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Abstract 

Inferring the direction of causal relationships is notoriously 
difficult. We propose a new strategy for learning causal 
direction when observing states of variables over time. When 
a cause changes state, its effects will likely change, but if an 
effect changes state due to an exogenous factor, its observed 
cause will likely stay the same. In two experiments, we found 
that people use this strategy to infer whether X→Y vs. X←Y, 
and X→Y→Z vs. X←Y→Z produced a set of data. We 
explore a rational Bayesian and a heuristic model to explain 
these results and discuss implications for causal learning. 
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Introduction 
Learning the direction of a causal relationship from 
observation is notoriously difficult. Science students are 
taught that “correlation does not imply causation.” Indeed, 
the standard rational strategy proposed for how people learn 
causal structures (e.g., Steyvers et al., 2003) suggests that it 
is impossible to distinguish “Markov equivalent” structures 
such as [X→Y vs. X←Y] or [X→Y→Z vs. X←Y←Z vs. 
X←Y→Z]. In the three-variable structures above, all the 
three variables would be correlated. Additionally, X and Z 
would be conditionally independent given the state of Y. 
Because these structures have the same (in)dependence 
relations among variables, standard theories argue that it is 
impossible to learn which produced a set of data.  

One way that causal direction can be learned from 
observational data is if there is a temporal delay between the 
cause and effect (e.g., Lagnado & Sloman, 2006). If Linda 
gets sick on Monday and Sarah gets sick on Wednesday, it 
is likely that Linda gave Sarah the cold and not the reverse. 
However, temporal delay is not always available as a cue to 
causal direction. Sometimes temporal delays are too short to 
be perceptible. Or, the learner may only have access to 
periodic snapshots rather than a continuous stream of data. 

Here, we propose another way to learn the direction of 
causal relationships from observations over time. People 
may assume that when a cause changes its effects also 
change, but an effect may change due to an exogenous 
factor without its observed cause changing. This strategy is 
illustrated in the following example: Suppose you have two 
friends, Bill and Tim, and you are trying to figure out 
whether Bill’s mood influences Tim’s mood, or the reverse. 
For eight days, you observe whether Bill and Tim are in 
positive or negative moods. In Order 1 (Table 1), there are 
times when both Bill and Tim change between positive and 
negative moods simultaneously (e.g., Days 1-3), suggesting 
that there is some causal relationship between the two. 

Table 1: Example of How Order Can Influence Inferred 
Causal Direction Note. 1 stands for a positive mood and 0 
stands for a negative mood. 
 

Order 1: Bill→Tim  Order 2: Bill←Tim Day 
Bill Tim  Bill Tim 

1 1 1  1 1 
2 0 0  0 0 
3 1 1  1 1 
4 1 0  0 1 
5 1 1  1 1 
6 0 0  0 0 
7 0 1  1 0 
8 0 0  0 0 

 
Additionally, there are transitions in which Tim’s mood 

changes (e.g., Days 3-4) while Bill’s mood remains 
constant. These transitions suggest that some external event 
occurred to Tim (perhaps he did poorly on an exam), but the 
fact that Bill did not get into a bad mood on the same day 
suggests that Tim’s mood does not influence Bill’s mood.1  
Instead one might conclude that Bill’s mood influences 
Tim’s mood, which could explain why sometimes both of 
their moods change simultaneously.  

Critically, according to this account, the transitions from 
day to day are used to infer the causal direction. Consider 
Order 2, which has the exact same eight days as Order 1, 
except that Days 4 and 7 are switched. As in Order 1, there 
are times when both Bill and Tim’s moods change 
simultaneously (e.g., Days 1-3). However, Order 2 has 
transitions when Bill’s mood changes but Tim’s mood stays 
the same (e.g., Days 6-7; perhaps Bill got a job interview). 
This transition suggests that Bill’s mood does not influence 
Tim’s mood, so one might conclude that Tim’s mood 
influences Bill’s mood.  

All our experiments use manipulations like that in Table 
1, in which one set of trials is rearranged in two different 
orders. If one ignores the temporal sequence of events it 
would be impossible to determine the causal direction; 
collapsing across the eight days, there is a correlation of .5, 
but correlation does not imply a causal direction. 

                                                
1 There are also some transitions when Tim’s mood changed 

and Bill’s mood stayed constant, but which might not suggest that 
Tim’s mood does not influence Bill’s mood. From Trials 4-5, Tim 
goes from a negative to positive mood, but Bill was already in a 
positive mood. Such transitions do not necessarily suggest that 
Tim’s mood does not influence Bill’s mood because Bill’s mood 
was already at “ceiling” or “floor.” 
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We propose that in certain circumstances, believing that 
effects are more likely to change by themselves than causes 
is rational. Specifically, these inferences are rational if the 
variables are stable across time (i.e. temporally dependent), 
which is true for many variables such as people’s moods. 
Consider X→Y. When an exogenous event changes the 
state of X, the change will transfer to Y (depending on how 
strong the causal relationship is). However, if an exogenous 
event changes the state of Y, X will stay stable; it would be 
coincidental for X to change at the exact same moment. The 
following two experiments examine whether people use this 
temporal strategy to infer causal structures. 

Experiment 1 
Experiment 1 tested whether people infer causal direction 

for two-variable causal structures.  

Methods 
Participants 36 participants from the Yale community were 
recruited for a 5 minute psychology experiment that paid $2. 
Participants were recruited at a main pedestrian crossroad 
on campus, and were tested on a laptop at the same location.  
Stimuli The datasets used for the two conditions are 
presented in Table 2. The same sixteen trials were used in 
the two conditions and the overall contingency was 0.5.  

The sixteen trials were presented in different orders in the 
two conditions. In the directional condition, Y sometimes 
changed on its own (e.g., Trials 1-5), which could occur 
from an external influence on Y. These transitions suggest 
that Y does not influence X. At other times both X and Y 
changed simultaneously (e.g., Trials 6-8), which can be 
explained by an external influence on X that transferred to 
Y. The temporal strategy suggests X→Y. 

In the non-directional condition, X or Y changed by 
themselves about equally often (e.g., Trials 3-5, or Trials 5-
7), which does not identify a causal direction. Additionally, 
sometimes X and Y stayed the same (e.g., Trials 1-2), and 
sometimes both X and Y changed simultaneously (e.g., 
Trials 2-3), suggesting some causal relation.  
Procedures Participants read the following cover story: 

"…Please pretend that you are a psychologist studying the 
moods of roommates. You are trying to figure out if one 
person's mood influences the other. You might discover 
that Bill's mood influences Tim's mood, or Tim's mood 
influences Bill's mood, or both, or that neither influences 
the other. In the following scenario, you will observe Bill 
and Tim's moods over a period of 16 consecutive days. 
Please remember that moods influence one another on the 
same day. For example, if Bill gets into a negative mood 
on Monday, and if Bill's mood influences Tim's mood, 
then Tim will also be in a negative mood on Monday." 
 
These instructions were intended to accomplish a number 

of goals. First, we intended for the mood transfer scenario to 
be plausible and an easy way to reason about causal 
structures. Second, we thought it would be intuitive for 
moods to be stable across a period of days (temporally 

dependent variables). Third, we hoped that participants 
would be able to easily consider possible external influences 
on peoples' moods (e.g., performing well on a test). The no 
delay instruction was included because we wanted to 
discourage this strategy so it did not interfere (Lagnado & 
Sloman,  2006). Indeed, the stimuli did not have any delay. 

 
Table 2: Summary of Stimuli. Note. 1 represents a 

"positive mood" and 0 represents a "negative mood". A 
bolded variable represents a hypothetical external influence 
on this variable that participants may infer to explain the 
changes in the states of the variables. Bold numbers were 
not denoted in any way for participants. 

 
 
 

Next, participants worked with both the conditions in a 
counterbalanced order. In each scenario, participants were 
shown a sequence of 16 screens representing 16 consecutive 
days. On each screen, a plus or minus sign appeared below 
each person’s name signifying their mood as positive or 
negative. After each screen appeared, there was a delay of 2 
seconds, and then participants were prompted to "Press the 
spacebar to see the next day," at which point the peoples' 

Trial X Y X Y X Y Z X Y Z
1 1 1 1 1 0 0 0 0 0 0
2 1 0 1 1 0 0 1 0 0 1
3 1 1 0 0 0 0 0 0 0 0
4 1 0 1 0 0 1 1 1 0 0
5 1 1 0 0 0 0 0 0 0 0
6 0 0 0 1 1 1 1 1 1 1
7 1 1 0 0 0 0 0 1 1 0
8 0 0 1 1 1 1 1 1 1 1
9 0 1 1 1 1 1 0 0 1 1

10 0 0 0 0 1 1 1 1 1 1
11 0 1 0 1 1 0 0 0 0 0
12 0 0 0 0 1 1 1 1 1 1
13 1 1 1 0 1 1 0 0 1 1
14 0 0 0 0 1 1 1 0 1 0
15 1 1 1 1 0 0 0 1 1 0
16 0 0 1 1 0 0 1 1 1 1
17 0 0 0 0 0 0
18 0 1 1 1 0 0
19 0 1 0 1 0 1
20 0 1 1 0 0 1
21 0 0 0 0 0 0
22 0 0 1 1 1 1
23 0 0 0 0 1 1
24 1 1 1 1 1 1
25 1 0 0 0 0 0
26 1 0 1 1 0 0
27 1 0 0 0 0 0
28 1 1 1 0 0 1
29 1 1 0 0 0 0
30 1 1 1 1 1 1
31 0 0 0 1 1 0
32 1 1 1 1 1 1

Experiment 2Experiment 1
not

directional
X!Y

directional
 X!Y!Z
Chain

X!Y!Z
Com. C.
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moods on the next day appeared. Participants were never 
told about any external influences; they simply observed the 
moods of X and Y on 16 consecutive days. 

At the end of the 16 days, participants chose one of the 
following four options: “'No Relationship' means that 
neither person's mood influences the other; 1→2 means that 
Person 1's mood influences Person 2's mood; 1←2 means 
that Person 2's mood influences Person 1's mood; and 1↔2 
means that both people’s moods influence each other.” 

 

 
Figure 1: Results of Experiment 1 

 
Results 
Figure 1 presents the proportion of participants who chose 
each of the four response options in the directional and non-
directional conditions. We were specifically interested in the 
hypothesis that participants would infer that X→Y more in 
the directional than non-directional condition. To test this 
hypothesis, we collapsed across the other three options. A 
McNemar test revealed that participants inferred X→Y 
more in the directional than non-directional condition, 
p<.01. As can be seen in Figure 1, most of the participants 
who inferred X→Y in the directional condition inferred 
X↔Y in the non-directional condition. This makes sense 
because in the non-directional condition there were times 
when both X and Y simultaneously changed (e.g., Trials 2-3 
in Table 2). Such transitions would suggest that X and Y are 
correlated, but would not suggest a specific direction. 

In sum, people readily learned the direction of causal 
relationships from observing changes in states over time. 
We believe that this is the first demonstration of such an 
ability for stimuli without a temporal delay.  

Experiment 2 
Experiment 2 tested whether people can also use changes 

in states over time to learn directional causal structures 
among three variables. We tested whether people could 
differentiate a chain structure (X→Y→Z) from a common 
cause structure (X←Y→Z). Non-temporal theories cannot 
distinguish these structures (see the introduction). However, 
if people use the temporal strategy they may be able to 
distinguish these two structures. For X→Y→Z, when X 
changes, Y and also Z will likely change. But for X←Y→Z, 
when X changes, Y and Z will likely stay constant. 

Methods 
Participants There were 28 participants from the same 
population as Experiment 1. 
Design and Stimuli All participants worked with the chain 
and common cause conditions in a counterbalanced order. 
Both conditions had the same set of 32 trials with different 
orders (Table 2). The 32 trials were determined based on 
causal structures with the following parameters. Exogenous 
variables (X for the chain and Y for the common cause) had 
a base rate of .5. If a cause was present, its effects would be 
present with a probability of .75. If a cause was absent, its 
effect would be present with a probability of .25. Thus, 
Delta P, a measure of contingency, was .5. Because the two 
graphs are Markov equivalent, they have the same 32 trials.  

In the chain condition X→Y→Z, the trials were ordered 
such that sometimes Z changed by itself, sometimes Y and 
Z changed together and sometimes X, Y, and Z all changed 
together. If participants use the temporal strategy, they 
might attribute Z changing state by itself (e.g., Trials 1-3) to 
an unobserved influence on Z, and also infer that Z does not 
influence X or Y. They might interpret Y and Z changing 
together (e.g., Trials 4-5) as evidence of an unobserved 
influence on Y (after all Z does not appear to influence Y), 
which further influences Z. Finally, they might interpret all 
three variables changing state together (e.g., Trials 6-8) as 
evidence of an unobserved influence on X (the above 
transitions suggest that neither Y nor Z influences X), which 
influences Y and Z. 

In the common cause structure X←Y→Z, sometimes X 
and Z changed state by themselves and sometimes all three 
variables change state together. If participants use the 
temporal strategy, they would interpret X and Z changing 
state by themselves (e.g., Trials 2-3, 4-5) as evidence of an 
unobserved influence on X or Z, and also infer that neither 
X nor Z influences any of the other two variables. They 
might interpret transitions when all three variables change 
state simultaneously (e.g., Trials 11-12) as evidence of an 
unobserved influence on Y, which in turn influences X and 
Z (X and Z seem not to influence Y). 
Procedure Participants were first introduced to the emotion 
transmission cover story used in Experiment 1 with the 
following modifications. The instructions were changed to 
contain three friends instead of two. Participants were told 
at the beginning about chains ("one person's mood 
influences a second person's mood, which in turn influences 
a third person's mood") and common causes ("there is one 
main person whose mood influences both other people"). 
Participants were also told that their goal was to determine 
which graph best describes these three friends.2 

                                                
2 To encourage participants to think of moods as states that are 

stable over days, they were told: "People can also stay in good 
moods or bad moods for a period of days." Finally, to encourage 
them to think about unobserved events that may have manipulated 
the peoples' moods, which we believed would facilitate using the 
temporal strategy, participants were instructed: "On each day, 
please consider possible events that influenced peoples' moods. For 
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After reading the instructions, participants worked with 
both the common cause and chain scenarios in a counter-
balanced order. Participants then observed the 32 days; after 
observing each day, they were prompted to press the 
spacebar to observe the next day. The chain and common 
cause graphs were shown during the entire scenario, and at 
the end, participants chose whether the scenario was best 
described by the chain (Person 1→Person 2→Person 3) or 
common cause (Person 1←Person 2→Person 3).  
Results 
Seventy-one percent (20 out of 28) of the participants chose 
the chain structure in the chain condition, which is 
significantly above chance, p=.01. Seventy-five percent (21 
out of 28) of the participants chose the common cause 
structure in the common cause condition, p<.01. A 
McNemar test suggests that participants more often chose 
the chain structure in the chain condition than in the 
common cause condition, p<.01.  

Models 

Temporal Bayesian Model 
We propose a Bayesian model to demonstrate how it is 
possible to rationally infer X→Y or X←Y by observing 
variables over time. We define a state as the current values 
of X and Y (e.g, [x=1, y=0] condensed as [10]). A transition 
is two consecutive states (e.g., [10 to 11]). With two 
variables, there are four states and 16 types of transitions.  

The basic idea behind the model is that different causal 
structures (graphs) produce different types of transitions. It 
is possible to infer the probability of a graph g given the 
observed transitions t by using Bayes theorem to invert the 
probability of a graph producing the transitions. 

 
     (Eq. 1) 

 
We assume that any transition must be caused by an 

exogenous event that influenced one of observed variables. 
Given a particular state, there are three possible unobserved 
influences; an influence changing the state of X, an 
influence changing the state of Y, or simultaneous 
influences that change the states of both X and Y. We define 
ix, iy, and ixy, as the probability of these three influences and 
they are mutually exclusive and exhaustive; ix+iy+ixy=1. 
Because we have no reason to believe that X or Y is more 
likely to be influenced by external variables than the other, 
we assume that ix=iy, thus, ixy=1-2ix. We use “s” to refer to 
the causal strength, or the likelihood of an influence on a 
cause producing a change in the effect (assuming that the 
effect is not already at ceiling or floor).  

Here we focus on the likelihood of the graph X→Y 
producing a particular transition. Figure 2a presents the 
transitions probabilities for X→Y in a Markov chain; the 
corners are the four states and the arrows represent the 16 

                                                
example, Allison may have performed well on a test, which put her 
into a good mood, and spread to Bill.…" 

transitions with associated probabilities (also see Figure 2b). 
Suppose that the current state is [00]. The transition [00 to 

11] could arise if X is turned on and succeeds in turning on 
Y (ixs), or by simultaneous influences on X and Y (ixy). 
(Hereon transition probabilities are in parentheses.) The 
transition  [00 to 01] arises from an influence on Y (iy). An 
influence that changes the state of Y cannot transfer to X 
because Y is the effect, so this transition probability does 
not include s. The transition [00 to 10] arises from of an 
influence on X failing to produce a change in Y (ix(1-s)). As 
s becomes stronger, there would be fewer transitions when 
the cause fails to produce a change in the effect. 

Consider the initial state [01]. The transition [01 to 11] 
arises from an influence on X (ix). Because Y was already 
on (a "ceiling effect"), X cannot have any influence on Y, so 
the transition probability does not include s. The transition 
[01 to 00] arises from an influence on Y (iy). The transition 
[01 to 10] arises from simultaneous influences on X and Y 
(ixy). Since X and Y were both changed, the influence on X 
cannot have any influence on Y, so this probability does not 
include s. 

Note that given a particular causal structure and an initial 
state, there are only three possible transitions. From [00], 
there can be a transition to [01], [10], or [11], and these 
respective transition probabilities sum to 1. We treat 
transitions to the same state as a single trial (e.g., [00 to 00] 
as just [00]).3 Also, the transition probabilities with initial 
states [11] and [10] can be deduced from [00] and [01] 
discussed above; Transitions 1-8 in Figure 2b are the mirror 
image of Transitions 9-16. The transition probabilities for 
X←Y can be deduced from X→Y by switching X and Y. 

How can the model infer whether X→Y or X←Y 
produced the observed data? Consider a transition when Y 
changes by itself [e.g., 00 to 01] (Fig. 2b row 15). Under the 
structure X→Y, the likelihood of this transition is just the 
probability of an external influence on Y (iy). Under X←Y 
the likelihood is the probability of an influence on Y 
multiplied by the probability of Y failing to change X (iy(1-
s)). Effects are more likely to change by themselves than 
causes even if s is weak; iy> iy(1-s).4  

For the bidirectional graph X↔Y, X and Y change by 
themselves equally often. When the state of X is changed by 
an exogenous factor, it is no longer influenced by Y, so the 
transition probabilities are the same as X→Y. When the 
state of Y is changed by an external factor, the probabilities 
are the same as X←Y. For the graph in which X and Y are 
unrelated (no links), the likelihood of either X or Y 
changing by itself is the probability of an influence on that 

                                                
3 The reason is that in such cases there is no implied unobserved 

influence and these transitions do not discriminate between causal 
structures. Additionally, any temporally extended state could be 
parsed into infinitely many periods. Note that transitions to the 
same state did sometimes occur in the stimuli. 

4 If an effect is at ceiling or floor [e.g., 01 to 11] the transition 
has the same probability under X→Y and X←Y (see Figure 2b).  
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variable (ix or iy). If both change, the probability is ixy.  
 

 
 
Figure 2: Transition Probabilities. Note probabilities in bold 
highlight the transitions that are likely under a given graph. 

 

(Eq. 2) 
The full model is represented in Eq. 2. The likelihood (t|g) 

of a graph producing the observed sequence of transitions  
(“transition path") is the product of the probabilities of each 
of the individual transitions. This can be simplified as the 
product of the probabilities of the 16 transition types tm=1…16 
each raised to the power of the number of transitions of that 
type (N[tm]). There are only two parameters, s and ix (note 
that  iy=ix and ixy=1-2ix), which are integrated over. We 

assume that the prior distribution P(ix,s|g) is uniform.  
This model can be extended to three-variable causal 

structures using analogous reasoning. For brevity we do not 
explain all the transition probabilities, which can be 
obtained from the authors. For a brief example, consider a 
transition in which only X changes but Y and Z do not [000 
to 100]. Under graph X←Y→Z, this transition would arise 
from an unobserved influence on X (ix). But under graph 
X→Y→Z, this transition would require an influence on X 
that failed to transfer to Y (ix(1-s)), which is less likely.  

The model can also be extended to negative relations.5  

Heuristic Model to Learn Causal Direction 
It is possible that people use a heuristic approximation of 
the Bayesian model like the one presented here. For two 
variables X and Y, the model produces a score for the two 
links X→Y and X←Y; the higher the score, the more likely 
that the link exists. For each transition, the model runs the 
following function. If both variables changed (e.g., [00 to 
11]), then the model adds 1 to the scores for both links 
because this is evidence of some causal relationship. If one 
variable changed (e.g., [00 to 01]) then the model subtracts 
1 from the structure in which the variable that changed is the 
cause, in this case X←Y. The reason is that when Y 
changed to 1, X failed to change, which suggests that Y 
does not cause X. However, if one variable was already at 
ceiling or floor when the other changed [e.g., 01 to 00], then 
the scores are left unchanged. This model can be 
generalized for more variables by considering all links 
between all variables. In further work, we have 
demonstrated that the heuristic model approximates the 
Bayesian model in a wide variety of instances.6 

Model Simulations of Experiments 1 and 2 
Experiment 1 The heuristic model captured the essential 
difference between the two conditions. In the directional 
condition, X→Y had a higher score (7) than X←Y (3). In 
the non-directional condition, both graphs had a score of 2.  

We used the Bayesian model to calculate the relative 
likelihoods of the four two-variable graphs producing the 
observed transitions (Figure 1). Both the model and our 
participants inferred that X→Y was more likely to have 
produced the directional data than X←Y. Additionally, both 
our participants and the model choose X↔Y more in the 
non-directional condition than directional condition. The 

                                                
5 Even for negative relationships, when a cause changes it would 

usually produce a change in its effect, but an effect can change by 
itself. Suppose that X→Y and X=1, and Y=0. If an exogenous 
factor sets X=0, Y would likely change to 1. However, if an 
exogenous factor sets Y=1, X would likely stay at 1. 

6 One difference can occur for X→Y→Z (see also, Fernbach & 
Sloman, 2009). The heuristic model would infer that X directly 
influences Z. The Bayesian model could infer whether there is a 
direct link from X to Z or not by testing these two alternative 
structures. X and Z changing simultaneously without Y is evidence 
in favor of the direct link. If X and Z do not change together 
without Y changing, this suggests that there is no direct link.  

[11] [10]

[00][01]

iy
iy

iy
iy

ix

ix(1-s)

ix(1-s)

ix

ixs+ixy

ixs+ixy

ixy

ixy

b: Transition  Probabilities for the Four 
Structures with Two Variables

Trans.
Type x y x y X!Y X!Y No Link X"Y
1 1 1 1 1 0 0 0 0
2 1 1 1 0 iy i y(1-s) iy i y(1-s)
3 1 1 0 1 ix(1-s) ix ix i x(1-s)
4 1 1 0 0 ixs+ixy iys+ixy i xy ixs+iys+ixy

5 1 0 1 1 iy iy iy iy

6 1 0 1 0 0 0 0 0
7 1 0 0 1 ixy ixy i xy i xy
8 1 0 0 0 ix ix ix ix

9 0 1 1 1 ix ix ix ix

10 0 1 1 0 ixy ixy i xy i xy
11 0 1 0 1 0 0 0 0
12 0 1 0 0 iy iy iy iy

13 0 0 1 1 ixs+ixy iys+ixy i xy ixs+iys+ixy

14 0 0 1 0 ix(1-s) ix ix i x(1-s)
15 0 0 0 1 iy i y(1-s) iy i y(1-s)
16 0 0 0 0 0 0 0 0

GraphObserved Data
t t+1

a: Markov Chain with Transition Probabilities for X!Y 

1851



model does diverge from our participants in a number of 
ways. However, this is a rational model of the task, which 
need not coincide with human performance. Still, the model 
does predict the most critical difference between X→Y vs. 
X←Y. In further work we have examined how well the 
model fits individual participants’ inferences. 
Experiment 2 The heuristic model captured participants’ 
inferences. For the chain X→Y→Z, the model gave a higher 
score for X→Y (7) than X←Y (3) and a higher score for 
Y→Z (15) than Y←Z (7). The model also gave a higher 
score for X→Z (7) than X←Z (-5).  For the common cause 
condition X←Y→Z, the model gave higher scores for 
X←Y (7) than X→Y (1) and a higher score for Y→Z (7) 
than Y→Z (1). The model also had a somewhat higher score 
for X←Z (3) than X→Z (-1).  

The Bayesian model also predicted the results. To 
simulate Experiment 2, we computed the relative likelihood 
of X←Y→Z vs. X→Y→Z. In the chain condition, the 
likelihood of the chain was 99%, and in the common cause 
condition, the likelihood of the common cause was 98%.  

General Discussion 
We proposed a theory for how people learn directional 
causal relationships by observing states of variables change 
over time. Experiment 1 demonstrated that people infer that 
X influences Y when Y changed more frequently by itself 
than X, and sometimes X and Y changed simultaneously. 
Experiment 2 demonstrated that given three variables, if X 
changes by itself, people tend to infer X←Y→Z, but if X 
usually changes with Y and Z, people tend to infer 
X→Y→Z. We also proposed two models. The heuristic 
model embodies the belief that effects are more likely to 
change by themselves than causes. The Bayesian model 
proposes a rational reason why people might adopt this 
belief. The Bayesian model assumes that the states of 
variables are stable across time and only change if an 
exogenous variable produces the change. Consider X→Y. 
When an exogenous factor changes X, the larger the causal 
strength, the more likely Y will also change. But when an 
exogenous factor changes Y, it would be coincidental for X 
to change simultaneously. 

Previous research has demonstrated that people can learn 
causal structure from interventions, from atemporal 
observations (but cannot distinguish Markov-equivalent 
structures such as the structures used here), and from 
observations with delay (e.g., Lagnado & Sloman, 2006; 
Steyvers et al., 2003). There are likely many ways that 
people learn causal structures (Lagnado et al., 2007); the 
current strategy differs in two key ways from previous 
theories. First, most previous experiments have used 
punctate events that either happened or didn’t happen on a 
given trial, but the variables in the current experiments had 
temporally extended states. Second, in most previous 
research, the trials were temporally independent, often 
randomized. In contrast, the states of the variables in the 
current experiments may stay stable for periods of time 
(e.g., in the X→Y condition in Experiment 1, X stayed 

stable from Trial 1-5). When a relatively stable variable 
changes state, it is possible to make inferences about the 
causes of the change. For example, if Bill and Tim were 
both in a good mood and then both get into a bad mood at 
the same time, this is strong evidence that there is some 
causal relation between the two. Alternatively, if Bill gets 
into a bad mood but Tim stays in a good mood, this 
transition suggests that Bill’s mood does not influence 
Tim’s mood. Thus, the current theory focuses on transitions 
between states rather than individual trials. 

What implications should be drawn from the proposed 
models? Given that both models captured the basic 
asymmetry between causes and effects, and no other models 
can discriminate the difference, the current approaches 
appear promising. In other research, we have found that the 
models are highly correlated,6 suggesting that the heuristic 
model approximates a rational strategy. However, given that 
there are some differences between the rational model and 
participants’ responses, alternative heuristic models may 
provide insight to participants’ reasoning strategies. These 
models also suggest some future areas of exploration. Do 
people infer causal strength along with structure? Can 
people learn negative causal relationships from observing 
variables over time?5 And how can these models be 
generalized to multi-valued variables? 

These experiments demonstrate that there is rich structure 
in how events unfold over time, and people readily identify 
the structure in these temporal patterns. In the real world, 
variables often are stable or temporally dependent. For 
example, after one observes a dent in one’s car, the dent 
remains for a period of time until it gets fixed. Given the 
importance of causal reasoning and the fact that we 
experience the world temporally, the abilities demonstrated 
here may reflect common and vital learning processes.  
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