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Abstract

Social science studies have shown that people are connected
in a “small world.” In this network, people are connected with
short path lengths and are highly clustered. To clarify how
people in a small world acquire knowledge through
communicative interactions, we constructed a multi-agent
model and subsequently conducted a computer simulation.
Results of the computer simulation showed that in a small
world network, agents acquire correct and diverse knowledge.
We discuss the adaptive nature of a small world network for
knowledge acquisition.
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Introduction

Category learning is one of the most researched aspects of
knowledge acquisition in cognitive science. In their studies,
researchers often create experimental settings where
participants learn (artificial) categories by receiving
feedback. As a result, most research on category learning
has clarified people’s knowledge acquisition through
individual learning (e.g., Cohen & Lefebvre, 2005;
Kruschke, 2008).

However, in the real world people acquire knowledge not
only through individual learning, but also through
communication with others. Pentland (2007) argued that a
research perspective involving social networks containing
individuals is necessary to clarify human behaviors.
Goldstone and Janssen (2005) emphasized the importance
of research on collective behavior. For example, they point
out that “interacting ants create colony architectures that no
single ant intends,” and “populations of neurons create
structured thought, permanent memories and adaptive
responses that no neuron can comprehend by itself” (p.424).
By implication, interactions among individuals produce
unique processes of knowledge acquisition that are not
clarified by research on micro processes of an individual’s
knowledge acquisition.

In this paper, we discuss knowledge transmission which
occurs through interactions of individuals. This topic is very
important in the consideration of knowledge acquisition,
because people often communicate with each other in ways
that result in learning (e.g., Mason, Conrey, & Smith, 2007).
Research about knowledge transmission reveals not only the
roles of collective behavior for knowledge transmission, but
also individual cognitive aspects (e.g., Brighton, 2002;

Kalish, Griffiths, & Lewandowsky, 2007; Griffiths & Kalish,
2007; Smith, Kirby, & Brighton, 2003).

In the present study, we focus on one of the most
intriguing network structures of people’s connectivity,
called the small world, and examined the role of this
connectivity in knowledge transmission.

Connections in a small world
Social science researchers have shown that connectivity
among individuals is not random, but has some regularity
(although not complete). Milgram (1967) and Travers and
Milgram (1969) empirically showed that people were
connected with short path lengths (around six degrees of
separation), which is known as the “small world
phenomenon.” This is even more evident in recent research
using email and online relationships (Dodds, Muhamad, &
Watts, 2003). Another feature of individual connectivity is
highly clustered relationships, where one’s acquaintances
also have a high probability of knowing each other (we call
this probability clustering coefficient). Watts and Strogatz
(1998) called a network having these two features a small
world network. They proposed a very simple mathematical
model representing the small world network: Imagine the
network starting from a ring lattice with 1000 vertices, each
connected to its 10 nearest neighbors by edges. Then, each
edge is randomly rewired with probability p by
disconnecting one of its vertices and connecting it to a
randomly chosen vertex. Watts and Strogatz (1998) showed
that this model replicates the small world network with
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Figure 1. Relationship between rewiring probability and
path length and clustering coefficient. These plots are
based on mean values over a sample of 100 different
graphs.
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intermediate values of p (0.01<p<0.1; see Figure 1).

Hereafter, we refer to the model of Watts and Strogatz
(1998) as the WS model.

Knowledge transmission in a small world

network

How is knowledge transmitted among individuals in a small
world network? Cowan and Jonard (2004) used computer
simulation to examine how effectively knowledge is
transmitted by interactions among agents in the WS model.
They found that agents in the small world network (p=0.09)
showed the highest level of knowledge accumulation.

Cowan and Jonard (2004) were mainly interested in
economic issues such as innovation in knowledge and
knowledge transmission from a quantitative perspective.
However, from a cognitive science perspective, we are
particularly interested in the quality of knowledge
transmission in a small world network. For example,
cognitive studies of human memory have shown that
individual memory mechanisms can produce incorrect
knowledge (e.g., false memory, Roediger & McDermott,
1995). The findings of Cowan and Jonard (2004) would
presumably include the transmission of both correct and
incorrect knowledge through interactions among agents in a
small world network. Thus, agents in a small world network
can “effectively” acquire both correct and incorrect
knowledge.

In the present study, we constructed a multi-agent model
and subsequently conducted a computer simulation in order
to examine how correct or incorrect knowledge is
transmitted through interactions among agents in the WS
model.

Multi-agent network model for knowledge
transmission

Model
Network We set up a network in which 1000 agents exist.
The connectivity of the agents was represented using the
WS model. In this network, each agent had 10 edges for
nearest neighbors when the probability of rewiring was zero.
Thus the two parameters, the number of vertices and the
number of edges for each vertex, were 1000 and 10,
respectively. In order to represent various networks, from
regular to random networks, we constructed eight networks,
using eight values of rewiring probability: 0, 0.01, 0.04,
0.07,0.1,0.4,0.7, and 1.
Knowledge Each agent learns 100 objects. We assumed that
agents have three discrete knowledge states, S.,.reci> Sincorrects
and Sgne for each object. Seorer and Sicopree: TEPrEsent
opposite ideas about an object. We defined S, and
Sincorrec: @S the correct and incorrect knowledge states,
respectively, according to actual fact. S, represented the
state where agents have no ideas about an object. For
example, imagine the question, “Are there any direct flights
from Tokyo to Buenos Aires?” The following three states
are assumed for this question.

Seorrect: “There are no direct flights.”

Sincorrecr: ““There are direct flights.”

Sissing: 1 have no idea.”

Cognitive features of agents Each agent had the following
two cognitive features. First, the default knowledge of each
agent was set as follows. The number of S.,...; of 100
objects was determined by random sampling from a normal
distribution, N(10, 52) for each agent. The number of S;,correcr
was determined by random sampling from a normal
distribution, N(9, 5%) for each agent. Hence, at first, an agent
had 10 Seorrects 9 Sincorrecs and 81 Syissing for 100 objects on
average. Second, each agent was assumed to have a limit on
the number of objects to acquire. This limit was determined
by random sampling from a normal distribution, N(80, 10?)
for each agent. Therefore, each agent could have a total of
80 Seorrecr and Sipcorrees OUt of 100 objects on average. If the
number of knowledge states of Sco e a0d Sipcorrees €xceeded
the limit, then one of objects whose knowledge state was
Seorrect OF Sincorreer Was randomly chosen and changed into
Smis.s‘ing~

Communication We assumed that each of the knowledge
states for the 100 objects is revised through communication
between two agents. In particular, we assumed that the
agents calculate their degrees of confidence for the
knowledge states, and stochastically revise their knowledge
states using their degrees of confidence.

The three knowledge states are represented by three
values; Scorrect» Sincorrecr: and Smissing equal 15 O’ and 05:
respectively. Let i and j denote agents who communicate
with each other, and ;,, and k;,, denote knowledge states that
i and j have for object m. When agent i communicates with
agent j about object m, i and j respectively calculate their
continuous degrees of confidence about object m, Conf;,,
Conf;,,, based on the following equations:

Conf, = (l_aio.u,,,,u )kim +(Z,»()'lt”"+lk. (1)

im Jm
012, +1 0.1¢,,, +1
Confjm = (1 —a; "’ )I(jm +a; Ky, @

The parameters, ¢, anda/, represent weight for knowledge

state in calculating Conf;, and Conf;,. For example, when
a, > 0.5, agent i is influenced by agent j’s knowledge state

more than agent i‘s knowledge state. When o < 0.5, agent i

is influenced by agent i’s knowledge state more than agent
J‘s knowledge state. When o —0.5, agent i is equally

influenced by agents i and j ’s knowledge states. Hence this
parameter represents psychological trait of agents on
strength of influence by other agents. o and a, are

determined by random sampling from a normal distribution,
N(.5, 0.12); and t, and ¢, reflect the number of
communications on object m. In particular, #;,, and ¢, start at
0 and are updated by 1 after each communication.

Based on the calculated Conf;, and Conf;,,, agents i and j
stochastically update knowledge states for m. Table 1 shows
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probabilities of i’s knowledge update of object m into Scorecrs
Sinwrrect: or Smixxing based on COi’lﬁm 1-
Figure 2 shows the relationship among ¢, a, and Conf;,

when agent i (k;,=1, knowledge state is S.orecr)
communicates with agent j (k;,=0, knowledge state is
Sincorrec)- In this situation, these two agents have conflicting
knowledge states. Conf;, is affected by j’s knowledge state
when ¢, takes a small value. When ¢, equals 0 (i.e., agent i
has not had communication with other agents about object
m), the knowledge state is likely to shift into S,sine. For
example, when a, =05 (i.e., agent i weights k;, and k;,

equally in calculating Conf;,), i’s knowledge state shifts into
Swissing- However, as t;,, takes a larger value, Conf;, is not
affected by j’s knowledge state. This control represents
cognitive processes where the knowledge state is flexible at
first, but becomes gradually fixed and unlikely to change
through communications.

Table 1: Probabilities of i’s knowledge update of object m
il’ltO Scorrects Sincorrecta or Smissing based on COi’lﬁm.

Swrrect Smissing Sim‘orrect
Conf;,, >0.5 Conf, 1- Conf;,, 0
Conf,, =0.5 0 1 0
Conf;,, <0.5 0 Conf;y, 1- Conf;,
o
=38
Yol
N~
=)
Eq
§3 [
1] o
o]
S S
o
o
S
o ! ! ! ! 1 !
0 10 20 30 40 50
tim

Figure 2. Relationship among ¢, a; and Conf;,,. This figure

shows the relationship when £k, and k;, are 1 and O,
respectively.

' We assume that the discrete variables (i.e., k;, or kj») correspond
to behaviors in communication (i.e., the content that agents convey
in communication), and that the continuous variables (i.e., Conf,,
or Conf;,) correspond to latent, psychological degrees of
confidence on object m.

Overview of simulation
We define one communication with four steps. Table 2
shows the outline of the four steps.
One period is defined as 2000 communications. For each
simulation, 3000 periods of 2000 communications were
conducted at least. From period r (# >3000), we calculated
the following convergence criterion, CC,.

e @)
N - CKS, ()

CKS, +IKS,

where CKS, and /KS, denote numbers of S, cc; and Sipcorrect
knowledge states for 1000 agents at period r. Thus CN,
represents relative proportion of S.o,recs t0 Sincorree: I period 7.
In principle, CN, does not equal to CN,.; because there is a
possibility in every communication that knowledge states of
communicating agents change. When CN, is increasing
through periods, CC, will deviate from zero and take
positive value because CN,.;/CN, tend take less than one. In
contrast, when CN, is decreasing through periods, CC, will
deviate from zero and take negative value because CN,.
//CN, tend take more than one. These two patterns suggest
that numbers of S.pecr aNd Sipcorree: d0 NOt converge. When
CN, fluctuates randomly, CC, will approach zero,
suggesting that numbers of S.peer and Sicoreer have
converged. According to these features of CC,, when CC,
meets the following condition, we assumed that CN, has
converged at period 7.
-0.001 < CC, <0.001 C))
We conducted 30 simulations for each of the eight networks.

Table 2. Four steps of one communication

First step:
A pair of connected agents, i and j, is determined from a network.

Second step:
Object m is determined from 100 objects.

Third step:
Agents i and j calculate their degrees of confidence Conf;, and
Conf,,, respectively.

Fourth step:
Based on the calculated Conf;, and Conf;,, agents i and j update
their knowledge state k;, and k;,, respectively.

Results and discussion
We shall discuss following two points about acquired
knowledge; correctness, and diversity.

Correctness

As to the correctness of acquired knowledge, we examined
CN, that can be assumed to represent converged correctness
of knowledge state.

Figure 3 shows the relationship between probability of
rewiring and CN,. CN, tends to increase as a network
becomes random. However, increase of CN, is diminishing
after p>0.1. Increase of CN, between p=0.01 and p=0.1 was
about 0.1 (0.543-0.643). In contrast, that between p=0.1 and
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p=1 was about 0.04 (0.643-0.688). Figure 1 shows that path
lengths substantially become shorter as probability of
rewiring increases until p=0.1. Thus, this relationship
between path lengths and CN, implies that path length
influences CN, in a network.

Cowan and Jonard (2004) showed that agents in a small
world network (i.e., p=0.09) could achieve the maximum
level of knowledge accumulation. Results of our simulations
showed that agents in the random world network (i.e., p=1)
could achieve correct knowledge at the maximum level.
However, the value of CN, in p=0.1 is closed to CN, in p=1,
suggesting that agents in a small world network could
acquire correct knowledge.

Our simulation architecture mainly differs from Cowan
and Jonard (2004) in the following two ways. First, the
criteria of learning (i.e., knowledge accumulation or
correctness of knowledge) differed. Second, the algorithms
of communication between agents differed. Therefore, our
simulation and Cowan and Jonard (2004) basically
examined different aspects of knowledge acquisition. In
common between our simulation and that of Cowan and
Jonard (2004) is the network in which the agents are set.
Therefore, our results and those of Cowan and Jonard
(2004) indicate that the network structure among agents
plays important roles in knowledge acquisition, irrespective
of the criteria of learning (i.e., quantity or quality of
knowledge) and the algorithm of communications.

CNr
0.60 0.65 0.70 0.75

0.55
L

0.50
L

0 0.01 0.1
Probability of rewiring

Figure 3. Relationship between rewiring probability and
CN,. Error bars denote 95% confidence interval.

Diversity of acquired knowledge

Next, we analyze acquired knowledge from different
perspective. So far, our analyses have been based on each
agent’s acquired knowledge, and found that each agent
acquired S, eeS and Sj,comees for 100 objects after period r
in which CC, met the criterion of equation (4). These results

p=0

p=0.01

p=0.04 p=0.07

p=0.1

Figure 4. Proportions of Scomect, Sincorrects aMd Spigsing fOr
each of 100 objects. Each figure has 100 rows, denoting
each of 100 objects. Blue, red, and white areas in each
row illustrate proportions of Scorrect, Sincorrects ANd Spissing-
These are one of results of 30 simulations for each
network. Each tendency of the 8 networks shown in
Figure 5 was almost identical to results of the other 29
simulations.
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Figure 5. Relationship between CN, and Div. The curve represents the maximum Div predicted from CN,

raise another question about distributions of S,,..., and
Sincorrees TOr €ach of 100 objects. There are two possibilities
about distributions of S, ee; a0d Sjcoree: fOr €ach object. The
first possibility is that all agents have the same knowledge
state. For example, all agents have S,,,..., for some objects
and ;... for others. In this case, it follows that objects do
not have diversity in that all agent have the same knowledge
state. The second possibility is that agents have different
knowledge states for a single object. In this case, objects
have diversity in that opposing knowledge states exist. Here
we examine distributions of S, and Sjcomec: fOr each of
100 objects. We calculated proportions of Scorecrs Sincorreces
and S,;ing for each of 100 objects.

Figure 4 illustrate these proportions for 8 networks. When
p value is 0, 0.01, or 0.04, 0.07, and 0.1, each object
contained S.orec, Sincorree This tendency was not observed
when p>0.1. Although most objects contained only Seoecs
and a few objects contained S;,co-ecr, there were few objects
that contained both S_,,secr, ANd Sicorrect-

Note that diversity is basically correlated with correctness.
If an object has diversity, it means that S.,.e; and Sicorrect
are equally likely to be acquired by agents for the object.
That is, there is trade-off relationship between correctness
and diversity. We examined the relationship between
correctness and diversity.

In order to examine this issue, we quantified the diversity

of acquired knowledge (Div) using following equation:
100

Div =

100 75
where ¢,, denotes the relative proportion of S,,,ec; 10 Sincorrect
for object m, and i, denotes the relative proportion of

(_ cm 10g2 Cm - im 10g2 im) (3)

Sincorrect 10 Seomreer (€., Cpti=1). Thus the equation
corresponds to the calculation of mean entropy among the
100 objects, using c¢,, and i,,. Figure 5 shows the relationship
between CN, and Div. As discussed above, CN, and Div
were correlated. Note that when p=0.1, Div took higher
values than when p=0.4, 0.7, and 1. However, values of CN
were analogous when p=0.1, 0.2, 0.7, and 1 (see Figure 4).
Therefore, the difference of acquired knowledge between
networks of , > 0.1 relates to the diversity of the acquired

knowledge. Although the correctness of the acquired
knowledge was analogous among networks of p>0.1, the

diversity of the acquired knowledge was quite different.
Acquired knowledge showed some diversity when p=0.1
and this result was not observed when p>0.1. According to
the WS model, this difference seems to derive from the
clustering coefficients (see Figure 1). The clustering
coefficients are generally high when p <0.1. However, the

clustering coefficients dramatically drop when p>0.1. This
boundary between high and low clustering coefficients
around p=0.1 seems to produce the difference of diversity in
acquired knowledge between networks.

In the real world, people can usually have contradicting
knowledge states for one object. Individual characteristics,
such as personality or intelligence should produce such
contradicting knowledge states. We do not deny this
argument. However, the findings in the present study
suggest that network structure, in particular cluster of
individuals, also plays very important roles in producing
contradicting knowledge states.
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General discussion

In this paper, we examined how correct or incorrect
knowledge is transmitted in the WS model by using
computer simulation. In particular, we focused on a small
world network, which is characterized by short path lengths
and high clustering coefficients (Watts & Strogatz, 1998).
We found that agents effectively acquired correct
knowledge through communicative interactions in the small
world network, which is regarded as the representation of
people’s connectivity in the real world (Dodds Muhamad, &
Watts, 2003; Milgram, 1967; Travers & Milgram, 1969).

Cowan and Jonard (2004) showed that agents in a small
world network effectively accumulated knowledge through
communicative interactions. Hence these findings suggest
that a small world network is an adaptive structure in that
knowledge can be transmitted effectively and correctly. We
also found that acquired knowledge in the small world
network has some diversity, which would be consistent with
the real world fact that people can have different knowledge
states for an identical object.

The present study shows that interactions among
individuals play important roles in knowledge acquisition.
We do not claim that network structures suffice to explain
human cognition. However, some previous studies have also
shown that interactions between individuals can explain the
knowledge structures that people possess (e.g., Brighton,
2002; Griffiths & Kalish, 2007; Smith, Kirby, & Brighton,
2003). Hence, research about human cognition from the
macro and social network level can make contributions for
clarifying not only interactions among individuals, but also
individual cognitive processes.
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