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Abstract

Inferring the direction of causal relationships is notoriously
difficult. We propose a new strategy for learning causal
direction when observing states of variables over time. When
a cause changes state, its effects will likely change, but if an
effect changes state due to an exogenous factor, its observed
cause will likely stay the same. In two experiments, we found
that people use this strategy to infer whether X—Y vs. X<-Y,
and X—=Y—Z vs. X«<=Y—Z produced a set of data. We
explore a rational Bayesian and a heuristic model to explain
these results and discuss implications for causal learning.
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Introduction

Learning the direction of a causal relationship from
observation is notoriously difficult. Science students are
taught that “correlation does not imply causation.” Indeed,
the standard rational strategy proposed for how people learn
causal structures (e.g., Steyvers et al., 2003) suggests that it
is impossible to distinguish “Markov equivalent” structures
such as [X—=Y vs. X<=Y] or [X—=Y—=Z vs. X<=Y<Z vs.
X<=Y—Z]. In the three-variable structures above, all the
three variables would be correlated. Additionally, X and Z
would be conditionally independent given the state of Y.
Because these structures have the same (in)dependence
relations among variables, standard theories argue that it is
impossible to learn which produced a set of data.

One way that causal direction can be learned from
observational data is if there is a temporal delay between the
cause and effect (e.g., Lagnado & Sloman, 2006). If Linda
gets sick on Monday and Sarah gets sick on Wednesday, it
is likely that Linda gave Sarah the cold and not the reverse.
However, temporal delay is not always available as a cue to
causal direction. Sometimes temporal delays are too short to
be perceptible. Or, the learner may only have access to
periodic snapshots rather than a continuous stream of data.

Here, we propose another way to learn the direction of
causal relationships from observations over time. People
may assume that when a cause changes its effects also
change, but an effect may change due to an exogenous
factor without its observed cause changing. This strategy is
illustrated in the following example: Suppose you have two
friends, Bill and Tim, and you are trying to figure out
whether Bill’s mood influences Tim’s mood, or the reverse.
For eight days, you observe whether Bill and Tim are in
positive or negative moods. In Order 1 (Table 1), there are
times when both Bill and Tim change between positive and
negative moods simultaneously (e.g., Days 1-3), suggesting
that there is some causal relationship between the two.

Table 1: Example of How Order Can Influence Inferred
Causal Direction Note. 1 stands for a positive mood and 0
stands for a negative mood.

Day Order 1: Bill=Tim Order 2: Bill«<=Tim

Bill Tim Bill Tim
1 1 1 1 1
2 0 0 0 0
3 1 1 1 1
4 1 0 0 1
5 1 1 1 1
6 0 0 0 0
7 0 1 1 0
8 0 0 0 0

Additionally, there are transitions in which Tim’s mood
changes (e.g., Days 3-4) while Bill’s mood remains
constant. These transitions suggest that some external event
occurred to Tim (perhaps he did poorly on an exam), but the
fact that Bill did not get into a bad mood on the same day
suggests that Tim’s mood does not influence Bill’s mood.'
Instead one might conclude that Bill’s mood influences
Tim’s mood, which could explain why sometimes both of
their moods change simultaneously.

Critically, according to this account, the transitions from
day to day are used to infer the causal direction. Consider
Order 2, which has the exact same eight days as Order 1,
except that Days 4 and 7 are switched. As in Order 1, there
are times when both Bill and Tim’s moods change
simultaneously (e.g., Days 1-3). However, Order 2 has
transitions when Bill’s mood changes but Tim’s mood stays
the same (e.g., Days 6-7; perhaps Bill got a job interview).
This transition suggests that Bill’s mood does not influence
Tim’s mood, so one might conclude that Tim’s mood
influences Bill’s mood.

All our experiments use manipulations like that in Table
1, in which one set of trials is rearranged in two different
orders. If one ignores the temporal sequence of events it
would be impossible to determine the causal direction;
collapsing across the eight days, there is a correlation of .5,
but correlation does not imply a causal direction.

: There are also some transitions when Tim’s mood changed
and Bill’s mood stayed constant, but which might not suggest that
Tim’s mood does not influence Bill’s mood. From Trials 4-5, Tim
goes from a negative to positive mood, but Bill was already in a
positive mood. Such transitions do not necessarily suggest that
Tim’s mood does not influence Bill’s mood because Bill’s mood
was already at “ceiling” or “floor.”
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We propose that in certain circumstances, believing that
effects are more likely to change by themselves than causes
is rational. Specifically, these inferences are rational if the
variables are stable across time (i.e. temporally dependent),
which is true for many variables such as people’s moods.
Consider X—=Y. When an exogenous event changes the
state of X, the change will transfer to Y (depending on how
strong the causal relationship is). However, if an exogenous
event changes the state of Y, X will stay stable; it would be
coincidental for X to change at the exact same moment. The
following two experiments examine whether people use this
temporal strategy to infer causal structures.

Experiment 1

Experiment 1 tested whether people infer causal direction
for two-variable causal structures.

Methods

Participants 36 participants from the Yale community were
recruited for a 5 minute psychology experiment that paid $2.
Participants were recruited at a main pedestrian crossroad
on campus, and were tested on a laptop at the same location.

Stimuli The datasets used for the two conditions are

presented in Table 2. The same sixteen trials were used in

the two conditions and the overall contingency was 0.5.

The sixteen trials were presented in different orders in the
two conditions. In the directional condition, Y sometimes
changed on its own (e.g., Trials 1-5), which could occur
from an external influence on Y. These transitions suggest
that Y does not influence X. At other times both X and Y
changed simultaneously (e.g., Trials 6-8), which can be
explained by an external influence on X that transferred to
Y. The temporal strategy suggests X—Y.

In the non-directional condition, X or Y changed by
themselves about equally often (e.g., Trials 3-5, or Trials 5-
7), which does not identify a causal direction. Additionally,
sometimes X and Y stayed the same (e.g., Trials 1-2), and
sometimes both X and Y changed simultaneously (e.g.,
Trials 2-3), suggesting some causal relation.

Procedures Participants read the following cover story:
"...Please pretend that you are a psychologist studying the
moods of roommates. You are trying to figure out if one
person's mood influences the other. You might discover
that Bill's mood influences Tim's mood, or Tim's mood
influences Bill's mood, or both, or that neither influences
the other. In the following scenario, you will observe Bill
and Tim's moods over a period of 16 consecutive days.
Please remember that moods influence one another on the
same day. For example, if Bill gets into a negative mood
on Monday, and if Bill's mood influences Tim's mood,
then Tim will also be in a negative mood on Monday."

These instructions were intended to accomplish a number
of goals. First, we intended for the mood transfer scenario to
be plausible and an easy way to reason about causal
structures. Second, we thought it would be intuitive for
moods to be stable across a period of days (temporally

dependent variables). Third, we hoped that participants
would be able to easily consider possible external influences
on peoples' moods (e.g., performing well on a test). The no
delay instruction was included because we wanted to
discourage this strategy so it did not interfere (Lagnado &
Sloman, 2006). Indeed, the stimuli did not have any delay.

Table 2: Summary of Stimuli. Note. 1 represents a
"positive mood" and O represents a "negative mood". A
bolded variable represents a hypothetical external influence
on this variable that participants may infer to explain the
changes in the states of the variables. Bold numbers were
not denoted in any way for participants.

Experiment 1 Experiment 2

X-Y not X-Y-Z XeY-Z

directional  directional Chain Com. C
Trial XY XY XY Z XY Z
1 11 11 000 00O
2 10 11 001 001
3 11 00 00O 00O
4 10 10 011 100
5 11 00 000 000
6 00 01 111 111
7 11 0o 000 110
8 00 11 111 111
9 01 11 110 011
10 00 00 111 111
11 01 01 100 000
12 oo 00 111 111
13 11 10 110 011
14 00 00 111 010
15 11 11 00O 110
16 00 11 001 111
17 00O 000
18 011 100
19 010 101
20 011 001
21 000 00O
22 001 111
23 00O 011
24 111 111
25 100 000
26 101 100
27 100 000
28 111 001
29 110 00O
30 111 111
31 000 110
32 111 111

Next, participants worked with both the conditions in a
counterbalanced order. In each scenario, participants were
shown a sequence of 16 screens representing 16 consecutive
days. On each screen, a plus or minus sign appeared below
each person’s name signifying their mood as positive or
negative. After each screen appeared, there was a delay of 2
seconds, and then participants were prompted to "Press the
spacebar to see the next day," at which point the peoples'
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moods on the next day appeared. Participants were never
told about any external influences; they simply observed the
moods of X and Y on 16 consecutive days.

At the end of the 16 days, participants chose one of the
following four options: “No Relationship' means that
neither person's mood influences the other; 1—2 means that
Person 1's mood influences Person 2's mood; 1«2 means
that Person 2's mood influences Person 1's mood; and 12
means that both people’s moods influence each other.”
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Figure 1: Results of Experiment 1
Results

Figure 1 presents the proportion of participants who chose
each of the four response options in the directional and non-
directional conditions. We were specifically interested in the
hypothesis that participants would infer that X—Y more in
the directional than non-directional condition. To test this
hypothesis, we collapsed across the other three options. A
McNemar test revealed that participants inferred X—Y
more in the directional than non-directional condition,
p<.01. As can be seen in Figure 1, most of the participants
who inferred X—Y in the directional condition inferred
XY in the non-directional condition. This makes sense
because in the non-directional condition there were times
when both X and Y simultaneously changed (e.g., Trials 2-3
in Table 2). Such transitions would suggest that X and Y are
correlated, but would not suggest a specific direction.

In sum, people readily learned the direction of causal
relationships from observing changes in states over time.
We believe that this is the first demonstration of such an
ability for stimuli without a temporal delay.

Experiment 2

Experiment 2 tested whether people can also use changes
in states over time to learn directional causal structures
among three variables. We tested whether people could
differentiate a chain structure (X—Y—Z) from a common
cause structure (X«—Y—Z). Non-temporal theories cannot
distinguish these structures (see the introduction). However,
if people use the temporal strategy they may be able to
distinguish these two structures. For X—Y—Z, when X
changes, Y and also Z will likely change. But for XY —Z,
when X changes, Y and Z will likely stay constant.

Methods

Participants There were 28 participants from the same
population as Experiment 1.

Design and Stimuli All participants worked with the chain
and common cause conditions in a counterbalanced order.
Both conditions had the same set of 32 trials with different
orders (Table 2). The 32 trials were determined based on
causal structures with the following parameters. Exogenous
variables (X for the chain and Y for the common cause) had
a base rate of .5. If a cause was present, its effects would be
present with a probability of .75. If a cause was absent, its
effect would be present with a probability of .25. Thus,
Delta P, a measure of contingency, was .5. Because the two
graphs are Markov equivalent, they have the same 32 trials.

In the chain condition X—Y—Z, the trials were ordered
such that sometimes Z changed by itself, sometimes Y and
Z changed together and sometimes X, Y, and Z all changed
together. If participants use the temporal strategy, they
might attribute Z changing state by itself (e.g., Trials 1-3) to
an unobserved influence on Z, and also infer that Z does not
influence X or Y. They might interpret Y and Z changing
together (e.g., Trials 4-5) as evidence of an unobserved
influence on Y (after all Z does not appear to influence Y),
which further influences Z. Finally, they might interpret all
three variables changing state together (e.g., Trials 6-8) as
evidence of an unobserved influence on X (the above
transitions suggest that neither Y nor Z influences X), which
influences Y and Z.

In the common cause structure X« Y—Z, sometimes X

and Z changed state by themselves and sometimes all three
variables change state together. If participants use the
temporal strategy, they would interpret X and Z changing
state by themselves (e.g., Trials 2-3, 4-5) as evidence of an
unobserved influence on X or Z, and also infer that neither
X nor Z influences any of the other two variables. They
might interpret transitions when all three variables change
state simultaneously (e.g., Trials 11-12) as evidence of an
unobserved influence on Y, which in turn influences X and
Z (X and Z seem not to influence Y).
Procedure Participants were first introduced to the emotion
transmission cover story used in Experiment 1 with the
following modifications. The instructions were changed to
contain three friends instead of two. Participants were told
at the beginning about chains ("one person's mood
influences a second person's mood, which in turn influences
a third person's mood") and common causes ("there is one
main person whose mood influences both other people").
Participants were also told that their goal was to determine
which graph best describes these three friends.”

2 To encourage participants to think of moods as states that are
stable over days, they were told: "People can also stay in good
moods or bad moods for a period of days." Finally, to encourage
them to think about unobserved events that may have manipulated
the peoples' moods, which we believed would facilitate using the
temporal strategy, participants were instructed: "On each day,
please consider possible events that influenced peoples' moods. For
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After reading the instructions, participants worked with
both the common cause and chain scenarios in a counter-
balanced order. Participants then observed the 32 days; after
observing each day, they were prompted to press the
spacebar to observe the next day. The chain and common
cause graphs were shown during the entire scenario, and at
the end, participants chose whether the scenario was best
described by the chain (Person 1—Person 2—Person 3) or
common cause (Person 1«<Person 2—Person 3).

Results

Seventy-one percent (20 out of 28) of the participants chose
the chain structure in the chain condition, which is
significantly above chance, p=.01. Seventy-five percent (21
out of 28) of the participants chose the common cause
structure in the common cause condition, p<.0l. A
McNemar test suggests that participants more often chose
the chain structure in the chain condition than in the
common cause condition, p<.01.

Models

Temporal Bayesian Model

We propose a Bayesian model to demonstrate how it is
possible to rationally infer X—Y or X<-Y by observing
variables over time. We define a state as the current values
of X and Y (e.g, [x=1, y=0] condensed as [10]). A transition
is two consecutive states (e.g., [10 to 11]). With two
variables, there are four states and 16 types of transitions.

The basic idea behind the model is that different causal
structures (graphs) produce different types of transitions. It
is possible to infer the probability of a graph g given the
observed transitions ¢ by using Bayes theorem to invert the
probability of a graph producing the transitions.

P(glt) o< P(tlg)P(g) (Eq. 1)

We assume that any transition must be caused by an
exogenous event that influenced one of observed variables.
Given a particular state, there are three possible unobserved
influences; an influence changing the state of X, an
influence changing the state of Y, or simultaneous
influences that change the states of both X and Y. We define
ix, Iy, and iy, as the probability of these three influences and
they are mutually exclusive and exhaustive; iy+iy+iy,~=1.
Because we have no reason to believe that X or Y is more
likely to be influenced by external variables than the other,
we assume that i,=iy, thus, i,,=1-2i,. We use “s” to refer to
the causal strength, or the likelihood of an influence on a
cause producing a change in the effect (assuming that the
effect is not already at ceiling or floor).

Here we focus on the likelihood of the graph X—Y
producing a particular transition. Figure 2a presents the
transitions probabilities for X—Y in a Markov chain; the
corners are the four states and the arrows represent the 16

example, Allison may have performed well on a test, which put her
into a good mood, and spread to Bill...."

transitions with associated probabilities (also see Figure 2b).

Suppose that the current state is [00]. The transition [00 to
11] could arise if X is turned on and succeeds in turning on
Y (ixs), or by simultaneous influences on X and Y (iy).
(Hereon transition probabilities are in parentheses.) The
transition [00 to 01] arises from an influence on Y (iy). An
influence that changes the state of Y cannot transfer to X
because Y is the effect, so this transition probability does
not include s. The transition [00 to 10] arises from of an
influence on X failing to produce a change in Y (ix(1-s)). As
s becomes stronger, there would be fewer transitions when
the cause fails to produce a change in the effect.

Consider the initial state [01]. The transition [01 to 11]
arises from an influence on X (iy). Because Y was already
on (a "ceiling effect"), X cannot have any influence on Y, so
the transition probability does not include s. The transition
[01 to 00] arises from an influence on Y (iy). The transition
[01 to 10] arises from simultaneous influences on X and Y
(ixy). Since X and Y were both changed, the influence on X
cannot have any influence on Y, so this probability does not
include s.

Note that given a particular causal structure and an initial
state, there are only three possible transitions. From [00],
there can be a transition to [01], [10], or [11], and these
respective transition probabilities sum to 1. We treat
transitions to the same state as a single trial (e.g., [00 to 00]
as just [00]).> Also, the transition probabilities with initial
states [11] and [10] can be deduced from [00] and [01]
discussed above; Transitions 1-8 in Figure 2b are the mirror
image of Transitions 9-16. The transition probabilities for
X<Y can be deduced from X—Y by switching X and Y.

How can the model infer whether X—Y or X<Y
produced the observed data? Consider a transition when Y
changes by itself [e.g., 00 to 01] (Fig. 2b row 15). Under the
structure X—Y, the likelihood of this transition is just the
probability of an external influence on Y (iy). Under X<Y
the likelihood is the probability of an influence on Y
multiplied by the probability of Y failing to change X (i,(1-
s)). Effects are more likely to change by themselves than
causes even if s is weak; i,> i,(1-s)."

For the bidirectional graph X«<Y, X and Y change by
themselves equally often. When the state of X is changed by
an exogenous factor, it is no longer influenced by Y, so the
transition probabilities are the same as X—Y. When the
state of Y is changed by an external factor, the probabilities
are the same as X<-Y. For the graph in which X and Y are
unrelated (no links), the likelihood of either X or Y
changing by itself is the probability of an influence on that

3 The reason is that in such cases there is no implied unobserved
influence and these transitions do not discriminate between causal
structures. Additionally, any temporally extended state could be
parsed into infinitely many periods. Note that transitions to the
same state did sometimes occur in the stimuli.

4 . o ..
If an effect is at ceiling or floor [e.g., 01 to 11] the transition
has the same probability under X—Y and X<-Y (see Figure 2b).
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variable (iy or iy). If both change, the probability is iy,

a: Markov Chain with Transition Probabilities for X—Y

b: Transition Probabilities for the Four

Structures with Two Variables
Observed Data

Trans. t t+1 Graph
Type x vy X y X»Y XeY NolLink XeY
1 11 11 0 0 0 0
2 11 1.0 iy iy(1-s) iy iy(1-s)
3 11 0 1 ix(1-s) ix ix ix(1-s)
4 11 00 ixS+ixy IyS+ixy ixy ixS+iyS+iyy
5 10 11 iy iy iy iy
6 10 10 O 0 0 0
7 10 0 1 Ixy ixy ixy Ixy
8 10 00 ix ix ix ix
9 0 1 11 Ix ix Ix ix
10 0 1 10 ixy ixy ixy ixy
11 0 1 0 1 0 0 0 0
12 0 1 00 iy iy iy iy
13 00 1 1 ixS+ixy IyS+ixy ixy ixS+iyS+ixy
14 00 10 ix(1-s) ix ix ix(1-s)
15 00 0 1 iy iy(1-s) iy iy(1-s)
16 00 00 O 0 0 0

Figure 2: Transition Probabilities. Note probabilities in bold
highlight the transitions that are likely under a given graph.
g|t / H P(tm|gfia;aS)N(tm)P(iJr:SM) dig ds
m=1
(Eq.2)

The full model is represented in Eq. 2. The likelihood (z|g)
of a graph producing the observed sequence of transitions
(“transition path") is the product of the probabilities of each
of the individual transitions. This can be simplified as the
product of the probabilities of the 16 transition types #,-1.. 16
each raised to the power of the number of transitions of that
type (N[tn]). There are only two parameters, s and i, (note
that i~i; and i,~1-2i,), which are integrated over. We

1 16

assume that the prior distribution P(i,,s|g) is uniform.

This model can be extended to three-variable causal
structures using analogous reasoning. For brevity we do not
explain all the transition probabilities, which can be
obtained from the authors. For a brief example, consider a
transition in which only X changes but Y and Z do not [000
to 100]. Under graph X<-Y—Z, this transition would arise
from an unobserved influence on X (ix). But under graph
X—Y—Z, this transition would require an influence on X
that failed to transfer to Y (ix(1-s)), which is less likely.

The model can also be extended to negative relations.’

Heuristic Model to Learn Causal Direction

It is possible that people use a heuristic approximation of
the Bayesian model like the one presented here. For two
variables X and Y, the model produces a score for the two
links X—Y and X<-Y; the higher the score, the more likely
that the link exists. For each transition, the model runs the
following function. If both variables changed (e.g., [00 to
11]), then the model adds 1 to the scores for both links
because this is evidence of some causal relationship. If one
variable changed (e.g., [00 to 01]) then the model subtracts
1 from the structure in which the variable that changed is the
cause, in this case X<-Y. The reason is that when Y
changed to 1, X failed to change, which suggests that Y
does not cause X. However, if one variable was already at
ceiling or floor when the other changed [e.g., 01 to 00], then
the scores are left unchanged. This model can be
generalized for more variables by considering all links
between all variables. In further work, we have
demonstrated that the heuristic model approximates the
Bayesian model in a wide variety of instances.’

Model Simulations of Experiments 1 and 2

Experiment 1 The heuristic model captured the essential
difference between the two conditions. In the directional
condition, X—Y had a higher score (7) than XY (3). In
the non-directional condition, both graphs had a score of 2.
We used the Bayesian model to calculate the relative
likelihoods of the four two-variable graphs producing the
observed transitions (Figure 1). Both the model and our
participants inferred that X—Y was more likely to have
produced the directional data than X«Y. Additionally, both
our participants and the model choose X<«<»>Y more in the
non-directional condition than directional condition. The

> Even for negative relationships, when a cause changes it would
usually produce a change in its effect, but an effect can change by
itself. Suppose that X—Y and X=1, and Y=0. If an exogenous
factor sets X=0, Y would likely change to 1. However, if an
exogenous factor sets Y=1, X would likely stay at 1.

® One difference can occur for X—=Y—Z (see also, Fernbach &
Sloman, 2009). The heuristic model would infer that X directly
influences Z. The Bayesian model could infer whether there is a
direct link from X to Z or not by testing these two alternative
structures. X and Z changing simultaneously without Y is evidence
in favor of the direct link. If X and Z do not change together
without Y changing, this suggests that there is no direct link.
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model does diverge from our participants in a number of
ways. However, this is a rational model of the task, which
need not coincide with human performance. Still, the model
does predict the most critical difference between X—Y vs.
X<Y. In further work we have examined how well the
model fits individual participants’ inferences.

Experiment 2 The heuristic model captured participants’
inferences. For the chain X—Y—Z, the model gave a higher
score for X—Y (7) than X<-Y (3) and a higher score for
Y—Z (15) than Y<=Z (7). The model also gave a higher
score for X—Z (7) than X<-Z (-5). For the common cause
condition X«Y—Z, the model gave higher scores for
X<Y (7) than X—Y (1) and a higher score for Y—Z (7)
than Y—Z (1). The model also had a somewhat higher score
for X—Z (3) than X—Z (-1).

The Bayesian model also predicted the results. To
simulate Experiment 2, we computed the relative likelihood
of X«~Y—Z vs. X—>Y—Z. In the chain condition, the
likelihood of the chain was 99%, and in the common cause
condition, the likelihood of the common cause was 98%.

General Discussion

We proposed a theory for how people learn directional
causal relationships by observing states of variables change
over time. Experiment 1 demonstrated that people infer that
X influences Y when Y changed more frequently by itself
than X, and sometimes X and Y changed simultaneously.
Experiment 2 demonstrated that given three variables, if X
changes by itself, people tend to infer X«—Y—Z, but if X
usually changes with Y and Z, people tend to infer
X—>Y—Z. We also proposed two models. The heuristic
model embodies the belief that effects are more likely to
change by themselves than causes. The Bayesian model
proposes a rational reason why people might adopt this
belief. The Bayesian model assumes that the states of
variables are stable across time and only change if an
exogenous variable produces the change. Consider X—Y.
When an exogenous factor changes X, the larger the causal
strength, the more likely Y will also change. But when an
exogenous factor changes Y, it would be coincidental for X
to change simultaneously.

Previous research has demonstrated that people can learn
causal structure from interventions, from atemporal
observations (but cannot distinguish Markov-equivalent
structures such as the structures used here), and from
observations with delay (e.g., Lagnado & Sloman, 2006;
Steyvers et al., 2003). There are likely many ways that
people learn causal structures (Lagnado et al., 2007); the
current strategy differs in two key ways from previous
theories. First, most previous experiments have used
punctate events that either happened or didn’t happen on a
given trial, but the variables in the current experiments had
temporally extended states. Second, in most previous
research, the trials were temporally independent, often
randomized. In contrast, the states of the variables in the
current experiments may stay stable for periods of time
(e.g., in the X—Y condition in Experiment 1, X stayed

stable from Trial 1-5). When a relatively stable variable
changes state, it is possible to make inferences about the
causes of the change. For example, if Bill and Tim were
both in a good mood and then both get into a bad mood at
the same time, this is strong evidence that there is some
causal relation between the two. Alternatively, if Bill gets
into a bad mood but Tim stays in a good mood, this
transition suggests that Bill’s mood does not influence
Tim’s mood. Thus, the current theory focuses on transitions
between states rather than individual trials.

What implications should be drawn from the proposed
models? Given that both models captured the basic
asymmetry between causes and effects, and no other models
can discriminate the difference, the current approaches
appear promising. In other research, we have found that the
models are highly correlated,’ suggesting that the heuristic
model approximates a rational strategy. However, given that
there are some differences between the rational model and
participants’ responses, alternative heuristic models may
provide insight to participants’ reasoning strategies. These
models also suggest some future areas of exploration. Do
people infer causal strength along with structure? Can
people learn negative causal relationships from observing
variables over time?° And how can these models be
generalized to multi-valued variables?

These experiments demonstrate that there is rich structure
in how events unfold over time, and people readily identify
the structure in these temporal patterns. In the real world,
variables often are stable or temporally dependent. For
example, after one observes a dent in one’s car, the dent
remains for a period of time until it gets fixed. Given the
importance of causal reasoning and the fact that we
experience the world temporally, the abilities demonstrated
here may reflect common and vital learning processes.
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