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Abstract 
Social science studies have shown that people are connected 
in a “small world.” In this network, people are connected with 
short path lengths and are highly clustered. To clarify how 
people in a small world acquire knowledge through 
communicative interactions, we constructed a multi-agent 
model and subsequently conducted a computer simulation. 
Results of the computer simulation showed that in a small 
world network, agents acquire correct and diverse knowledge. 
We discuss the adaptive nature of a small world network for 
knowledge acquisition. 
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Introduction 

Category learning is one of the most researched aspects of 
knowledge acquisition in cognitive science. In their studies, 
researchers often create experimental settings where 
participants learn (artificial) categories by receiving 
feedback. As a result, most research on category learning 
has clarified people’s knowledge acquisition through 
individual learning (e.g., Cohen & Lefebvre, 2005; 
Kruschke, 2008).  

However, in the real world people acquire knowledge not 
only through individual learning, but also through 
communication with others. Pentland (2007) argued that a 
research perspective involving social networks containing 
individuals is necessary to clarify human behaviors. 
Goldstone and Janssen (2005) emphasized the importance 
of research on collective behavior. For example, they point 
out that “interacting ants create colony architectures that no 
single ant intends,” and “populations of neurons create 
structured thought, permanent memories and adaptive 
responses that no neuron can comprehend by itself” (p.424). 
By implication, interactions among individuals produce 
unique processes of knowledge acquisition that are not 
clarified by research on micro processes of an individual’s 
knowledge acquisition.  

In this paper, we discuss knowledge transmission which 
occurs through interactions of individuals. This topic is very 
important in the consideration of knowledge acquisition, 
because people often communicate with each other in ways 
that result in learning (e.g., Mason, Conrey, & Smith, 2007). 
Research about knowledge transmission reveals not only the 
roles of collective behavior for knowledge transmission, but 
also individual cognitive aspects (e.g., Brighton, 2002; 

Kalish, Griffiths, & Lewandowsky, 2007; Griffiths & Kalish, 
2007; Smith, Kirby, & Brighton, 2003).  

In the present study, we focus on one of the most 
intriguing network structures of people’s connectivity, 
called the small world, and examined the role of this 
connectivity in knowledge transmission.  
 

Connections in a small world 
Social science researchers have shown that connectivity 
among individuals is not random, but has some regularity 
(although not complete). Milgram (1967) and Travers and 
Milgram (1969) empirically showed that people were 
connected with short path lengths (around six degrees of 
separation), which is known as the “small world 
phenomenon.” This is even more evident in recent research 
using email  and online relationships (Dodds, Muhamad, & 
Watts, 2003). Another feature of individual connectivity is 
highly clustered relationships, where one’s acquaintances 
also have a high probability of knowing each other (we call 
this probability clustering coefficient). Watts and Strogatz 
(1998) called a network having these two features a small 
world network. They proposed a very simple mathematical 
model representing the small world network: Imagine the 
network starting from a ring lattice with 1000 vertices, each 
connected to its 10 nearest neighbors by edges. Then, each 
edge is randomly rewired with probability p by 
disconnecting one of its vertices and connecting it to a 
randomly chosen vertex. Watts and Strogatz (1998) showed 
that this model replicates the small world network with 

Figure 1. Relationship between rewiring probability and 
path length and clustering coefficient. These plots are 
based on mean values over a sample of 100 different 
graphs. 
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intermediate values of p ( 1.001.0 ≤≤ p ; see Figure 1). 
Hereafter, we refer to the model of Watts and Strogatz 
(1998) as the WS model.  
 
Knowledge transmission in a small world 
network 
How is knowledge transmitted among individuals in a small 
world network? Cowan and Jonard (2004) used computer 
simulation to examine how effectively knowledge is 
transmitted by interactions among agents in the WS model. 
They found that agents in the small world network (p=0.09) 
showed the highest level of knowledge accumulation. 

Cowan and Jonard (2004) were mainly interested in 
economic issues such as innovation in knowledge and 
knowledge transmission from a quantitative perspective. 
However, from a cognitive science perspective, we are 
particularly interested in the quality of knowledge 
transmission in a small world network.  For example, 
cognitive studies of human memory have shown that 
individual memory mechanisms can produce incorrect 
knowledge (e.g., false memory, Roediger & McDermott, 
1995). The findings of Cowan and Jonard (2004) would 
presumably include the transmission of both correct and 
incorrect knowledge through interactions among agents in a 
small world network. Thus, agents in a small world network 
can “effectively” acquire both correct and incorrect 
knowledge.  

In the present study, we constructed a multi-agent model 
and subsequently conducted a computer simulation in order 
to examine how correct or incorrect knowledge is 
transmitted through interactions among agents in the WS 
model. 

 
 
 

Multi-agent network model for knowledge 
transmission 

Model 
Network We set up a network in which 1000 agents exist. 
The connectivity of the agents was represented using the 
WS model. In this network, each agent had 10 edges for 
nearest neighbors when the probability of rewiring was zero. 
Thus the two parameters, the number of vertices and the 
number of edges for each vertex, were 1000 and 10, 
respectively. In order to represent various networks, from 
regular to random networks, we constructed eight networks, 
using eight values of rewiring probability: 0, 0.01, 0.04, 
0.07, 0.1, 0.4, 0.7, and 1.  
Knowledge Each agent learns 100 objects. We assumed that 
agents have three discrete knowledge states, Scorrect, Sincorrect, 
and Smissing for each object. Scorrect and Sincorrect represent 
opposite ideas about an object. We defined Scorrect and 
Sincorrect as the correct and incorrect knowledge states, 
respectively, according to actual fact. Smissing represented the 
state where agents have no ideas about an object. For 
example, imagine the question, “Are there any direct flights 
from Tokyo to Buenos Aires?” The following three states 
are assumed for this question. 

Scorrect: “There are no direct flights.” 
Sincorrect: “There are direct flights.” 
Smissing: “I have no idea.” 
Cognitive features of agents Each agent had the following 
two cognitive features. First, the default knowledge of each 
agent was set as follows. The number of Scorrect of 100 
objects was determined by random sampling from a normal 
distribution, N(10, 52) for each agent. The number of Sincorrect 
was determined by random sampling from a normal 
distribution, N(9, 52) for each agent. Hence, at first, an agent 
had 10 Scorrect, 9 Sincorrect, and 81 Smissing for 100 objects on 
average. Second, each agent was assumed to have a limit on 
the number of objects to acquire. This limit was determined 
by random sampling from a normal distribution, N(80, 102) 
for each agent. Therefore, each agent could have a total of 
80 Scorrect and Sincorrect out of 100 objects on average. If the 
number of knowledge states of Scorrect and Sincorrect exceeded 
the limit, then one of objects whose knowledge state was 
Scorrect or Sincorrect was randomly chosen and changed into 
Smissing. 
Communication We assumed that each of the knowledge 
states for the 100 objects is revised through communication 
between two agents. In particular, we assumed that the 
agents calculate their degrees of confidence for the 
knowledge states, and stochastically revise their knowledge 
states using their degrees of confidence.  

The three knowledge states are represented by three 
values; Scorrect, Sincorrect, and Smissing equal 1, 0, and 0.5, 
respectively. Let i and j denote agents who communicate 
with each other, and kim and kjm denote knowledge states that 
i and j have for object m. When agent i communicates with 
agent j about object m, i and j respectively calculate their 
continuous degrees of confidence about object m, Confim, 
Confjm, based on the following equations: 

 
( ) jm

t
iim

t
iim kkConf imim 11.011.01 ++ +−= αα                         (1) 

 
( ) im

t
jjm

t
jjm kkConf jmjm 11.011.01 ++ +−= αα                         (2) 

 
The parameters, 

iα and
jα , represent weight for knowledge 

state in calculating Confim and Confjm. For example, when 
5.0>iα , agent i is influenced by agent j’s knowledge state 

more than agent i‘s knowledge state. When 5.0<iα , agent i 
is influenced by agent i’s knowledge state more than agent 
j‘s knowledge state. When 5.0=iα , agent i is equally 
influenced by agents i and j ’s knowledge states. Hence this 
parameter represents psychological trait of agents on 
strength of influence by other agents. 

iα and 
jα are 

determined by random sampling from a normal distribution, 
N(0.5, 0.12); and tim and tjm reflect the number of 
communications on object m. In particular, tim and tjm start at 
0 and are updated by 1 after each communication.  

Based on the calculated Confim and Confjm, agents i and j 
stochastically update knowledge states for m. Table 1 shows 
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probabilities of i’s knowledge update of object m into Scorrect, 
Sincorrect, or Smissing based on Confim

 1.  
Figure 2 shows the relationship among tim, 

iα , and Confim 
when agent i (kim=1, knowledge state is Scorrect) 
communicates with agent j (kjm=0, knowledge state is 
Sincorrect). In this situation, these two agents have conflicting 
knowledge states. Confim is affected by j’s knowledge state 
when tim takes a small value. When tim equals 0 (i.e., agent i 
has not had communication with other agents about object 
m), the knowledge state is likely to shift into Smissing. For 
example, when 5.0=iα  (i.e., agent i weights kim and kjm 

equally in calculating Confim), i’s knowledge state shifts into 
Smissing. However, as tim takes a larger value, Confim is not 
affected by j’s knowledge state. This control represents 
cognitive processes where the knowledge state is flexible at 
first, but becomes gradually fixed and unlikely to change 
through communications.  
 
Table 1: Probabilities of i’s knowledge update of object m 
into Scorrect, Sincorrect, or Smissing based on Confim. 

 Scorrect Smissing Sincorrect 
Confim >0.5 Confim 1- Confim 0 
Confim =0.5 0 1 0 
Confim <0.5 0 Confim 1- Confim 

 
 

 
Figure 2. Relationship among tim, 

iα , and Confim. This figure 
shows the relationship when kim and kjm are 1 and 0, 
respectively.  
 

                                                           
1 We assume that the discrete variables (i.e., kim or kjm) correspond 
to behaviors in communication (i.e., the content that agents convey 
in communication), and that the continuous variables (i.e., Confim 
or Confjm) correspond to latent, psychological degrees of 
confidence on object m.  

Overview of simulation  
We define one communication with four steps. Table 2 
shows the outline of the four steps. 
One period is defined as 2000 communications. For each 
simulation, 3000 periods of 2000 communications were 
conducted at least. From period r ( 3000≥r ), we calculated 
the following convergence criterion, CCr. 

∑
−=

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

r

rr r

r
r CN

CNCC
999

11                                                                   (2) 

rr

r
r IKSCKS

CKSCN
+

=                                                                       (3) 

where CKSr and IKSr denote numbers of Scorrect and Sincorrect 
knowledge states for 1000 agents at period r. Thus CNr 
represents relative proportion of Scorrect to Sincorrect in period r. 
In principle, CNr does not equal to CNr-1 because there is a 
possibility in every communication that knowledge states of 
communicating agents change. When CNr is increasing 
through periods, CCr will deviate from zero and take 
positive value because CNr-1/CNr tend take less than one. In 
contrast, when CNr is decreasing through periods, CCr will 
deviate from zero and take negative value because CNr-

1/CNr tend take more than one. These two patterns suggest 
that numbers of Scorrect and Sincorrect do not converge. When 
CNr fluctuates randomly, CCr will approach zero, 
suggesting that numbers of Scorrect and Sincorrect have 
converged. According to these features of CCr, when CCr 
meets the following condition, we assumed that CNr has 
converged at period r. 

001.0001.0 <<− rCC                                                                    (4) 
We conducted 30 simulations for each of the eight networks. 
 

Table 2. Four steps of one communication 
First step: 
A pair of connected agents, i and j, is determined from a network. 
Second step: 
Object m is determined from 100 objects.  
Third step:  
Agents i and j calculate their degrees of confidence Confim and 
Confjm, respectively. 
Fourth step: 
Based on the calculated Confim and Confjm, agents i and j update 
their knowledge state kim and kjm, respectively. 

 
Results and discussion 

We shall discuss following two points about acquired 
knowledge; correctness, and diversity. 
 

 
 

Correctness 
As to the correctness of acquired knowledge, we examined 
CNr that can be assumed to represent converged correctness 
of knowledge state.  

Figure 3 shows the relationship between probability of 
rewiring and CNr. CNr tends to increase as a network 
becomes random. However, increase of CNr is diminishing 
after p>0.1. Increase of CNr between p=0.01 and p=0.1 was 
about 0.1 (0.543-0.643). In contrast, that between p=0.1 and 
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p=1 was about 0.04 (0.643-0.688). Figure 1 shows that path 
lengths substantially become shorter as probability of 
rewiring increases until p=0.1. Thus, this relationship 
between path lengths and CNr implies that path length 
influences CNr in a network. 

Cowan and Jonard (2004) showed that agents in a small 
world network (i.e., p=0.09) could achieve the maximum 
level of knowledge accumulation. Results of our simulations 
showed that agents in the random world network (i.e., p=1) 
could achieve correct knowledge at the maximum level. 
However, the value of CNr in p=0.1 is closed to CNr in p=1, 
suggesting that agents in a small world network could 
acquire correct knowledge.  

Our simulation architecture mainly differs from Cowan 
and Jonard (2004) in the following two ways. First, the 
criteria of learning (i.e., knowledge accumulation or 
correctness of knowledge) differed. Second, the algorithms 
of communication between agents differed. Therefore, our 
simulation and Cowan and Jonard (2004) basically 
examined different aspects of knowledge acquisition. In 
common between our simulation and that of Cowan and 
Jonard (2004) is the network in which the agents are set. 
Therefore, our results and those of Cowan and Jonard 
(2004) indicate that the network structure among agents 
plays important roles in knowledge acquisition, irrespective 
of the criteria of learning (i.e., quantity or quality of 
knowledge) and the algorithm of communications.  

 
Figure 3. Relationship between rewiring probability and 
CNr. Error bars denote 95% confidence interval. 
 
 

Diversity of acquired knowledge 
Next, we analyze acquired knowledge from different 
perspective. So far, our analyses have been based on each 
agent’s acquired knowledge, and found that each agent 
acquired Scorrects and Sincorrects for 100 objects after period r 
in which CCr met the criterion of equation (4). These results 

 

 

  

 
Figure 4. Proportions of Scorrect, Sincorrect, and Smissing for 
each of 100 objects. Each figure has 100 rows, denoting 
each of 100 objects. Blue, red, and white areas in each 
row illustrate proportions of Scorrect, Sincorrect, and Smissing. 
These are one of results of 30 simulations for each 
network. Each tendency of the 8 networks shown in 
Figure 5 was almost identical to results of the other 29 
simulations.  
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raise another question about distributions of Scorrect and 
Sincorrect for each of 100 objects. There are two possibilities 
about distributions of Scorrect and Sincorrect for each object. The 
first possibility is that all agents have the same knowledge 
state. For example, all agents have Scorrect for some objects 
and Sinorrect for others. In this case, it follows that objects do 
not have diversity in that all agent have the same knowledge 
state. The second possibility is that agents have different 
knowledge states for a single object. In this case, objects 
have diversity in that opposing knowledge states exist. Here 
we examine distributions of Scorrect and Sincorrect for each of 
100 objects. We calculated proportions of Scorrect, Sincorrect, 
and Smissing for each of 100 objects.  

Figure 4 illustrate these proportions for 8 networks. When 
p value is 0, 0.01, or 0.04, 0.07, and 0.1, each object 
contained Scorrect, Sincorrect. This tendency was not observed 
when p>0.1. Although most objects contained only Scorrect, 
and a few objects contained Sincorrect, there were few objects 
that contained both Scorrect, and Sincorrect.  

Note that diversity is basically correlated with correctness. 
If an object has diversity, it means that Scorrect and Sincorrect 
are equally likely to be acquired by agents for the object. 
That is, there is trade-off relationship between correctness 
and diversity. We examined the relationship between 
correctness and diversity.  

In order to examine this issue, we quantified the diversity 
of acquired knowledge (Div) using following equation: 

( )∑
=

−−=
100

1
22 loglog

100
1

m
mmmm iiccDiv                  (3) 

where cm  denotes the relative proportion of Scorrect  to Sincorrect 
for object m, and im  denotes the relative proportion of 

Sincorrect to Scorrect (i.e., cm+im=1). Thus the equation 
corresponds to the calculation of mean entropy among the 
100 objects, using cm and im. Figure 5 shows the relationship 
between CNr and Div. As discussed above, CNr and Div 
were correlated. Note that when p=0.1, Div took higher 
values than when p=0.4, 0.7, and 1. However, values of CN 
were analogous when p=0.1, 0.2, 0.7, and 1 (see Figure 4).  

Therefore, the difference of acquired knowledge between 
networks of 1.0≥p  relates to the diversity of the acquired 
knowledge. Although the correctness of the acquired 
knowledge was analogous among networks of 1.0≥p , the 
diversity of the acquired knowledge was quite different. 
Acquired knowledge showed some diversity when p=0.1 
and this result was not observed when p>0.1. According to 
the WS model, this difference seems to derive from the 
clustering coefficients (see Figure 1). The clustering 
coefficients are generally high when 1.0≤p . However, the 
clustering coefficients dramatically drop when p>0.1. This 
boundary between high and low clustering coefficients 
around p=0.1 seems to produce the difference of diversity in 
acquired knowledge between networks.  

In the real world, people can usually have contradicting 
knowledge states for one object. Individual characteristics, 
such as personality or intelligence should produce such 
contradicting knowledge states. We do not deny this 
argument. However, the findings in the present study 
suggest that network structure, in particular cluster of 
individuals, also plays very important roles in producing 
contradicting knowledge states. 

 

Figure 5. Relationship between CNr and Div. The curve represents the maximum Div predicted from CNr 
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General discussion 
In this paper, we examined how correct or incorrect 
knowledge is transmitted in the WS model by using 
computer simulation. In particular, we focused on a small 
world network, which is characterized by short path lengths 
and high clustering coefficients (Watts & Strogatz, 1998). 
We found that agents effectively acquired correct 
knowledge through communicative interactions in the small 
world network, which is regarded as the representation of 
people’s connectivity in the real world (Dodds Muhamad, & 
Watts, 2003; Milgram, 1967; Travers & Milgram, 1969). 

Cowan and Jonard (2004) showed that agents in a small 
world network effectively accumulated knowledge through 
communicative interactions. Hence these findings suggest 
that a small world network is an adaptive structure in that 
knowledge can be transmitted effectively and correctly. We 
also found that acquired knowledge in the small world 
network has some diversity, which would be consistent with 
the real world fact that people can have different knowledge 
states for an identical object. 

The present study shows that interactions among 
individuals play important roles in knowledge acquisition. 
We do not claim that network structures suffice to explain 
human cognition. However, some previous studies have also 
shown that interactions between individuals can explain the 
knowledge structures that people possess (e.g., Brighton, 
2002; Griffiths & Kalish, 2007; Smith, Kirby, & Brighton, 
2003). Hence, research about human cognition from the 
macro and social network level can make contributions for 
clarifying not only interactions among individuals, but also 
individual cognitive processes.  
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