Matching Skin Conductance Data to a Cognitive Model of Reappraisal
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Abstract

In the present paper we show that an existing mathematical
model of emotion regulation can, if reduced to its reappraisal-
specific components, fit skin conductance data obtained from
an empirical study of reappraisal. By applying parameter
tuning techniques, optimal fits of the model have been found
against the (averaged) patterns of the skin conductance data.
The errors that were found turned out to be relatively low.
Moreover, they have been compared with the errors produced
by a baseline variant of the model where the adaptive cycle
has been removed, and were found substantially lower.

Keywords: emotion regulation, reappraisal, mathematical
modeling, adaptation, skin conductance data.

Introduction

Emotion regulation refers to ‘all of the conscious and
nonconscious strategies we use to increase, maintain, or
decrease one or more components of an emotional response’
(Gross, 2001). This ability to regulate our own emotional
states provides us with behavioral flexibility and is related
to well-being and mental health (e.g., Gross, 1998, 2001;
Ochsner and Gross, 2005; Thompson, 1994).

Recently, a number of authors have developed
computational models of the processes related to emotion
regulation and coping (e.g., Bach, 2008; Bosse et al., 2010;
Gratch and Marsella, 2004; Marsella and Gratch, 2003;
Reisenzein, 2009; Silverman, 2004). Computational models
of emotion regulation may be useful for various reasons (see
(Wehrle, 1998) for an overview). From a Cognitive Science
perspective, they may provide more insights into the nature
of affective disease and the working mechanisms of therapy.
From an Artificial Intelligence perspective, they may be
used to develop virtual agents with more human-like
affective behavior.

In previous work (Bosse et al., 2010), we presented
CoMERG, a Cognitive Model for Emotion Regulation
based on Gross. Inspired by the theory put forward in
(Gross, 2001), this model distinguishes five different
strategies that humans typically use to affect their level of
emotional response (for a given type of emotion) at different
points in the process of emotion generation: situation
selection, situation modification, attentional deployment,
cognitive change, and response modulation. The different

strategies and their effects are represented in the model via a
set of difference equations.

An important asset of CoOMERG is that the model is
adaptive (see Bosse et al., 2007b). That is, based on the
perceived success of an emotion regulation strategy that is
performed, a person may adjust the degree of sensitivity of
the process on the fly (e.g., in case a certain strategy does
not decrease an undesired emotion sufficiently fast, the
person may put more effort in the regulation). However,
although a preliminary evaluation indicated that COMERG
produced plausible patterns (Bosse et al., 2010), to date the
output of the model has never been compared with
empirical data.

In order to assess to what extent COMERG is able to
reproduce empirical data, we here fit the model to skin
conductance data that resulted from two empirical studies of
reappraisal (unpublished material). Reappraisal, a variant of
the cognitive change strategy aimed specifically at down-
regulating emotion, is one of the most widely studied
emotion regulation strategies. Gross (2001) defines
reappraisal as a process where ‘the individual reappraises or
cognitively re-evaluates a potentially emotion-eliciting
situation in terms that decrease its emotional impact’. For
example, losing a tennis match is usually appraised as
negative and would induce anger or sadness. To reduce
these negative reactions, one could reappraise the situation
by blaming the weather circumstances instead of the own
capacities or by considering sportive success as irrelevant.

In (Kalisch, 2009), a novel (informal) model for
reappraisal is presented, based on recent insights from
imaging  neuroscience. This model, called the
implementation-maintenance model of reappraisal (IMMO),
is characterized by its focus on the necessity of a mental
reappraisal effort that needs to be maintained over the
course of the emotional episode and is continuously
adapted. Adaptation is realized through a loop of iterative
evaluation and readjustment of the regulation process.
IMMO thus shares a critical adaptation component with
CoMERG.

To be able to better fit the results of COMERG to the skin
conductance data, the general model needs to be tailored
specifically to reappraisal. Thus, the current paper has two
main goals, namely 1) to refine the generic computational
emotion regulation model CoMERG to the reappraisal
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context, and 2) to evaluate the ability of the refined model to
reproduce real data, by matching it to skin conductance data
from empirical studies of reappraisal.

The remainder of this paper is structured as follows. First,
the main mechanisms of COMERG relevant to reappraisal
are briefly summarized. Next, the setup of the reappraisal
studies is described, with an emphasis on how the skin
conductance data (to fit the new model) have been obtained.
The following sections discuss how the model has been fit
to the data, and present the results. The paper is concluded
by a discussion.

CoMERG and its Extensions

COoMERG is composed of a set of difference equations,
which represent how a person’s emotional state changes
based on certain regulation strategies. For convenience, the
model concentrates on one specific type of emotion, in this
case the fear induced by the threat of receiving a painful
electric shock. We have chosen to express the emotion
response level ERL in a real number, in the domain [0, 1]. A
higher emotion response level means more fear.

In the model of Gross, five different elements n=1...5
(i.e., situation, sub-situation, aspect, meaning, and response)
can influence the emotion response level. The experiments
that produced the data to which the model is matched in this
paper are restricted to the elements 1 (situation, i.e., threat
of shock) and 4 (cognitive meaning, i.e., reappraisal). In the
model, at any point in time, a certain emotional value v, in
the domain [0, 1] is attached to each element, representing
the extent to which the current state of that element induces
emotions. The model describes how persons increase or
decrease those emotional values by comparing them with
some desired values (or norms) vn norm. Because the
participants receive explicit instructions about how to
cognitively reappraise events, for element 4 we introduce an
explicit V4.norm in the domain [0, 1]. A value of 0 for v4nom
would mean that one’s aim is to reappraise the situation as
not dangerous or frightening.

The emotional value contributes to the emotion response
level ERL via an element-specific weight factor w,, thereby
taking into account a persistency factor B, indicating the
degree of persistence or slowness of adjusting the emotion
response level when new emotional values are obtained.
Someone whose emotions can change rapidly (e.g., who
stops being angry in a few seconds) will have a low p.

The regulation process of the cognitive meaning
compares the actual cognitive meaning va t0 v4_nom at any
time point. The difference d between the two is the basis for
the adjustment of v4. We assume that the self-monitoring
process necessary to determine a deviation from vapom IS a
rather slow and effortful conscious process. We emulate this
by the variable eval which is the integral of d over the past 3
seconds. Adjustment occurs via enhancing or reducing the
cognitive effort made to achieve the desired emotional value
Vanorm, If €val signals a deviation. The regulation effort is
expressed in the modification factor a, (Bosse et al.,
2007b), i.e., the ‘willingness’ to change the emotional value

of element n. The effort one makes thus responds to a sort
of reflection or meta-cognition about the emotion regulation
process based on the history of differences d. One step
further, the modification factor itself is adaptable as well: an
additional adaptation factor v, represents the personal
flexibility to adjust the emotion regulation behaviour (i.e.,
the personal tendency to adjust the emotional value of
element n much or little). This depends on the cognitive
costs of reappraising, which are represented by cy.

The model is shown in a qualitative manner in the graph
depicted in Figure 1. The variables above the dashed line
represent the adaptation layer. The model without
adaptation layer (Bosse et al., 2007a) will serve as a control
condition to explore the necessity of this layer.

¥n Cn Adaptation layer

ERL

Figure 1: Dependencies between the Variables.

The main difference equations used to model these cycles
are the following (see (Bosse et al., 2010) for more details):

Emotion Response Level
ERL(t+At) = (1 - B) * Zk(Wi*Vi(t)) + B * ERL(t)

Emotional Values
Vn(t+At) = v (t) - an(t) * eval(t)/dmax

Modification Factors
On(t+AL) = an(t) +vn ™ (an(t) / (1 + an(t))) * (abs_eval(t) - c,)

In terms of IMMO, determining eval can be seen as
monitoring reappraisal success whose outcomes leads to an
adjustment of the reappraisal effort o4. Note the difference
between eval (which is calculated by taking the integral of
d) and abs_eval (which is calculated by taking the integral
of the absolute value of d).

Obtaining the Data

To obtain skin conductance data about reappraisal
processes, two within-subject experiments were performed.
In both experiments, subjects were informed by an auditory
warning signal that they might receive a shock to their hand
at 25% probability during a given trial period (fear
induction procedure). The warning signal was followed by
another auditory cue telling them whether to reappraise (R)
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the situation or not (NR). Generally, the reappraisal strategy
consisted in taking a detached-observer perspective
situation; that is, in distancing oneself from the situation and
interpreting it as not affecting the core-self but being self-
irrelevant. More specifically, in experiment 1 (n=24 right-
handed healthy male subjects), subjects were told to
imagine across both R and NR conditions a cloud in the sky
that would symbolize the emotional aspects of a given
situation, including all potential threats and accompanying
reactions or feelings of tension or anxiety. For the R
condition, they were asked to imagine themselves far away
from this cloud, for example standing on a hill and
observing the cloud from a distance (but not to look away).
In addition to this mental image, they were given a self-
statement that expressed the detached perspective: “The
cloud is far out on the horizon. | observe it from a distance.”
For the NR condition, subjects were told to imagine
themselves surrounded by the cloud and to use the
corresponding self-statement: “l am inside the cloud. It
surrounds me from all sides”. They were to subvocally
rehearse the appropriate statement throughout trials and to
simultaneously keep the corresponding mental image in
working memory. A similar strategy has been shown in
previous studies to reduce fear of shock (Houston and
Holmes, 1974; Kalisch et al., 2005). In Experiment 2 (n=20
right-handed healthy male subjects), the R condition was
identical to experiment 1 whereas in NR trials, subjects
were instead not told to use any self-statement or imagery
but to simply attend to the situation and allow their
emotional reaction to unfold, not attempting to change it.

Skin conductance is a measure of the sympathetic arousal
that accompanies most fear responses. Although it cannot
capture all aspects of a fear response, it is one of the few
available continuous and objective measures of the response
and was thus used to generate ERL time courses.

In all figures below, skin conductance time courses are
averaged across trials and subjects in that experiment. Solid
red lines represent average NR time courses, dotted red lines
represent average R time courses.

Matching Data to the Model

To obtain a close fit of the simulation model to the
empirical data obtained in the experiments, parameter
tuning was used (Sorenson, 1980). Since the challenge is to
tune the parameters of an existing dynamic model, rather
than to come up with an optimal function from scratch, it is
not possible to apply standard regression techniques in this
case. Therefore, a dedicated parameter estimation method
was used, which is similar to the approach used in (Bosse,
Memon, Treur, and Umair, 2009). According to this
approach, to match the model to the data it is first needed to
obtain the sensitivity of a parameter: the change in
difference between the model and the data with a given
change in parameter value.

To determine the sensitivity S, a small change AP in the
parameter is tried to make an additional prediction for X,

and based on the resulting change AX found in the two
predicted values for X, the sensitivity S can be estimated:

Sx’p = AX/ AP

After the sensitivity is determined, a better guess for the
value of P can be determined by taking

AP = -4%* AX/SXP

where AX is the deviation found between observed and
predicted value of X; so, for example, when AX =0.25and 4
= 0.3, then for Sxp = 0.75 this obtains AP =-0.3*0.25 /0.75
= -0.1. However, when the sensitivity Syp is a bit smaller, it
could be possible that the adjustment of the value of P based
on the formula above would exceed the maximum or
minimum value of its range. If this happened, the parameter
was adjusted by intuition.

Based on this adjustment approach, the overall parameter
tuning process was done as follows:

1. Take G the set of parameters P for which adjustment
is desired; the other parameters are kept constant.

2. Assume initial values for all parameters P, and for A.

3. By simulation determine predicted value CVy at time
point t for X, using the assumed values of the
parameters.

4.  For each parameter P in G, by simulation determine
predicted value for Vy at time point t, using only for
P a value changed by some chosen AP and the
unchanged assumed values for the other parameters.

5. For each parameter P in G determine the sensitivity
Sxp of X for P at time point t by dividing the
difference between values for X found in step 4 and 5
by AP:

Sxyp = (CVX - V)() | AP
6. For each parameter P determine the change AP as
-A* AX [ Sxp
7. For each parameter P adjust its value by AP.
8.  Return to step 1 until the fit is satisfactory.

The coefficient of determination R? (Steel & Torrie,
1960) was calculated to determine the quality of the fit (the
closer to 1 the better). The match was called satisfactory
when the quality of fit did not increase anymore for several
time steps. If the matching process seemed to be stuck into a
local optimum, the parameters were adjusted by intuition to
check whether the match could be improved.

The set of parameters G looked at were B, v, c, o, and w.
We did not use any constraints for the values, except that w4
should always be bigger than ws, as Gross described that
emotion regulation strategies performed earlier in the
regulation process are more effective (Gross, 2001).

Results

In this section, the results of the skin experiments are
described, as well as the curves produced by fitting the
model on the results. For both experiments, first the fits
produced by the complete model (with adaptation) are
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presented, both for the NR and for the R condition, followed
by the fits produced by the model without adaptation (with
was used as a control condition).

Expl — Adaptation — No Reappraisal (NR)

We modeled the NR condition (solid line in the figures) by
setting v4_norm t0 the same level as v and v4 (which is always
= v at the start of the simulation). This models that subjects
do not intend to change their appraisal of the situation but
allow their automatic appraisal systems to dominate and
thus to solely determine the ERL.

Because v4_norm has the same value as v, d = 0, and vy is
not changed during the experiment. Therefore, o4 has no
influence on vy, and thus no indirect influence on ERL. For
the same reason, c4 and y4 have no indirect influence on the
ERL. Further, since v; and v, have the same value
throughout the complete experiment, the proportion of w4
does not influence ERL either. This leaves the parameter
BerL as the only possible factor for fitting the data.

Using the method described earlier in this paper, the
optimal fit to the data was found for Pgr. = 0.9841. The R?
of the fit was 0.9960, and can be seen in the higher curve of
Figure 2.

Experiment 1
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Figure 2: The fits of the model with the adaptation layer to
Experiment 1. Thick, red, solid line: average skin
conductance from Non-Reappraisal (NR) trials; Thick, red,
dotted line: Reappraisal (R) trials. Thin, blue, solid line:
model fit for NR trials; Thin, blue, dotted line: model fit for
R trials.

Expl — Adaptation — Reappraisal (R)

The goal to reappraise the situation as not self-relevant was
modeled by setting v4 norm = 0. The starting value of v, was
still modeled to be the same as vq. Because this creates a
discrepancy d between vs4 and vi nom, Now all the five
parameters have a direct or indirect influence on ERL.
However, because Pgr. represents a personality factor
which shouldn’t differ among experimental conditions, the

value from the NR fit above was taken. This leaves the other
four parameters for optimizing the fit.

Using the method described earlier in this paper, the
optimal fit to the data was found for the following parameter
settings:

o4 =0.188
Wq = 0.6
y=0.2
c=04

This led to a fit with R? = 0.9876, which can be seen in the
lower curve of Figure 2.

Expl — No Adaptation — Reappraisal (R)

To explore the necessity of the adaptation layer in the
emotion regulation model, we also made a fit for the model
without the adaptation layer, in which o is kept constant.
Because the fit for the NR condition already had a constant
a, the curve does not change.

Because y and c are part of the adaptation layer, they
cannot be considered for fitting the R condition, leaving
o and w4 for optimizing the fit.

The optimal fit to the R data was found for the following
parameter settings:

o4 = 0.027
w1 =0.79

As can be seen in the lower curve of Figure 3, the fit still is
still reasonable, with an R? of 0.9723. However, it was
worse than the fit of the model with the adaptation layer
added, where an R? of 0.9876 was reached.
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Figure 3: The fits of the model without the adaptation layer
to Experiment 1.

Exp2 — Adaptation — No Reappraisal (NR)

In experiment 2 in NR trials, participants were instructed to
think or feel as they normally would in such a situation. No
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cognitive effort to maintain any type of statement or image
was required. This was modeled by setting o, = 0.

Because the update mechanism of o, is proportional to
oy, it would always stay at 0. Therefore, y, and ¢ had no
direct or indirect influence on ERL, and were not
considered. Because o stayed at 0 throughout the
experiment, v, also stayed constant, at the same level as vi.
Therefore, wy also did not influence ERL, leaving only Bery
for optimizing the fit to the data.

The optimal fit, which can be seen in the higher curve of
Figure 4, was found for Beg. = 0.9869, with an R? of
0.9556.

Experiment 2

3 012 4

Skin conductan:
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Figure 4: The fit of the model with the adaptation layer to
Experiment 2.

Exp2 — Adaptation — Reappraisal (R)

In the R condition, the value for Bgr. was taken from the
value found in the NR condition, and the other four
parameters could all be used for optimizing the fit to the
data, similar to the R condition of experiment 1.

The optimal fit was found for the following parameter
settings:

oy =0.003
w1 =0.75
v=0.3
c=01

This led to a fit with R? = 0.9818, which can be seen in the
lower curve of Figure 4.

Exp2 — No Adaptation — Reappraisal (R)

For experiment 2 we also made a fit with the model without
the adaptation layer. Again, because y and ¢ are part of the
adaptation layer they cannot be considered for making the
fit, leaving a4 and w4 for optimizing the fit.

The optimal fit to the data was found for the following
parameter settings:

o4 = 0.004

wq = 0.51

As can be seen in Figure 5, the fit is still quite good, with an
R? of 0.9806, but slightly worse than could be made using
the version of the model with the adaptation layer, with
which an R? of 0.9818 was reached.

These results illustrate that the emotion regulation model
by (Bosse et al., 2010) is capable of reproducing empirical
data quite closely. Moreover, the fact that the fits of the
model without the adaptation layer are worse provide
evidence that reappraisal as performed by humans may
indeed be an adaptive process.

Experiment 2

Skin conductance [us]

0 10 20 30 40 50 &0 7O 20 90 100 110 120 120 140 150 160 170 180
time [100ms]

Figure 5: The fit of the model without the adaptation layer
to Experiment 2.

Discussion

Over the last decade, the number of computational models
of affect has rapidly increased, especially in the area of
Artificial Intelligence (e.g., Bach, 2008; Bosse et al., 2010;
Gratch and Marsella, 2004; Marsella and Gratch, 2003;
Reisenzein, 2009; Silverman, 2004). Most of these models
have as their main goal to endow virtual agents (e.g., robots
or avatars) with more believable human-like behavior.
However, only a small subset of these approaches aims to
reproduce the dynamics of the more subtle sub-processes
involved (such as reappraisal) in a detailed manner (see
(Bosse et al., 2010), for an extensive literature overview).
An even smaller subset validates the results of the model
against physiological data, such as skin conductance or
fMRI data, yielding a large gap between Al-inspired
modeling approaches and empirical psychological research.
The main contribution of the present paper is a first step
towards closing this gap. We have shown that an existing
cognitive model of emotion regulation can, if reduced to its
reappraisal-specific components, fit empirical data. By
applying parameter tuning techniques, optimal fits of the
model have been found against the (averaged) patterns of
the skin conductance data. The errors that were found turned
out to be relatively low. Moreover, they have been
compared with the errors produced by a baseline variant of
the model where the adaptive cycle has been removed, and
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were found substantially lower. Although this is obviously
not an exhaustive proof for the correctness of the model, it
is an important indication that reappraisal as performed by
humans may indeed be an adaptive process, as has been
postulated by current informal models of reappraisal
(Kalisch, 2009).

Further validation and refinements of our model are
obviously warranted. Regarding validation, the current work
should be seen as an initial test whether the COMERG
model is capable of reproducing empirical data at all. In
future research, more extensive tests will be performed,
based on cross-validation and involving more participants.
Regarding model refinement, it will be particularly
interesting to see whether it can be adjusted to also simulate
a proposed subparcellation of reappraisal effort into an early
retrieval and a later working memory maintenance and
monitoring component that has ensued from a recent
analysis of neuroimaging data (Kalisch, 2009). The model
might then also be useful for prediction brain activation
time courses.
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