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Abstract

It has been suggested that a developmental log-to-linear shift
in children’s performance on number line estimation tasks is
diagnostic of their underlying representations of numerical
magnitude (Siegler & Opfer, 2003). However, in the study
presented herein, we were able to induce a similar log-to-
linear shift on number line estimation tasks among adults by
manipulating their familiarity with the numbers we used as
stimuli. We offer this evidence as an existence proof that
differences in performance on number line estimation tasks
may not necessarily be indicative of fundamental differences
in the formats of people’s underlying numerical magnitude
representations. Rather, they may be diagnostic of differences
in people’s understandings of what magnitudes are
represented by symbolic numbers.
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Numerical estimation is an important part of
mathematical cognition for both children and adults. Indeed,
numerical estimation seems to play a central role in a wide
range of mathematical activities (see Siegler & Booth, 2005
for a review). In recognition of its importance, Siegler and
colleagues have focused on the ability to estimate numerical
magnitudes as a key indicator of number sense in
developmental studies (Siegler & Booth, 2004; Siegler &
Opfer, 2003)

Perhaps the most well known of these numerical
estimation tasks is the number line estimation task. This task
requires that participants estimate the location of a number
on a line with numerical anchors at each end. This task not
only involves magnitude estimation, but also the ability to
translate  between symbolic numbers and mental
magnitudes. Siegler and colleagues have helped illuminate a
typical developmental trend observed on such number line
estimation tasks: young children show a tendency to
compress numbers logarithmically, whereas adults do not
(e.g., Siegler & Booth, 2004; Siegler & Opfer, 2003). That
is, when asked to mark the position where a number # is on
the line, children typically place the mark at a spot
approximated by log(n) instead of n. With development,
these estimates become more linear (Siegler & Opfer,
2003). Importantly, the linearity of children’s magnitude
estimates on these tasks is correlated with a wide range of
numeracy measures, including counting ability, number
naming, digit magnitude comparison, and achievement test
scores (e.g., Booth, 2005; Ramani & Siegler, 2008; Siegler
& Booth, 2004).

According to the log-to-linear shift hypothesis, the

logarithmic compression found in children is diagnostic of
their underlying representations of numerical magnitude.
This view suggests that children’s performance is
logarithmic because their underlying mental representations
of numerical magnitudes are logarithmically compressed
(Dehaene, 1997; Siegler, 2009). Siegler and colleagues
further theorize that experience and schooling lead to the
development of a linear representation of numerical
magnitude. More specifically, they propose that though the
logarithmic and linear representations continue to coexist,
individuals can learn to invoke the linear representation
when it is appropriate (Siegler & Opfer, 2003).

Three pieces of evidence appear to support this
hypothesis. First, children’s estimates become more linear
with schooling and experience. Second, the linearity of
children’s estimates predicts a wide range of numeracy
measures. These include counting ability, number naming,
digit magnitude comparison, and achievement test scores,
perhaps indicating that the hypothesized linear ruler is
widely applied once it is developed (Siegler & Booth,
2004). Finally,, children’s estimates are more linear within
number ranges that are more familiar to them but remain
logarithmic on larger, more unfamiliar scales (Siegler &
Opfer, 2003). This in particular has been taken as evidence
that the logarithmic and linear rulers coexist.

The log-to-linear shift hypothesis, however, is not without
controversy. A recent critique put forth by Barth and
Paladino (2010) raised questions about the interpretation of
children’s apparently logarithmic performance. The critique
argued that the shift from logarithmic to linear performance
on number line tasks is not diagnostic of some basic change
in children’s underlying representation of number, but is
instead due to knowledge constraints interfering with the
default method for completing the task. Barth and Paladino
argue that number line estimation cannot properly be seen as
a pure numerical estimation task. Rather, such placement
tasks are actually a form of proportion judgment task — a
task in which ratio between items must be evaluated.
Indeed, previous literature in psychophysics has shown that
estimation tasks that combine two measures in a
complementary fashion such that they sum to a fixed total
should be characterized as proportion judgment tasks (e.g.,
Hollands & Dyre, 2000; Spence, 1990; Stevens, 1957).
Thus, because estimating a number’s place on a number line
involves both the estimate of that numbers’ placement
relative to the zero anchor point and of its complement’s
placement relative to the rightmost anchor, the task is
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essentially a proportion judgment. For example, when
placing 25 on a 0-100 line, it should be 25 units away from
0, and 75 units away from 100, and should therefore be
placed 25/(25+75), or one fourth of the total length of the
line away from 0.

Proportion judgment tasks tend to yield linear
relationships between the actual proportion of the stimulus
presented and the judged proportion, even when using
stimuli for which pure magnitude estimation tasks yield a
compressive relationship between actual and perceived
stimulus intensity (see Hollands & Dyre, 2000; Spence,
1990). This linear performance results because the
underlying compressive function is mapped to fractionated
distances according to a cyclical power model, which
approximates linearity because of the reference points that
are perceived linearly (Spence, 1990). Importantly, this
model predicts linear performance even given a compressive
underlying representation of number.

These findings raise questions regarding young children’s
apparently logarithmic performance on the number line task.
Why, given a proportion judgment task, do children’s
representations appear to be nonlinear in the first place,
when psychophysics — even given a logarithmic underlying
representation — might predict otherwise? One possible
answer is that certain assumptions of the psychophysics
proportion judgment model may be violated when young
children perform number line estimation tasks, impeding
their use of the default comparison procedure for
performing the tasks.

To judge a proportion, one must know the approximate
magnitude of the whole (the rightmost anchor). Indeed, the
proportion judgment model assumes that participants have
access to the magnitudes at both ends of the line. Although
this assumption is logical when perceptual continua are used
to indicate the anchors at each end of the line (e.g., bar
length on a bar graph, see Spence, 1990), this is not
necessarily the case with tasks that require young children to
understand the magnitudes of symbolic numbers.
Essentially, people who do not have a correct understanding
of the values represented by both the high and low anchor
points lack the knowledge needed to fully render number
line estimation tasks as proportion judgment tasks. In line
with this argument, Barth and Paladino (2010) proposed a
modification of the proportion judgment model positing that
unknowledgeable children rescale the uppermost anchor
point relative to some idiosyncratic default high end
numbers. This model fit children’s performance data as well
as the logarithmic model favored by Siegler and colleagues
(but see Barth & Paladino, 2010 for a discussion of how
their model may better predict error patterns for estimates).
Ebersbach, Luwel, Frick, Onghena, et al. (2008) similarly
proposed that children’s apparently logarithmic performance
resulted from knowledge of the limits of their understanding
of what numbers represent, but rather suggest that their
performance could best be modeled by a two stage linear
function with an overly steep slope up to the point of correct
understanding, and an overly shallow slope thereafter,

reflecting a clustering of unmapped values towards the end
of the line, while known value occupy the bulk of the
available space.

Research on children’s abilities to identify symbolic
numbers by name provides at least some tangential support
for the knowledge constraint hypothesis. For example,
young children often cannot consistently name symbolic
numbers above twenty, even when they can recite those
numbers as part of the count sequence (Wright, 1994; see
also Clarke & Shinn, 2004). One might question whether
estimates based on any unrecognizable number should have
a one-to-one mapping to any particular numerical
magnitude, particularly given Siegler and Opfer’s (2003)
finding that children’s estimates are linear within familiar
number ranges but look logarithmic when ranges expand to
include unfamiliar numbers. This apparently logarithmic
performance may be an artifact of unfamiliarity rather than
the result of using two different mental representations.

The Current Study

The current experiment uses adult data to raise questions
about whether performance on number line estimation tasks
is diagnostic of people’s underlying representations of
number. It is important to note that the consequences of
failure to understand the values represented by high anchor
points need not be limited to children. Indeed, if Barth and
Paladino (2010) are correct, and logarithmic performance is
an artifact of a lack of numerical understanding, then even
highly numerate adults should show logarithmic
performance on such tasks under sufficiently confusing
conditions. There is little to suggest that adults should rely
on a logarithmic ruler in the number ranges that we
presented in this task. Therefore, if logarithmic performance
were found in adults, it would be natural to conclude that it
is an artifact of the knowledge constraints imposed on the
task, rather than a product of adults’ underlying
representations of number. This would serve as an existence
proof that logarithmic compression on number line
estimation tasks can result from knowledge constraints (i.e.,
a lack of numerical understanding of anchor values) rather
than from use of logarithmic ruler for underlying
representations of numerical magnitude (compare with
Ebersbach et. al., 2008; Barth & Paladino, 2010).

We investigated whether or not imposing knowledge
constraints could elicit “logarithmic” performance from
adults on a number line task. We presented adults with
several number line estimation tasks, some of which were
designed to encourage participants to hold mistaken
assumptions about the magnitude of the high-end anchor of
the line. We hypothesized that performance up to the
erroneously assumed anchor values would be approximately
linear. We further hypothesized that participants would
show some confusion when presented with stimuli that
violated their expectations by exceeding the assumed high
anchor value. We also expected that participants would
lump these unexpectedly high value numbers together in
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Table 1: Stimulus description for each estimation set.

. Notation . Used in
Stimulus Set Anchor Stimulus Stimulus Values Condition

Decimal 0-100 Decimal Decimal 237121623294058 7282 2

Decimal 0-1000 Decimal Decimal 246182572 157233395582 820 2

Decimal 16-32k Decimal Decimal 16032 16064 16096 16288 16400 17136 1&2
18480 19680 22240 25195 28960

Decimal 0-32k Decimal Decimal 64 128 192 576 800 2272 4960 7360 1&2
12480 18390 25920

All Exponential Exponential ~ Exponential .002X104A5 .004X104‘5 .006X104.5 .018){104‘5 1 &2
025x10°.072x10" 157x10" 233x10"
395x10° .582x10 82010

Decimal Stimuli — Exponential Exponential  Decimal Same as Decimal 0-32k 1

Anchors

Decimal Stimuli — Exponential Exponential  Decimal Same as Decimal 0-32k 1

Anchors Calibrated

Exponential Stimuli — Decimal Decimal Exponential ~ Same as All Exponential 2

Anchors

Exponential Stimuli — Decimal Decimal Exponential ~ Same as A/l Exponential 2

Anchors Calibrated

a compressed space toward the uppermost anchor, such
that performance on stimuli past the assumed high-end
anchor value would yield a linear slope near zero. Finally,
we hypothesized that the positively sloped section (below
the assumed high anchor value) and the flatter section
section (above the assumed high anchor value) together
would yield a set that was well fit by a logarithmic line.

Method

This study investigated how incomplete knowledge about
the magnitude of numerical anchors affect adults’
performance in number line estimation tasks. We used
different notational systems (i.e., standard decimal
notation and exponential notation using fractional powers)
to create confusion about the relative values of high
endpoints anchors and to-be-placed stimuli.

Participants
Participants were 67 undergraduate students from the
University of Notre Dame, participating for course credit.

Materials and Design

Participants completed the experiment individually, with
all training and testing stimuli presented on iMac 5.1
computers using Superlab 4 software (Cedrus
Corporation, 2007). Each problem involved a 14.7-cm
long line with anchor values printed below the line at the
right and the left. The numbers to be estimated appeared
approximately 1.5 cm above the center of the line.
Participants were asked to place a cursor at the
appropriate point on the number line and to indicate their
answers via mouse click. Participants were given up to 15
seconds to answer on each trial.
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Similar distributions of numbers to be estimated were
generated for each set of lines. Anchors and stimuli were
presented in either decimal notation (e.g., 192, 576) or in
exponential notation (e.g., .006x10*°, .018x10*°). The left
end of each line was labeled “0”, and the right end varied
according to number set as described below. The numbers
to be estimated for the 0-100 line were adapted from
Barth and Paladino (2010). The numbers to be estimated
for the 0-1000 line were adapted from Siegler & Opfer
(2003). Stimuli for all other sets were generated by
multiplying the 0-1000 stimuli by the appropriate
constants so that the distributions of numbers to be
estimated remained identical across scales (See Table 1).
Each stimulus within each set was presented twice.

With our key manipulation, we sought to create a
situation for adults that would parallel a situation in which
a child might not have knowledge of the upper anchor for
the number line estimation task. Pilot studies led us to
settle upon the upper anchor of .999x10*°. When
confronted with this exponential notation, none of our
pilot subjects correctly determined that its value was
equivalent to 31,623. Rather, most assumed that it was
roughly equal to 10,000. We expected that participants
would perform linearly for stimuli up to the assumed
anchor value (typically 10,000), but that stimuli that
exceeded this value would be compressed into a small
space at the right end of the line

In all, there were ten different sets of number line tasks:

Controls

* Decimal 0-1000. These lines presented both anchors
and stimuli in decimal notation, with anchors at 0 and
1000.



Table 2: Least-squares fit information for different estimation sets.

Stimulus Set Linear R’ Slope Log R’ Best Fit
Decimal 0-100 1.00 1.04 0.76 Linear #(10) =-6.95, p < .01
Decimal 0-1000 0.99 0.98 0.63 Linear #(10) =-4.57, p < .01
Decimal 16-32k 0.99 0.99 0.74 Linear #(10) =-8.90, p <.01
Decimal 0-32k 1.00 0.90 0.71 Linear #(10) =-4.93, p <.01
All Exponential 0.99 0.95 0.63 Linear #10) = -4.20, p < .01
Decimal Stimuli - Exponential Anchors 0.85 1.21 0.91 No Significant Difference
#(10)=.63,p=.55
Decimal Stimuli — Exponential Anchors Calibrated 0.99 0.92 0.69 Linear #10) = -4.74, p < .01
Exponential Stimuli — Decimal Anchors 0.93 0.34 0.84 No Significant Difference
#(10) =-.96, p = .36
Exponential Stimuli — Decimal Anchors Calibrated 0.99 0.90 0.64 Linear #10) =-4.18, p <.01

* Decimal 0-100. These lines presented both anchors and
stimuli in decimal notation, with anchors at 0 and 100.

* Decimal 0-32k. These lines presented both anchors and
stimuli in decimal notation, with anchors at 0 and
31,623.

® Decimal 16-32k. These lines presented both anchors
and stimuli in decimal notation, with anchors at 16,000
and 31,623.

* All Exponential. These lines presented both anchors and
stimuli in exponential notation, with anchors at 0 and
999x10*°

Incompatible Notation

* Decimal Stimuli - Exponential Anchors. These lines
presented anchors in exponential notation and stimuli in
decimal notation. Anchors were at 0 and .999x10*°.

* Decimal Stimuli — Exponential Anchors Calibrated.
Before beginning trials within this set, participants were
shown a single slide with the proper location of 16,000
marked on the number line (approximately half-way).
Otherwise, this set was identical to the decimal stimuli-
exponential anchor set.

* Exponential Stimuli - Decimal Anchors. These lines
presented anchors in decimal notation and stimuli in
exponential notation. Anchors were at 0 and 31,623.

* Exponential Stimuli — Decimal Anchors Calibrated.
Before beginning trials within this set, participants were
shown a single slide with the proper location of .
.500x10*° marked on the number line (approximately
half-way). Otherwise, this set was identical to the
exponential stimuli-decimal anchor set.

Procedure

Each participant completed several different sets of
number line estimation tasks. Participants were randomly
assigned to either of two conditions that varied the
representational format of the endpoint anchors and to-
be—estimated numbers (see Table 1). Condition 1 had 35
participants and condition 2 had 32 participants. All tasks
were completed consecutively in one hour-long session.
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Analyses, Results and Discussion

Analyses

The primary analyses involved comparisons of the fit of
linear and logarithmic models to the median estimates for
the numerical values. Specifically, we followed the
method of Siegler and Booth (2006). First, we calculated
the median estimate for each stimulus as generated by
participants. Then the differences between median
estimates and the number predicted by the best-fitting
logarithmic and linear functions were compared via
paired samples t-tests. The results of model comparisons
for each set are summarized in Table 2.

Results and Discussion

Controls Performance on all control tasks were well
accounted for by linear functions. These included the
Decimal 1-100, Decimal 1-1000, Decimal 0-32k,
Decimals 16-32k, and All Exponential sets. Because these
sets were best fit by linear functions across conditions, the
data were collapsed across conditions within each set (see
Table 2). The fact that each of these sets yielded linear
results supports the conclusion that participants’ baseline
performance was linear across the number ranges tested in
the experiment. Importantly, the data showed that
performance was linear for both decimal notation and
exponential notation formats in the case for which the
same format was used for both anchors and stimuli.

Decimal Stimuli - Exponential Anchors In contrast to
control trial estimates, the estimates for this set were fit
equally well by linear and logarithmic functions. In fact,
though statistically insignificant, the absolute value of the
variance explained was greater for the logarithmic model
than for the linear model (see Table 2). It is doubtful,
however, that this pattern of performance was due to the
use of a logarithmic ruler, as performance in the control
conditions demonstrated that participants were very
capable of performing linearly in the same range in both
standard and exponential notation. Instead, the
compression seems to have been an artifact of confusion
on the task (see Figure 1).
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Figure 1: Performance before and after receiving information about a single data point

As predicted, there was a stark contrast between the
linearity of performance for stimuli beneath 10,000 and
the linearity of performance for stimuli above 10,000. For
stimuli of value less than 10,000, aggregate performance
was very linear with a slope well above 1, (R* = .98 vs.
.83, linear slope = 2.72). This is confirmed by analysis of
the individual data. Out of 32 participants, 22 (69%) were
best fit by a linear function with a slope of 2 or greater in
this range. Such high slopes are consistent with what
would be predicted if participants thought the rightmost
endpoint was approximately 10,000.

On the other hand, performance on stimuli greater than
10,000 was equally well fit by both linear and logarithmic
functions.(R*= .99 vs. .99, linear slope = .33). Both types
of functions fit well because there were only three data
points for median estimates in this range (12,480, 18,390,
and 25,920). Upon analyzing individual data, which
included two data points for each estimate, it became
clear that the data were not well behaved: the
performances for 24 of 32 participants (78%) failed to fit
a linear function with a slope different from zero in this
range. This is particularly interesting given that
performance on the decimal 16-32k set yielded linear
performance in the same range. This suggests that the
ostensibly logarithmic performance was due to confusion
about the value of the uppermost anchor as opposed to the
use of a logarithmic ruler. What looks like a compressive
function was an artifact of how knowledge constraints
affected adults’ default procedure for executing the task.

Decimal Stimuli — Exponential Anchors Calibrated
Performance with this group was far better fit with a
linear function than with a compressive function (see
Table 2). With the addition of a single slide, performance
on this set changed dramatically (see Figure 1). The slide
allowed participants to calibrate their estimates, making
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the value of the uppermost anchor meaningful. This is
consistent with the hypothesis that the compressive
performance was not indicative of the underlying
representation, but was instead an artifact of confusion
about the value of the uppermost anchor.

Exponential Stimuli - Decimal Anchors This set yielded
linear performance, despite the compressive performance
seen for the set using the converse notation (see Table 2).
The slope of performance with this set is of particular
interest. Even though the relative distances between the
placements of the stimuli were linearly consistent,
participants typically placed the large majority of the
stimuli on the leftward third of the line. Indeed, the slope
of .34 is what would be expected if participants thought
that .999x10*’ was equivalent to 10,000. When we
rescaled the data in a way corresponding to the
assumption that .999x10*° was actually equivalent to
10,000, the data yielded a slope of 1.10, again suggesting
that performance was an artifact of mistaken assumptions
about the uppermost anchor.

Exponential Stimuli - Decimal Anchors Calibrated
With the addition of a single slide, performance on this
set changed dramatically. Performance was still linear but
the slope was greatly increased, yielding a value closer to
1, as opposed to the slope of .35 seen for the uncalibrated
set (see Table 2). Note that it was not the form of the
function that changed — it was linear for both sets — but its
slope. Performance on this set corroborates our
conclusions from the Decimal Stimuli - Exponential
Anchor set: Divergence from linear performance with a
slope of 1 is more the consequence of knowledge
constraints than the result of different underlying
representations of the numerical stimuli.



General Discussion

Adult performance in this study matched our predictions.
Participants performed linearly on all tasks for which the
values of the anchor points were unambiguous. However,
when the (misleading) exponential notation was used,
performance appeared more compressive.. Performance in
this case was modeled at least as well by a logarithmic
function as by a linear function. Because adults were
linear over the same range in multiple notations, it seems
that the compressive performance was an artifact of
knowledge constraints. These performance patterns match
those that should result from attempting to complete a
proportion judgment task under conditions where
necessary information (i.e., the values of anchors and to-
be-placed stimuli) is incorrect or lacking.

These data are problematic for the stance that
logarithmic performance on number line tasks is evidence
that mental representations of numerical magnitude are
logarithmically compressed. In particular, these results
raise questions about whether children’s logarithmic
performance on number line placement tasks is due to
them only having logarithmic representations available to
them for a given number range. The current situation with
adults is one case in which logarithmic /looking
performance was due to task constraints instead of
reflecting a shift in the underlying representational
system. Such considerations may similarly apply to
children as well as to adults.

In sum, we offer these results as an existence proof that
differences in performance on number line estimation
tasks may not necessarily be indicative of fundamental
differences in the format of people’s underlying
representations of numerical magnitude. Rather, they may
be diagnostic of differences in people’s understanding of
what magnitudes are represented by a given numerical
stimulus. This would explain Siegler and colleagues’
consistent findings that linearity of performance on
number line estimation tasks correlates with success in
other areas of numerical ability (Ramani & Siegler, 2008;
Siegler & Booth, 2004; Whyte & Bull, 2008). These tasks
may not have been tracking changes in children’s
underlying numerical magnitude representations; they
may instead have been gauging the extent to which
children understood what values symbolic numbers
represented. We suggest that such number line estimation
tasks may prove useful in evaluating children’s current
level of understanding of the meaning of numbers, and
agree with the thesis that they might serve as learning
tools for helping children map decimal numbers and
number words to appropriate mental magnitudes (Ramani
& Siegler, 2008; Siegler, 2009). A series of studies is
currently in progress to further investigate these
possibilities. Particularly, we plan to investigate whether
individual differences in children’s number knowledge
predict the points at which their number line placement
estimates begin to appear logarithmic.
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