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Abstract 

In the present paper we show that an existing mathematical 
model of emotion regulation can, if reduced to its reappraisal-
specific components, fit skin conductance data obtained from 
an empirical study of reappraisal. By applying parameter 
tuning techniques, optimal fits of the model have been found 
against the (averaged) patterns of the skin conductance data. 
The errors that were found turned out to be relatively low. 
Moreover, they have been compared with the errors produced 
by a baseline variant of the model where the adaptive cycle 
has been removed, and were found substantially lower. 

Keywords: emotion regulation, reappraisal, mathematical 
modeling, adaptation, skin conductance data. 

Introduction 
Emotion regulation refers to ‘all of the conscious and 
nonconscious strategies we use to increase, maintain, or 
decrease one or more components of an emotional response’ 
(Gross, 2001). This ability to regulate our own emotional 
states provides us with behavioral flexibility and is related 
to well-being and mental health (e.g., Gross, 1998, 2001; 
Ochsner and Gross, 2005; Thompson, 1994). 

Recently, a number of authors have developed 
computational models of the processes related to emotion 
regulation and coping (e.g., Bach, 2008; Bosse et al., 2010; 
Gratch and Marsella, 2004; Marsella and Gratch, 2003; 
Reisenzein, 2009; Silverman, 2004). Computational models 
of emotion regulation may be useful for various reasons (see 
(Wehrle, 1998) for an overview). From a Cognitive Science 
perspective, they may provide more insights into the nature 
of affective disease and the working mechanisms of therapy. 
From an Artificial Intelligence perspective, they may be 
used to develop virtual agents with more human-like 
affective behavior.  

In previous work (Bosse et al., 2010), we presented 
CoMERG, a Cognitive Model for Emotion Regulation 
based on Gross. Inspired by the theory put forward in 
(Gross, 2001), this model distinguishes five different 
strategies that humans typically use to affect their level of 
emotional response (for a given type of emotion) at different 
points in the process of emotion generation: situation 
selection, situation modification, attentional deployment, 
cognitive change, and response modulation. The different 

strategies and their effects are represented in the model via a 
set of difference equations. 

An important asset of CoMERG is that the model is 
adaptive (see Bosse et al., 2007b). That is, based on the 
perceived success of an emotion regulation strategy that is 
performed, a person may adjust the degree of sensitivity of 
the process on the fly (e.g., in case a certain strategy does 
not decrease an undesired emotion sufficiently fast, the 
person may put more effort in the regulation). However, 
although a preliminary evaluation indicated that CoMERG 
produced plausible patterns (Bosse et al., 2010), to date the 
output of the model has never been compared with 
empirical data. 

In order to assess to what extent CoMERG is able to 
reproduce empirical data, we here fit the model to skin 
conductance data that resulted from two empirical studies of 
reappraisal (unpublished material). Reappraisal, a variant of 
the cognitive change strategy aimed specifically at down-
regulating emotion, is one of the most widely studied 
emotion regulation strategies. Gross (2001) defines 
reappraisal as a process where ‘the individual reappraises or 
cognitively re-evaluates a potentially emotion-eliciting 
situation in terms that decrease its emotional impact’. For 
example, losing a tennis match is usually appraised as 
negative and would induce anger or sadness. To reduce 
these negative reactions, one could reappraise the situation 
by blaming the weather circumstances instead of the own 
capacities or by considering sportive success as irrelevant. 

In (Kalisch, 2009), a novel (informal) model for 
reappraisal is presented, based on recent insights from 
imaging neuroscience. This model, called the 
implementation-maintenance model of reappraisal (IMMO), 
is characterized by its focus on the necessity of a mental 
reappraisal effort that needs to be maintained over the 
course of the emotional episode and is continuously 
adapted. Adaptation is realized through a loop of iterative 
evaluation and readjustment of the regulation process. 
IMMO thus shares a critical adaptation component with 
CoMERG. 

To be able to better fit the results of CoMERG to the skin 
conductance data, the general model needs to be tailored 
specifically to reappraisal. Thus, the current paper has two 
main goals, namely 1) to refine the generic computational 
emotion regulation model CoMERG to the reappraisal 
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context, and 2) to evaluate the ability of the refined model to 
reproduce real data, by matching it to skin conductance data 
from empirical studies of reappraisal. 

The remainder of this paper is structured as follows. First, 
the main mechanisms of CoMERG relevant to reappraisal 
are briefly summarized. Next, the setup of the reappraisal 
studies is described, with an emphasis on how the skin 
conductance data (to fit the new model) have been obtained. 
The following sections discuss how the model has been fit 
to the data, and present the results. The paper is concluded 
by a discussion. 

CoMERG and its Extensions  
CoMERG is composed of a set of difference equations, 
which represent how a person’s emotional state changes 
based on certain regulation strategies. For convenience, the 
model concentrates on one specific type of emotion, in this 
case the fear induced by the threat of receiving a painful 
electric shock. We have chosen to express the emotion 
response level ERL in a real number, in the domain [0, 1]. A 
higher emotion response level means more fear.  

In the model of Gross, five different elements n=1…5 
(i.e., situation, sub-situation, aspect, meaning, and response) 
can influence the emotion response level. The experiments 
that produced the data to which the model is matched in this 
paper are restricted to the elements 1 (situation, i.e., threat 
of shock) and 4 (cognitive meaning, i.e., reappraisal). In the 
model, at any point in time, a certain emotional value vn in 
the domain [0, 1] is attached to each element, representing 
the extent to which the current state of that element induces 
emotions. The model describes how persons increase or 
decrease those emotional values by comparing them with 
some desired values (or norms) vn_norm. Because the 
participants receive explicit instructions about how to 
cognitively reappraise events, for element 4 we introduce an 
explicit v4-norm in the domain [0, 1].  A value of 0 for v4-norm 
would mean that one’s aim is to reappraise the situation as 
not dangerous or frightening. 

The emotional value contributes to the emotion response 
level ERL via an element-specific weight factor wn, thereby 
taking into account a persistency factor  indicating the 
degree of persistence or slowness of adjusting the emotion 
response level when new emotional values are obtained. 
Someone whose emotions can change rapidly (e.g., who 
stops being angry in a few seconds) will have a low . 

The regulation process of the cognitive meaning 
compares the actual cognitive meaning v4 to v4_norm at any 
time point. The difference d between the two is the basis for 
the adjustment of v4. We assume that the self-monitoring 
process necessary to determine a deviation from v4-norm is a 
rather slow and effortful conscious process. We emulate this 
by the variable eval which is the integral of d over the past 3 
seconds. Adjustment occurs via enhancing or reducing the 
cognitive effort made to achieve the desired emotional value 
v4-norm, if eval signals a deviation. The regulation effort is 
expressed in the modification factor n (Bosse et al., 
2007b), i.e., the ‘willingness’ to change the emotional value 

of element n. The effort one makes thus responds to a sort 
of reflection or meta-cognition about the emotion regulation 
process based on the history of differences d. One step 
further, the modification factor itself is adaptable as well: an 
additional adaptation factor n represents the personal 
flexibility to adjust the emotion regulation behaviour (i.e., 
the personal tendency to adjust the emotional value of 
element n much or little). This depends on the cognitive 
costs of reappraising, which are represented by c4. 

The model is shown in a qualitative manner in the graph 
depicted in Figure 1. The variables above the dashed line 
represent the adaptation layer. The model without 
adaptation layer (Bosse et al., 2007a) will serve as a control 
condition to explore the necessity of this layer.  

 
 

 

 

 

 

 

 

 

 
Figure 1: Dependencies between the Variables.  

 
The main difference equations used to model these cycles 

are the following (see (Bosse et al., 2010) for more details): 
 

Emotion Response Level 
ERL(t+t) = (1 - β) * Σk(wk*vk(t)) + β * ERL(t) 
 
Emotional Values 
vn(t+t) = vn(t) - n(t) * eval(t)/dmax 
 
Modification Factors 
n(t+t) = n(t) + n * (n(t) / (1 + n(t))) * (abs_eval(t) – cn) 

  
In terms of IMMO, determining eval can be seen as 

monitoring reappraisal success whose outcomes leads to an 
adjustment of the reappraisal effort 4. Note the difference 
between eval (which is calculated by taking the integral of 
d) and abs_eval (which is calculated by taking the integral 
of the absolute value of d). 

Obtaining the Data 
To obtain skin conductance data about reappraisal 
processes, two within-subject experiments were performed. 
In both experiments, subjects were informed by an auditory 
warning signal that they might receive a shock to their hand 
at 25% probability during a given trial period (fear 
induction procedure). The warning signal was followed by 
another auditory cue telling them whether to reappraise (R) 

n

n

   vn

     
ERL 

d   vn-norm 

wn 

cn Adaptation layer 
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the situation or not (NR). Generally, the reappraisal strategy 
consisted in taking a detached-observer perspective 
situation; that is, in distancing oneself from the situation and 
interpreting it as not affecting the core-self but being self-
irrelevant. More specifically, in experiment 1 (n=24 right-
handed healthy male subjects), subjects were told to 
imagine across both R and NR conditions a cloud in the sky 
that would symbolize the emotional aspects of a given 
situation, including all potential threats and accompanying 
reactions or feelings of tension or anxiety. For the R 
condition, they were asked to imagine themselves far away 
from this cloud, for example standing on a hill and 
observing the cloud from a distance (but not to look away). 
In addition to this mental image, they were given a self-
statement that expressed the detached perspective: “The 
cloud is far out on the horizon. I observe it from a distance.” 
For the NR condition, subjects were told to imagine 
themselves surrounded by the cloud and to use the 
corresponding self-statement: “I am inside the cloud. It 
surrounds me from all sides”. They were to subvocally 
rehearse the appropriate statement throughout trials and to 
simultaneously keep the corresponding mental image in 
working memory. A similar strategy has been shown in 
previous studies to reduce fear of shock (Houston and 
Holmes, 1974; Kalisch et al., 2005).  In Experiment 2 (n=20 
right-handed healthy male subjects), the R condition was 
identical to experiment 1 whereas in NR trials, subjects 
were instead  not told to use any self-statement or imagery 
but to simply attend to the situation and allow their 
emotional reaction to unfold, not attempting to change it.  

Skin conductance is a measure of the sympathetic arousal 
that accompanies most fear responses. Although it cannot 
capture all aspects of a fear response, it is one of the few 
available continuous and objective measures of the response 
and was thus used to generate ERL time courses. 

In all figures below, skin conductance time courses are 
averaged across trials and subjects in that experiment. Solid 
red lines represent average NR time courses, dotted red lines 
represent average R time courses. 

Matching Data to the Model 
To obtain a close fit of the simulation model to the 
empirical data obtained in the experiments, parameter 
tuning was used (Sorenson, 1980). Since the challenge is to 
tune the parameters of an existing dynamic model, rather 
than to come up with an optimal function from scratch, it is 
not possible to apply standard regression techniques in this 
case. Therefore, a dedicated parameter estimation method 
was used, which is similar to the approach used in (Bosse, 
Memon, Treur, and Umair, 2009). According to this 
approach, to match the model to the data it is first needed to 
obtain the sensitivity of a parameter: the change in 
difference between the model and the data with a given 
change in parameter value.  

To determine the sensitivity S, a small change P in the 
parameter is tried to make an additional prediction for X, 

and based on the resulting change X found in the two 
predicted values for X, the sensitivity S can be estimated: 

 

SX,P = X/ P  
 

After the sensitivity is determined, a better guess for the 
value of P can be determined by taking 

 

P =  - * X / SX,P 
 

where X is the deviation found between observed and 
predicted value of X; so, for example, when X = 0.25 and  
= 0.3, then for SX,P = 0.75  this obtains P = -0.3*0.25 /0.75 
= -0.1. However, when the sensitivity SX,P is a bit smaller, it 
could be possible that the adjustment of the value of P based 
on the formula above would exceed the maximum or 
minimum value of its range. If this happened, the parameter 
was adjusted by intuition.  

Based on this adjustment approach, the overall parameter 
tuning process was done as follows: 

 

1. Take G the set of parameters P for which adjustment 
is desired; the other parameters are kept constant. 

2. Assume initial values for all parameters P, and for . 
3. By simulation determine predicted value CVX at time 

point t for X, using the assumed values of the 
parameters. 

4. For each parameter P in G, by simulation determine 
predicted value for VX at time point t, using only for 
P a value changed by some chosen P and the 
unchanged assumed values for the other parameters. 

5. For each parameter P in G determine the sensitivity 
SX,P of X for P at time point t by dividing the 
difference between values for X found in step 4 and 5 
by P: 

SX,P =  (CVX - VX) / P 
6. For each parameter P determine the change P as  

- * X / SX,P 
7. For each parameter P adjust its value by P. 
8. Return to step 1 until the fit is satisfactory. 
 
The coefficient of determination R2 (Steel & Torrie, 

1960) was calculated to determine the quality of the fit (the 
closer to 1 the better). The match was called satisfactory 
when the quality of fit did not increase anymore for several 
time steps. If the matching process seemed to be stuck into a 
local optimum, the parameters were adjusted by intuition to 
check whether the match could be improved. 

The set of parameters G looked at were c, , and w1. 
We did not use any constraints for the values, except that w1 
should always be bigger than w4, as Gross described that 
emotion regulation strategies performed earlier in the 
regulation process are more effective (Gross, 2001). 

Results 
In this section, the results of the skin experiments are 
described, as well as the curves produced by fitting the 
model on the results. For both experiments, first the fits 
produced by the complete model (with adaptation) are 
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presented, both for the NR and for the R condition, followed 
by the fits produced by the model without adaptation (with 
was used as a control condition). 
 
Exp1 – Adaptation – No Reappraisal (NR) 
 

We modeled the NR condition (solid line in the figures) by 
setting v4_norm to the same level as v1 and v4 (which is always 
= v1 at the start of the simulation). This models that subjects 
do not intend to change their appraisal of the situation but 
allow their automatic appraisal systems to dominate and 
thus to solely determine the ERL.  

Because v4_norm has the same value as v4, d = 0, and v4 is 
not changed during the experiment. Therefore, 4 has no 
influence on v4, and thus no indirect influence on ERL. For 
the same reason, c4 and 4 have no indirect influence on the 
ERL. Further, since v1 and v4 have the same value 
throughout the complete experiment, the proportion of w1 
does not influence ERL either. This leaves the parameter 
ERL as the only possible factor for fitting the data. 

Using the method described earlier in this paper, the 
optimal fit to the data was found for ERL . The R2 
of the fit was 0.9960, and can be seen in the higher curve of 
Figure 2. 

 
 
Figure 2: The fits of the model with the adaptation layer to 
Experiment 1. Thick, red, solid line: average skin 
conductance from Non-Reappraisal (NR) trials; Thick, red, 
dotted line: Reappraisal (R) trials. Thin, blue, solid line: 
model fit for NR trials; Thin, blue, dotted line: model fit for 
R trials. 
 
Exp1 – Adaptation – Reappraisal (R) 
 

The goal to reappraise the situation as not self-relevant was 
modeled by setting v4_norm = 0. The starting value of v4 was 
still modeled to be the same as v1. Because this creates a 
discrepancy d between v4 and v4_norm, now all the five 
parameters have a direct or indirect influence on ERL. 
However, because ERL represents a personality factor 
which shouldn’t differ among experimental conditions, the 

value from the NR fit above was taken. This leaves the other 
four parameters for optimizing the fit. 

Using the method described earlier in this paper, the 
optimal fit to the data was found for the following parameter 
settings: 
 
= 0.188 
w1 = 0.6 
 = 0.2 
c = 0.4 

 
This led to a fit with R2 = 0.9876, which can be seen in the 
lower curve of Figure 2. 
 
Exp1 – No Adaptation – Reappraisal (R) 
 

To explore the necessity of the adaptation layer in the 
emotion regulation model, we also made a fit for the model 
without the adaptation layer, in which is kept constant. 
Because the fit for the NR condition already had a constant 
 the curve does not change.  

Because  and c are part of the adaptation layer, they 
cannot be considered for fitting the R condition, leaving 
and w1 for optimizing the fit. 

The optimal fit to the R data was found for the following 
parameter settings: 
 
= 0.027 
w1 = 0.79 

 
As can be seen in the lower curve of Figure 3, the fit still is 
still reasonable, with an R2 of 0.9723. However, it was 
worse than the fit of the model with the adaptation layer 
added, where an R2 of 0.9876 was reached. 

 
 
Figure 3: The fits of the model without the adaptation layer 
to Experiment 1. 
 
Exp2 – Adaptation – No Reappraisal (NR) 
 

In experiment 2 in NR trials, participants were instructed to 
think or feel as they normally would in such a situation. No 
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cognitive effort to maintain any type of statement or image 
was required. This was modeled by setting = 0. 

Because the update mechanism of is proportional to 
it would always stay at 0. Therefore, and c had no 
direct or indirect influence on ERL, and were not 
considered. Because  stayed at 0 throughout the 
experiment, v4 also stayed constant, at the same level as v1. 
Therefore, w1 also did not influence ERL, leaving only ERL 
for optimizing the fit to the data. 

The optimal fit, which can be seen in the higher curve of 
Figure 4, was found for ERL = 0.9869, with an R2 of 
0.9556. 

 
Figure 4: The fit of the model with the adaptation layer to 
Experiment 2. 
 
Exp2 – Adaptation – Reappraisal (R) 
 

In the R condition, the value for ERL was taken from the 
value found in the NR condition, and the other four 
parameters could all be used for optimizing the fit to the 
data, similar to the R condition of experiment 1. 

The optimal fit was found for the following parameter 
settings: 
 
= 0.003 
w1 = 0.75 
 = 0.3 
c = 0.1 

 
This led to a fit with R2 = 0.9818, which can be seen in the 
lower curve of Figure 4. 
 
Exp2 – No Adaptation – Reappraisal (R) 
 

For experiment 2 we also made a fit with the model without 
the adaptation layer. Again, because  and c are part of the 
adaptation layer they cannot be considered for making the 
fit, leaving and w1 for optimizing the fit. 

The optimal fit to the data was found for the following 
parameter settings: 
 
= 0.004  

w1 = 0.51 
 
As can be seen in Figure 5, the fit is still quite good, with an 
R2 of 0.9806, but slightly worse than could be made using 
the version of the model with the adaptation layer, with 
which an R2 of 0.9818 was reached. 

These results illustrate that the emotion regulation model 
by (Bosse et al., 2010) is capable of reproducing empirical 
data quite closely. Moreover, the fact that the fits of the 
model without the adaptation layer are worse provide 
evidence that reappraisal as performed by humans may 
indeed be an adaptive process.  

 
Figure 5: The fit of the model without the adaptation layer 
to Experiment 2. 

Discussion 
Over the last decade, the number of computational models 
of affect has rapidly increased, especially in the area of 
Artificial Intelligence (e.g., Bach, 2008; Bosse et al., 2010; 
Gratch and Marsella, 2004; Marsella and Gratch, 2003; 
Reisenzein, 2009; Silverman, 2004). Most of these models 
have as their main goal to endow virtual agents (e.g., robots 
or avatars) with more believable human-like behavior. 
However, only a small subset of these approaches aims to 
reproduce the dynamics of the more subtle sub-processes 
involved (such as reappraisal) in a detailed manner (see 
(Bosse et al., 2010), for an extensive literature overview). 
An even smaller subset validates the results of the model 
against physiological data, such as skin conductance or 
fMRI data, yielding a large gap between AI-inspired 
modeling approaches and empirical psychological research.  

The main contribution of the present paper is a first step 
towards closing this gap. We have shown that an existing 
cognitive model of emotion regulation can, if reduced to its 
reappraisal-specific components, fit empirical data. By 
applying parameter tuning techniques, optimal fits of the 
model have been found against the (averaged) patterns of 
the skin conductance data. The errors that were found turned 
out to be relatively low. Moreover, they have been 
compared with the errors produced by a baseline variant of 
the model where the adaptive cycle has been removed, and 
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were found substantially lower. Although this is obviously 
not an exhaustive proof for the correctness of the model, it 
is an important indication that reappraisal as performed by 
humans may indeed be an adaptive process, as has been 
postulated by current informal models of reappraisal 
(Kalisch, 2009).  

Further validation and refinements of our model are 
obviously warranted. Regarding validation, the current work 
should be seen as an initial test whether the CoMERG 
model is capable of reproducing empirical data at all. In 
future research, more extensive tests will be performed, 
based on cross-validation and involving more participants. 
Regarding model refinement, it will be particularly 
interesting to see whether it can be adjusted to also simulate 
a proposed subparcellation of reappraisal effort into an early 
retrieval and a later working memory maintenance and 
monitoring component that has ensued from a recent 
analysis of neuroimaging data (Kalisch, 2009). The model 
might then also be useful for prediction brain activation 
time courses. 
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