Does anchoring cause overconfidence only in experts?
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Abstract

The anchoring-and-adjustment heuristic (Tversky &
Kahneman, 1974) predicts elicitation of an initial estimate
will prompt subsequent minimum and maximum estimates to
lie close to the initial estimate, resulting in narrow ranges and
overconfidence. Evidence for this, however, is mixed; while
Heywood-Smith, Welsh & Begg (2008) observed narrower
subsequent ranges, Block and Harper (1991) report ranges
became wider. One suggestion has been that this reflects a
difference between expert and novice reactions to elicitation
tasks. The present study investigated whether the interplay
between expertise and number preferences leads to the
paradoxical effects of an initial estimate. Participants with
high expertise make precise estimates whereas participants
with less expertise prefer rounded numbers, which could,
potentially, reduce the impact of anchors. We confirm that
expertise affects the precision of estimates and observe results
indicative of the theorized effect — an interaction between
expertise and elicitation method on range widths.
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In fields where empirical data is limited or unavailable,
decisions are often based on expert judgment. For example,
current industry practice in petroleum exploration requires
exploration geologists to provide 80% confidence ranges on
relevant factors (e.g., rock porosity, reservoir thickness)
prior to drilling (Hawkins, Coopersmith, & Cunningham,
2002). A typical result, however, is overconfidence
(Lichtenstein, Fischhoff, & Phillips, 1982), where the level
of confidence reported is much higher than the proportion of
ranges containing the true value. This bias has been
observed not only in oil and gas industry personnel (Welsh,
Bratvold, & Begg, 2005), but in a multiplicity of experts
including clinicians (Christensen-Szalanski & Bushyhead,
1981), business managers (Russo & Schoemaker, 1992) and
social scientists (Tetlock, 1999). Theoretical interest in
factors affecting overconfidence is therefore shared by
technical and psychological disciplines alike.

A popular explanation for overconfidence stems from the
anchoring-and-adjustment heuristic, first suggested by
Tversky and Kahneman (1974): people start from an initial
value, an anchor, which they insufficiently adjust from to
provide a range. While this anchoring-and-adjustment
explanation has received support (Russo & Schoemaker,
1992; Heywood-Smith, Welsh & Begg 2008), several
studies found that requesting a best initial estimate resulted
in wider ranges, that is, reduced overconfidence (see, e.g.,
Block & Harper, 1991; Clemen 2001; Juslin, Wennerholm
and Olsson, 1999; Soll & Klayman, 2004; Winman,
Hansson, & Juslin, 2004).

Yaniv and Foster (1995) theorized there is a trade-off
between accuracy and informativeness in uncertain
judgment tasks. The precision or “graininess” in estimates is
used to convey confidence. On the aforementioned
calibration task, for example, an individual uncertain of
their knowledge should produce a wide, less precise range
to represent uncertainty. However, although wider ranges
are more likely to encompass the true value, as estimates
become less precise (i.e., “grainier”), they also become less
informative of the true value.

There is a possibility that, in order to boost
informativeness, experts in a topic are more inclined to
generate precise estimates than laypeople. Should this
indeed be the case, such a difference in number preference
may help clarify the relationship between anchoring and
overconfidence.

Such number preferences could place limits on the
minimum width of a range that vary by elicitation method.
For example, an individual who prefers to give estimates in
multiples of 100 (to characterize their uncertainty about the
true values) may generate a range of 100-200. If requested
to provide an initial best guess, using the same scale this
person would estimate either 100 (prompting a wider range
of 0-200) or 200 (range: 100-300). The wider range
resulting from this preference for round numbers would
therefore remove any anchoring effect the initial best guess
had on the end-points (and, thereby, reduce
overconfidence). Where uncertainty is high and precision
low, this effect may be sufficient to overwhelm any
anchoring effect resulting from the best guess. In contrast,
an expert’s tendency to produce precise estimates (i.e.,
fewer trailing zeros) will reduce or avoid this effect and thus
any effect of anchoring resulting from the best guess will be
observable.

Research Aims

The aim of this study is to investigate the effect an initial
best guess of a true value has on the width of elicited ranges
at different gradations of expertise. It was hypothesized that
individuals with less expertise would prefer to report
estimates in rounded numbers. A best guess would be made
as, for example, a multiple of 10. Subsequent adjustment
from this anchor would be made on the same scale to obtain
minimum and maximum estimates, thereby reducing the
impact of anchoring. Conversely, highly expert individuals
would report precise estimates. Anchoring on the best guess
would therefore be more apparent as adjustments for ranges
are made on a smaller scale.
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Method

Participants

Participants were 307 undergraduate psychology students
studying at the University of Adelaide (83 males and 224
females), aged 16 to 53 years (M = 20.07, SD = 4.68) who
participated for course credit.

Materials

Two purpose-designed 20-item questionnaires were used to
assess number preference and the effect of an initial best
guess at different gradations of self-rated expertise. The
questionnaires comprised Australian Football League (AFL)
and general knowledge trivia. There were two experimental
conditions — best guess first and range only. For example,
on the AFL trivia item “In what year did the Adelaide
Crows join the AFL?”; participants in the best guess first
condition would provide their best estimate of the actual
answer before a range (i.e., a low and a high guess) which
they were 80% confident contained the actual answer.
Participants in the range only condition did not provide an
initial best guess. In addition to these confidence intervals,
participants rated their confidence that their answer
contained the true value, on a 3-point scale: 1 (Absolutely
no idea), 2 (I had a vague idea) and 3 (I felt that I knew).
Confidence was assessed as the average of all confidence
ratings across questions.

Procedure

Data was collected online using SurveyMonkey. In addition
to demographics (age and gender), participants were asked
to self-rate their expertise: “What percentage of the
Australian population do you have more knowledge of AFL
than?”

Participants were also asked about their engagement in
football-related activities, i.e., “How many AFL games do
you watch per week?”; and “How many years have you
been following AFL?” Other questions were scored on
rating scales: “Do you play football?” (0 = No; 1 = Yes);
“How often do you attend AFL games?” (0 = Never to 5 =
Weekly); “How often do you read or watch news reports
about football?” (0 = Never to 4 = Daily).

Allocation to one of the two conditions (best guess first or
range only) was randomized, but all participants completed
the AFL questionnaire before the general knowledge
questionnaire.

Results
Scoring

Range To enable comparisons across questions with
answers of varying magnitudes, the distance between
minimum and maximum estimates on each question was
recorded as the relative range —the maximum minus the

minimum estimate, divided by the true value. Higher scores
indicated wider ranges.

Precision Number preference was assessed in terms of
precision — the number of final zeros in an estimate. For
example, an estimate of 100 (2 final zeros), would be scored
at precision 2. Lower scores therefore indicated greater
precision.

Error As our error measure we used proportional error.
This was calculated as the average of all error scores
proportional to the true value. For the range only condition,
error was assessed as the absolute difference between the
midpoint of the participant’s provided range and the true
answer. For the best guess first condition, error was
measured as the absolute difference between their best guess
and the true answer for each question. Thus, higher scores
denoted greater error.

Preliminary Analyses

Preliminary analyses were conducted to ensure expertise on
the AFL questionnaire was appropriately measured by self-
ratings.

Spearman rank order correlations confirmed self-rated
AFL expertise correlated positively with football-related
activities. The number of games watched weekly (p = .54),
years individuals followed AFL (p = .54), reading or
watching AFL news (p = .46) and AFL game attendance (p
= .42) all had moderate correlations with self-rated expertise
(all p < .001). The correlation between actually playing
football and self-rated expertise was weak (p = .19, p =
.001).

Looking at correlations between self-rated AFL expertise
and error on each of the AFL trivia questions in the range
only condition, 18 of 20 reached significance in the
predicted negative direction, ranging from p = -.15, p = .03
to p = -.46, p < .001. Only one correlation between self-
rated AFL expertise and error was positive, p = .23, p =
<.0l.

Similarly, in the best guess first condition, 18 of the 20
correlations between self-rated AFL expertise and error
reached significance in the predicted negative direction,
ranging from p = -.18, p = .03 to p = -.47, p < .001. The
same item produced a positive correlation between self-
rated AFL expertise and error, p = .27, p = <.01.

A non-parametric one-tailed sign test indicates the overall
negative trend (i.e., 18 out of 20 correlations in the negative
direction) is, itself, significant, p = 2.0x10™,

Mean correlations between AFL expertise and error in the
range only and best guess conditions were p = -.15, p < .001
and p =-.19, p < .001, respectively.

Table 1 shows that participants’ confidence calculated
from the AFL questionnaire (i.e., the average of all of a
person’s confidence ratings reported in that questionnaire)
had a moderate, positive correlation with self-rated expertise
(p = .56, p <.001). The correlation between confidence and
error (p = -.72, p <.001), however, was higher than the
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correlation between self-rated expertise and error (p = -.47,
p <.001), indicating that confidence itself was a good
measure of people’s degree of expertise. Given this, the
confidence measure calculated from the general knowledge
questionnaire was used to indicate expertise in general
knowledge. The correlation between confidence and error
on the general knowledge task was weaker but in the
predicted direction (p = -.31, p <.001; see Table 2).

Table 1: Spearman correlation matrix for AFL
questionnaire variables

1 2 3 4 5
1 Expertise - <00l <01 <.001 <.001
2 Conf. .56 - <01 <001 <.001
3 Precision -.16 -.16 - <.001 .14
4 Range -42 -.58 46 - <.001
5 Error -47 =72 .07 .56 -

Note: Lower triangle cells show the correlation p. Upper
triangle cells show the p-value. N = 263. Precision, range
and error are averages across questions.

Table 2: Spearman correlation matrix for general
knowledge questionnaire variables

1 2 3 4
1 Conf. - <001 <001 <.001
2 Precision -31 - <.001 <.001
3 Range -21 .58 - <.001
4 Error -31 24 47 -

Note: Lower triangle cells show the correlation p. Upper
triangle cells show the p-value. N = 280. Precision, range
and error are averages across questions.

Defining Expertise

Expertise in AFL Self-ratings of AFL expertise were split
such that participants rating their knowledge as less than
that of 50% of the Australian population were grouped ‘low
expertise’. Remaining participants who rated their
knowledge as greater than or equal to 50% were grouped
‘high expertise’.

Expertise in General Knowledge Participants who
reported an average confidence rating of less than 2 were
grouped ‘low expertise’. Remaining participants with an
average confidence rating greater than or equal to 2 were
‘high expertise’.

Interactions between Expertise and Elicitation
Method

It was hypothesized that eliciting a best guess first would
cause observable anchoring in high expertise participants;
while a best guess in low expertise participants could
prompt a greater widening of range end-points.

Figure 1 shows that, on the AFL questionnaire, best
guesses led to wider ranges in both expertise groups and
high expertise participants gave narrower ranges' (range
only tM;y = .041, Clys = .030, .053; best guess first tM,, =
.074, Clys = .056, .096) than low expertise participants
(range only tM;y = .110, Clys = .097, .124; best guess first
thg = 176, C195 = 155, 198)

The same pattern was found for expertise and condition
on the general knowledge questionnaire: the best guess first
condition produced wider ranges and participants with high
expertise had narrower mean ranges (range only tM,, =
109, Clgs = .092, .128; best guess first tM,y = .150, Clys =
.125, .178) than participants with low expertise (range only
tMy = 157, Clgs = .145, .170; best guess first tM;, = .265,
Clgs = 241, .290).

Range (AFL) Range (GK)
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Figure 1: 20% trimmed mean range and 95% confidence
intervals for low and high expertise participants in range
only (RO) and Best guess first (BG) conditions of the AFL
questionnaire (left) and general knowledge questionnaire
(right). AFL low expertise RO N = 105; BG N = 82. High
expertise RO N = 45; BG N = 31. General knowledge low
expertise RO N = 116; BG N = 84. High expertise RO N =
47; BG N = 33.

Visual inspection of the pattern of results is suggestive of
an interaction effect of expertise on condition on both AFL
and general knowledge questionnaires: that is, the results
suggest that the ranges given by low expertise people are
being more strongly affected by the inclusion of a best guess
than those of experts. Standard two-way analyses of

'Variables violated the assumptions of standard parametric
procedures; therefore 20% trimmed means are reported to improve
robustness against outliers and skewness (Keselman, Algina, Lix,
Wilcox, & Deering, 2008). Confidence intervals around these
means were calculated using a percentile bootstrap method with
10,000 bootstrap samples (see Erceg-Hurn & Mirosevich, 2008).
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Variancez, however, indicated these interactions were not
significant on either the AFL (F(1, 259) = .29, p = .59,
partial 1’= .001), or the general knowledge questionnaire
(F(1, 276) = .04, p = .84, partial n* = .00). It is worth noting
that Levene’s test on range in the general knowledge
questionnaire indicated the assumption of homogeneity of
variance was not met (F(3, 276) =7.57, p < .001).

Given that the ANOVAs checking for these interactions
were conducted on the ranks for range, there are also
concerns regarding the statistical power of the test,
particularly as there is a further loss of power in the
ANOVA result for the general knowledge task resulting
from the combination of unequal variances with uneven
sample sizes. In short, the reliability of the ANOVA results
is questionable.

As a result of this and the direct observations of Figure 1,
which seem to imply an interaction effect of noticeable
strength, we conducted an additional analysis.

Testing for an interaction effect between expertise and
elicitation method is non-trivial in this case. This is because
we wish to test the interaction on the 20% trimmed means
(not the mean or median), controlling for possible main
effects, without assuming normality. To do so, we
constructed a nonparametric permutation-based test. Our
test statistic was the extent to which the cell-20% trimmed
means deviated from the values predicted by a model
consisting solely of main effects (the extent of this variation
is formalized via the standard deviation). The distribution of
this statistic under the null hypothesis is estimated by
constructing 100,000 random permutations of the grouping
variables (i.e., elicitation method and expertise status). The
p-value is estimated as the probability of observing a
deviation from the main effect model predictions as large as
or larger than the observed value. For the AFL data, the
observed value of .034 is highly significant relative to the
null distribution that has mean .01 and std. dev .005 (p <
.001). For the general knowledge data, we obtained a test
statistic of .04, evaluated against a null distribution with
mean .01 and std. dev .006 (p < .001).

Main Effect of Precision

Figure 2 confirms the prediction that high expertise
participants would produce more precise estimates (range
only tM;y = .168, Clys = .133, .204; best guess first tM,, =
165, Clys = .124, .208) than low expertise participants
(range only M,y = .282, Clys = .258, .306; best guess first
tM5p = .301, Clgs = .274, .329) on the AFL questionnaire.

High expertise participants also provided more precise
estimates (range only M,y = 433, Clgs = 395, 471; best
guess first tM;y = 492, Clys = 448, .537) than less expert
participants (range only tM;, = .560, Clys = .536, .584; best
guess first tM,y = .586, Clys = .558, .613) on the general
knowledge items.

2 Because data was skewed, a rank transformation was performed
on all observations for the range of estimates, with the lowest rank
of “1” assigned to the smallest observation (see Conover & Iman,
1981).

Additional Findings

A main effect of precision on condition was found for high
expertise on the general knowledge questionnaire: estimates
were more precise in the range only condition (tMjy=
433,Clys = .395, 471; best guess first tM,y= 492, Clys =
448, .537; see Figure 2).

As depicted in Figure 3, on general knowledge items,
high expertise participants produced less error (range only
tM>y = 8.830, Clys = 6.979, 11.036; best guess first tM,, =
10.647, Clgs = 8.280, 13.379) than participants with low
expertise (range only tM,, = 17.448, Clys = 15.602, 19.521;
best guess first tM,y = 15.578, Clys = 13.879, 17.648).

On the AFL questionnaire, participants with high
expertise (range only tM;y = 5.935, Clgs = 4.041, 9.362; best
guess first M,y = 2.711, Clys = 1.685, 4.712) showed less
error than low expertise participants in the best guess first
condition only (range only tM, = 9.039, Clys = 7.558,
11.903; best guess first tM;y = 6.647, Clys = 5.298, 8.558).
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Figure 2: 20% trimmed mean precision and 95% confidence
intervals for low and high expertise participants in range
only and best guess first conditions of the AFL
questionnaire (left) and general knowledge questionnaire
(right). Sample sizes as in Figure 1.
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Figure 3: 20% trimmed mean error and 95% confidence
intervals for low and high expertise participants in range
only and best guess first conditions of the AFL
questionnaire (left) and general knowledge questionnaire
(right). Sample sizes as in Figure 1.
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Note on Analyses

It is important to note that although expertise was
discretized in the above analyses, preliminary linear
regression analyses® with full continuous variables showed
the same pattern of results.

Discussion

The results of this study showed main effects of both
expertise and elicitation method (group). Participants with a
high level of expertise reported estimates with greater
precision than participants with less expertise and, in both
cases, people who were asked for a best estimate first tended
to give wider ranges.

The most interesting result, however, is the interaction
between these two. While difficult to analyze, due to
violations of the assumptions of parametric tests and the
accompanying loss of power in alternative tests, our
interpretation of the data, both visually, from Figure 1 and
statistically, using a specifically designed permutation test,
lead us to conclude that people with low expertise were
disproportionately affected by the inclusion of a best guess
in both the AFL and general knowledge questions.

That is, less expert people, when asked to estimate a range
after having their best guess elicited, increase the width of
those ranges more than do more expert people.

This, we argue, may result from their greater preference
for rounded numbers, which causes a sort of ‘buffering’
effect, whereby people’s estimates are forced wider because
their best guess is already occupying one of the numbers
that they would otherwise have used as the end-point of
their range.

Caveats

However, a number of caveats should be taken into account
when considering our results, including the difficulties we
have encountered in analyzing the data. Traditional,
parametric tests fail to yield reliable results when their
assumptions are violated, yet their non-parametric
equivalents often result in a loss of power — which makes
the observation of interaction effects particularly difficult.
This has necessitated our creation of a specific test for the
interaction that we could see in Figure 1.

Other concerns relate to the degree of expertise and
number preference observed in our data. Less than a third of
our sample rated themselves as better than 50% of the
population in the AFL questions and confidence was lower
on the general knowledge questions. With a mean self-rated
expertise of less than 30% our sample may, as a result,
suffer from restricted range, which would undermine the
strength of any observed effects. The fact that expertise was
self-rated and correlated with the other measures less well

*Distributions of variables were skewed. Thus, a rank
transformation was performed on all observations, with the lowest
rank of “1” assigned to the smallest observation.

than a 3-point confidence rating also suggests that our
division between high and low expertise may be more
arbitrary than we would hope.

Similarly, the degree of number preference shown on the
AFL task, in particular, is extremely low, with the group
averages ranging from .075 to .2 — indicating that, at most,
people used an extra zero on every fifth estimate. This is
much lower than rates observed in other experiments (see,
e.g., Welsh, Navarro & Begg, in press, where an equivalent
value above .9 was observed).

Given this it could, reasonably, be argued that our
experiment underestimates the magnitude of differences
between experts and non-experts — particularly on tasks
where uncertainty is higher.

This may also explain the observation that both our
‘expert’ and ‘non-expert’ groups widened their ranges as a
result of the inclusion of a best guess, rather than seeing
narrower ranges in the expert group due to an anchoring
effect. Otherwise, we would need to conclude that our
experiment adds further evidence to the case against
anchoring playing any significant role in causing
overconfidence. Instead, as has been the case in the majority
of instances, we observe that an initial best guess tends to
widen rather than narrow subsequently elicited ranges,
although by different amounts.

Future Research

As noted above, a key concern with the current analyses
relates to the definition of expertise. While the self-ratings
that we used did correlate in the expected manner with all of
our variables, the fact that a simple 3-point confidence scale
was a better predictor is concerning, as is the observation
that so few of our sample regarded themselves as being of
above average expertise on the task.

To combat this, additional experiments, specifically
targeting samples expected to have higher than average
knowledge of the domain in question are required, along
with pre-experimental testing to directly measure this
knowledge. This will enable direct comparisons between
people with genuinely high expertise and the general
populace and thereby clarify the remaining question of
whether true experts will actually be made more
overconfident by the inclusion of a best guess in a range
elicitation task.

Conclusions

Given the above, it seems reasonable to conclude that
expertise does, differentially, affect people’s response to
different elicitation methods. This is of great importance for
the transfer of elicitation techniques between laboratory and
applied settings as it suggests that effects observed in the
laboratory may not be the same as those seen in practice.
That is, an elicitation effect, shown to be of benefit in
laboratory testing, still needs to be tested on experts before
we can state, with certainty that it improves elicited values.
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