aids: Complacency, automation bias
and the impact of training experience. International Jour-
nal of Human-Computer Studies, 66(9), 688-699.

Bainbridge, L. (1983). Ironies of automation. Automatica,
19(6), 775–779.

Beck, H. P., McKinney, J. B., Dzindolet, M. T., & Pierce,
L. G. (2009). Effects of human-machine competition on in-
tent errors in a target detection task. Human Factors, 51(4),
477-486.

Dzindolet, M. T., Peterson, S. A., Pomranky, R. A., Pierce,
L. G., & Beck, H. P. (2003). The role of trust in automa-
tion reliance. International Journal of Human-Computer
Studies, 58(6), 697–718.

Dzindolet, M. T., Pierce, L. G., Beck, H. P., & Dawe, L. A.
(2002). The perceived utility of human and automated aids
in a visual detection task. Human Factors, 44(1), 79–94.

Gao, J., & Lee, J. D. (2006). Extending the decision field the-
ory to model operators’ reliance on automation in supervi-
sory control situations. IEEE Transactions on Systems Man
and Cybernetics, 36(5), 943–959.

Lebiere, C., Gonzalez, C., & Warwick, W. (2009). Conver-
gence and constraints revealed in a qualitative model com-
parison. Journal of Cognitive Engineering and Decision
Making, 3(2), 131–135.

Lovett, M. C., & Anderson, J. R. (1996). History of success
and current context in problem solving: Combined influ-
ences on operator selection. Cognitive Psychology, 31(2),
168–217.

Maehigashi, A., Miwa, K., Terai, H., Kojima, K., Morita, J.,
& Hayashi, Y. (in-press). Experimental investigation about
misuse and disuse in human automation system interaction.
In Hci international 2011.

Morita, J., Miwa, K., Maehigashi, A., Terai, H., Kojima, K.,
& Ritter, F. E. (in-press). Modeling human-automation
interaction in a unified cognitive architecture. In The 20th
behavior representation in modeling & simulation (brims)
conference 2011.

Parasuraman, R., & Riley, V. (1997). Humans and automa-
tion: Use, misuse, disuse, abuse. Human Factors, 39(2),
230–253.

Ritter, F. E., Kukreja, U., & Amant, R. S. (2007). Including
a model of visual processing with a cognitive architecture
to model a simple teleoperation task. Journal of Cognitive
Engineering and Decision Making, 1(2), 121–147.

Salvucci, D. D. (2006). Modeling driver behavior in a cogni-
tive architecture. Human Factors, 48, 362–380.

Singh, I. L., Molloy, R., & Parasuraman, R. (1997).
Automation-induced monitoring inefficiency: role of dis-
play location. International Journal of Human-Computer
Studies, 46(1), 17–30.

Skita, L. J., Moiser, K., & Burdick, M. D. (2000). Ac-
countability and automation bias. International Journal of
Human-Computer Studies, 52(4), 701–717.

Vries, P. de, Midden, C., & Bouwhuis, D. (2003). The effects
of errors on system trust, self-confidence, and the alloca-
tion of control in route planning. International Journal of
Human-Computer Studies, 58(6), 719–735.

1976


