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Abstract

A recent set of experiments of ours supported the notion of a
transition in experience from readiness-to-hand to unreadiness-to-
hand proposed by phenomenological philosopher Martin
Heidegger. They were also an experimental demonstration of an
extended cognitive system. We generated and then temporarily
disrupted an interaction- dominant system that spans a human
participant, a computer mouse, and a task performed on the
computer screen. Our claim that this system was interaction
dominant was based on the detection of 1/f noise at the hand-tool
interface. The inference from the presence of 1/f noise to the
presence of an interaction-dominant system is occasionally
disputed. Increasing evidence suggests that inference from
multifractality to interaction dominance is more certain than 1/f-
like scaling alone. In this paper, we reanalyze the data using the
wavelet transform modulus maxima method, showing that the
human-mouse system displays multifractality. This reinforces our
claims that the system is interaction dominant.
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Introduction

Background

Heidegger’s relevance to research in Al has been long
demonstrated conceptually (Dreyfus, 1979), however, little
to none has been done to incorporate his notions into
empirical studies. In a former set of published experiments
(see Dotov, Nie, & Chemero, 2010 for necessary details),
we provided evidence for the transition in experience of
tools from readiness-to-hand to unreadiness-to-hand as
proposed by Heidegger's phenomenological analysis of the
modes of being of tools.

When you are smoothly coping with a hammer that is
ready-to-hand, the ready-to-hand hammer recedes in your
experience, and your focus is on the task you are
completing. A key point here is that from Heidegger’s

perspective there is no need to presuppose that the place of
the bones and tissues of your hand in your experience while
working on a manual task is in any sense privileged relative
to the place of the other tools making the task space. Your
experience of the hammer is no different than the experience
of the hand with which you are wielding it. This has
inspired the hypothesis of extended cognition, i.e., the claim
that cognitive systems sometimes extend beyond the
biological body (van Gelder, 1995; Clark, 2008). Hammers
and other tools that are ready-to-hand are literally part of the
cognitive system. When a tool malfunctions, however, and
becomes unready-to-hand, it becomes the object of concern;
it is no longer part of the extended cognitive system, rather
it is the thing that that the cognitive system is concerned
with.

To demonstrate Heidegger’s proposed transition and an
extended cognitive system is to show that a human
participant and a tool together comprised an interaction-
dominant system. An interaction-dominant system (IDS) is
a softly assembled system in which any part can take or lose
the role of a functional unit of the system, depending upon
the richness of physical coupling. Interaction-dominant
dynamics can be contrasted with component-dominant
dynamics more characteristic of traditional cognitive
architectures (van Orden, Holden, and Turvey, 2003;
Holden, van Orden, and Turvey, 2009).

In component-dominant dynamics, behavior is the
product of a rigidly delineated architecture of modules, each
with pre-determined functions; in interaction-dominant
dynamics, on the other hand, coordinated processes alter
one another’s dynamics, with complex interactions
extending to the body’s periphery and, sometimes, beyond.
Simply put, when, as part of an experiment, a participant is
repeating a word, a portion of her bodily and neural
resources, along with environmental support structures,

1835


mailto:tony.chemero@fandm.edu

assemble themselves into a “word-naming device”. Since
such IDS exhibit variability described as 1/ noise, its
presence in an inventory of cognitive tasks is evidence that
cognition is the product of a system softly assembled by
virtue of interaction-dominant dynamics. Device assembly
as the product of interactions within and across the temporal
and spatial scales of elemental activity can account for the
1/ character of behavioral data. Meanwhile, assembly by
virtue of rigid components with predetermined roles and
fixed communication channels cannot easily explain 1/’
noise. Thus we can take the presence of a 1/’ long memory
process at the interface between body and tool as indicative
of a smoothly operating system spanning both body and
tool.

Related Work

The current paper is an extension of our previous work
where we generated a system that spans a human
participant, a computer mouse, and a task performed on the
computer screen. In Dotov, Nie, & Chemero, 2010, we
perturbed the functioning of the mouse temporarily during
performance of the experimental task in order to induce the
frustrated, unready-to-hand mode of experiencing tools. Our
claims to have generated a genuinely extended cognitive
system and to have demonstrated Heidegger's transition in
the laboratory setting were supported by analysis of the
scaling properties of the noisy time series.

Previously our major focus was on detecting long-range
correlation as indexed by the Hurst exponent, 5<H <1, a
characteristic of processes exhibiting 1/f-like scaling. We
hypothesized 1/f-like noise for a fluidly functioning tool
(indexing readiness-to-hand) and white noise when the tool
was being perturbed. Our logic can be represented
schematically using Figure 1. Here, the bond was
established such that 1/f noise is what the scientist observes
in any part of the extended participant-tool system while
Heidegger's concepts describe the participant's experience of
the situation. Importantly, the burden of determining what is
“in” and what is “outside” the system falls not on the
intuitive identification of the system's border with its skin
but on quantifying the richness of interaction among all
sections taking part in the task space.

Additionally, we used a second “probe” to get a hint of
the participants’ cognitive reorganization during the task.
By having participants count backwards by three in the
range of three-digit numbers while using the mouse we
could detect any significant shift of attention between the
two tasks; we expected that such shifts would coincide with

the perturbation, thus supporting the hypothesis that at this
point a new object of attention had emerged.
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Figure 1: A schematic of a cognitive device, delineated
using a border line, assembled by virtue of interaction-
dominant dynamics that accordingly results in 1/f-like noise
(C-D). In one case (A) the properly functioning tool
possesses the same richness of interaction as all other parts
of the fluidly assembled system and is therefore experienced
as ready-to-hand, while in the other case (B) some kind of
perturbation “impedes the flow”, impairing the richness of
interactions and thereby causing the tool to be experienced
as unready-to- hand.

As expected, along with the expected shift in attentional
resources during perturbation (i.e., slower counting) we
found long-range correlation in the hand-tool movements
with both proper mouse and the perturbed mouse, but the
scaling coefficient decreased significantly towards the white
noise level during the perturbation (see Figure 2). We
interpreted the two observed modes as readiness-to-hand
and its impoverished version, unreadiness-to-hand. We took
ourselves, therefore, as having demonstrated Heidegger’s
transition and as having induced a softly assembled,
extended cognitive system.
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Figure 2: Averaged scaling exponents from Experiment 1
along with counting rates from Experiment 2.
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Current Work

However, recent research has shown that 1/f-like noise
can result from a component-dominant system, so 1/f-like
noise is not sufficient to indicate that a system is interaction
dominant (Thornton & Gilden, 2005; Torre &
Wagenmakers, 2009). On the other hand, recent research
has also shown that multifractality is more sufficient as an
indicator that a system is interaction dominant (lhlen &
Vereijken, 2010). It has been shown that a single scaling
exponent is insufficient to characterize behaviors of some
noisy processes (Mandelbrot, 1986; lvanova & Ausloos,
1999; Ivanov, Amaral, Goldberger, Havlin, Rosenblum,
Struzik, & Stanley, 1999). For example, in the context of
self-regulated biological signals, healthy heart-beat was
shown to exhibit multifractal temporal scaling and the span
of Hurst exponent reduced during perturbation-like periods
such as congestive heart failure (Ivanov et al., 1999) and
certain medicated interferences with normal heart-beat
regulation (Amaral, lvanov, Aoyagi, Hidaka, Tomono,
Goldberger, Stanley, & Yamamoto, 2001) .

In this paper, we subjected the data from our previous
work (Dotov, Nie, & Chemero, 2010) to a necessary and
more rigorous reanalysis using wavelet transform modulus
maxima method. We attempted to show that the human-
mouse system displays multifractal scaling indexed by a
spectrum of local Hurst exponents, and, so, is based on
interaction-dominant dynamics in a stronger sense.

Method

Participants (N=6 in Experiment 1) were told that the
experiment was to investigate their motor control behaviors
by way of their performance on two simultaneous tasks —
one cognitive and one involving hand coordination with a
visual stimulus. They played a video game that asked them
to use a computer mouse to steer a target object to a
designated area on the screen while verbally counting
numbers backwards by three. To ensure participants’
capability of taking effective control over the target while
counting at the same time, the experimenter demonstrated
doing both tasks and allowed them to practice with no
mouse perturbation. Once sufficient practice trials were
guaranteed six experimental trials followed.

The computer game was designed so that its mechanics
resembles pole-balancing on the finger (Treffner & Kelso,
1999) where the mouse pointer acted as the point of contact
between finger and pole while the target object acted as the
projection of the center of mass of the pole onto the plane of
the open hand. The participant was seated at a desk with the
computer mouse and monitor. The virtual pole-balancing

game was played on a PC running a custom MATLAB
(Mathworks, Natick, MA) script, see Figure 3. The green
circle stands for the mouse pointer and is thus controlled
directly by the participant and the blue circle responds to the
green one based on the mapping. t... = t, + a(t, — p...) + by,
where p, t are vectors of the computer screen Cartesian
coordinates for the pointer and target objects, respectively, a
and b are experimenter-assigned parameters determined
during pilot trials, and the vector n is a noise term taken
from a pseudo-random uniform distribution. For each frame
the locations of the circles are calculated and then plotted on
the screen every 30 milliseconds. Approximately thirty
seconds into each trial, a perturbation in the mapping
between mouse movement and the pointer visible on the
monitor was induced in order to trigger the transition into
unreadiness-to-hand. Accordingly, the properly functioning
computer mouse and pointer played the role of Heidegger’s
ready-to-hand tool.

Experiment 2 (N=13) shared the same design with
Experiment 1 except that instead of capturing motion-data
by using an optical infrared system in a different lab we
audio-taped the counting task to obtain their counting rate.

Wavelet transform modulus maxima (WTMM)
A recent method of finding the distribution of the
generalized Hurst exponents of a singularly-behaving signal
uses wavelet transforms to locally analyze fluctuations of a
certain scale and remove unwanted trends that can result in
spurious results (Muzy, Bacry, & Arneodo, 1993). A
singularity is a discontinuity in the trajectory that makes it
impossible to be modeled locally using Taylor-expanded
polynomials with integer exponents and instead requires
fractional exponents. Identifying and quantifying these
singularities in a times series stands for a great deal of the
work accomplished in fractal analysis.

The first part of the method consists of sliding a selected
wavelet function across the original series and convolving
the two. This is a technique commonly used in signal-
processing as a form of a band-pass filter. We follow the
convention of using a derivative of the Gaussian function as
a kernel. The third derivative, as used in our case, is capable
of removing polynomial trends of up to a second order.

The time-scale decomposition of a signal is computed by
time-shifting and amplitude-rescaling by a factor a the
kernel wavelet. Convolving with a wavelet of a particular
amplitude effectively results in reducing the fluctuations of
the original time series to ones at a scale proportional to the
scaling of the wavelet. Finally, the modulus of the maxima
of the transform shows the location and strength of the

1837



singularities in the series and, thus, a partition function Z(a)
of the singularities for scale a is derived (Muzy et al., 1993).

The wavelet decomposition of a signal can be represented
visually by plotting the transformed signal in time versus
the scale of the kernel, see Figure 4. These plots will reveal
the singularities at a particular scale and for self-affine
signal these singularities will form a hierarchal structure of
connected lines while Z(a) will scale as a power-law with
respect to a.

The method described so far leaves us with a single
scaling parameter. In order to check for multifractality, we
need to “bias” the analysis towards fluctuations of a smaller
or larger scale. This is performed using the moment q.
Accordingly, we calculate Z,(a) using the gth powers of the
local maxima in the wavelet transform and then we arrive at
a spectrum of scaling exponents T(q), Z4(0) ~ ™. Negative
values of g will stress the scaling of small fluctuations
whereas positive g will stress large fluctuations (lvanov et
al., 1999) and when it is equal to two one can directly
calculate the Hurst exponent H given by DFA, the analysis
used in the previous study (Oswi € cimka, Kwapien, &
Drozdz, 2006). For a certain class of systems it has been
proven that the singularity spectrum h(q), the main target of
the analysis, is simply the derivative 1'(q) and, consequently,
a linear relation in the plot of the fractal spectrum 1(q)
versus ¢ (see Figure 5a) reveals a constant h(q) or
monofractal behavior of the signal, whereas decelerating
1(q) leads to a decreasing h(q) (see Figure 5b) and is the
result of multifractal behavior (Muzy et al., 1993).

A final measure that is needed is D(h;), the fractal
dimension of the set of zero-dimensional objects that are the
indexes of the original time series where one finds
singularities characterized by h; In the limit where the
original time series consists only of singularities of kind h,
their indexes form a continuous line, a one-dimensional
object and, hence, D(h) will be equal to unity. Here we can
derive D(h) theoretically from the wavelet (multi)fractal
spectrum 1(q) using the Legendre transform, D(h) = gh(q) -

7(q).
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Figure 3: The visual playground environment. A single
frame (a) captured during the course of a trial is shown and

visible inside it are the pen, the grey center, and blue and
green circles for the target and pointer objects, respectively.
Representative pointer and target object trajectories on the
screen from three-second excerpts with a normally behaving
(b) and impaired (c) mouse are portrayed.
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Figure 4: Using a representative 15-second section of a trial.
The raw acceleration data is shown (a) along with its time-
scale wavelet decomposition (b).

As a dependent measure in the current study we could
use equivalently the nonlinearity of 1(q) or the range of h(q).
We use the latter since it is of theoretical interest generally
and has also been used previously to address similar
questions as ours (Amaral et al., 2001; Struzik, Hayano,
Sakata, Kwak, & Yamamoto, 2004).
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Figure 5: For a representative trial the relevant functions
found from the three sections before, during, and after
perturbation are plotted: (a) the wavelet multifractal
spectrum as a function of moment g, (b) the corresponding
singularity exponents h as a function of moment g, and (c)
the fractal dimension of the singularity spectrum.

Results and Discussion

The average spread of the fractal spectrum hpax- himean Was
higher for the section before the perturbation (M=.236,
SD=.013) than for the one containing the perturbation
(M=.202, SD=.008) or the one following it (M=.199,
SD=.007). Our expectation based on the literature reviewed
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here was that in the case where the experiment had induced
an interaction-dominant system that included the mouse, the
perturbation would result in a narrowing of the multifractal
spectrum. This effect was supported. Furthermore, it lasted
well into the remaining of the trial, something we did not
predict, see Figure 6. This could be explained by the taxing
nature of the perturbation. Many participants reported that
the two tasks made for a rather taxing exercise, and in some
discarded trials participants were so absorbed by the pole-
balancing task and its perturbation that they completely
interrupted counting and forgot to resume after the
perturbation disappeared. Notice that the average counting
rate for a six-second block containing the perturbation is
close to zero (Figure 2).

A two-way Repeated Measures ANOVA was performed
with perturbation and trial number as factors. The main
effect of perturbation was significant, F(2, 10) = 4.22, p <.
05, * = .45, while the effect of trial was not significant, F(5,
25) = .73, p = .60. Therefore the possible interpretation of
the observed effect in terms of a function of time and
variables such as fatigue and learning was not supported.
The interaction between the two factors was not significant
either, F(10, 50) = .54, p = .86.

during after
Perturbation-Relative Order

before

Figure 6: Averages of the multifractal spectrum range scores
(Nmax- hmean) @s a function of perturbation-relative order.
Error bars are standard errors.

Multifractal analysis was adopted to better distinguish
between genuinely interaction-dominant systems and other
models that generate 1/f scaling; it also allowed behavior on
longer and larger scales that has an anti-persistent character
into the analysis. Liebovitch and Yang (1997) pointed out
that the characteristic cross-over scaling behavior of fractal
signals recorded from continuous biological motion is a
somewhat trivial feature of the experimental paradigm. The
significant mass of the body segments necessarily leads to
positive correlations over short intervals while the physical

constraints on the range of motion leads to negative
correlations at longer scales. In our results, the presence of
both positive and negative correlations in the signal is not
surprising given the frequently observed anti-persistent
character of biological limb motion at longer time scales
(Liebovitch & Yang, 1997), and the fact that here we use a
longer analysis window of 15 seconds. At the same time,
however, we cannot not reject the possibility that as in other
paradigms there are meaningful sources of scaling
exponents of the movement data in addition to such
features. The multifractal formalism is thus useful in our
study because it can reveal all exponents without
presupposing which scale of behavior is the relevant one
and allows the behavior to be viewed in its full complexity.

We wish to stress that the multifractal spectrum taken as
a whole supports the idea of an interaction-dominant system
and is hard to explain by alternative models. For this reason
it is more interesting to focus on it and changes induced by
perturbation rather than try to explain specific values of H
or identify the source of scaling for each and every part of
the parameter range. In this vein, our results support our
general hypothesis of an interaction-based coupling between
tool and user that leads them to becoming an interaction-
dominant system that operates smoothly before the
perturbation of the coupling and continues to function, albeit
less fluidly, during and after the perturbation.

Interestingly, according to the monofractal DFA analysis
H reverted relatively quickly to its pre-perturbation level
whereas a lasting effect of perturbation can only be seen in
the multifractal range of h; exponents. This pattern
resembles the aforementioned data regarding heart beat
dynamics in that only a multifractal analysis is subtle
enough to detect some cardiac conditions (lvanov et al.,
1999; Amaral et al., 2001).

The results of the wavelet transform modulus maxima
analysis showing that the behavior at the hand-mouse
interface displays not just 1/f scaling, but also
multifractality. This finding reinforces our interpretation of
the results from Dotov et al. (2010). The present, more
definitive, analysis confirms that the human-mouse system
is interaction-dominant. This confirms our claims that the
human-tool system is, for the duration of the trial, a single
cognitive system, providing direct, empirical support for the
hypothesis of extended cognition. The analysis also
confirms the demonstration of Heidegger’s proposed
transition from ready-to-hand to unready-to-hand. While the
participant is smoothly engaged in playing the video game,
the mouse is part of the system engaged in the task and is
experienced as ready-to-hand. The perturbation disrupts the
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activity of this interaction-dominant system, causing the
participant to experience the mouse as unready-to-hand.

References

Amaral, L. A, Ivanov, P. C., Aoyagi, N., Hidaka, I.,
Tomono, S., Goldberger, A. L., Stanley, H. E., &
Yamamoto, Y. (2001). Behavioral-independent
features of complex heartbeat dynamics. Physical Review
Letters, 86(26), 6026-6029.

Clark, A. (2008). Supersizing the mind: Embodiment,
action, and cognitive extension. New York, NY: Oxford
University Press.

Dotov D. G., Nie L., & Chemero, A. (2010). A
demonstration of the transition from ready-to-hand to
unready-to-hand. PLoS ONE 5(3): €9433.
doi:10.1371/journal.pone.0009433.

Dreyfus, H. (1979). What computers can't do. New York,
NY: Harper & Row.

Ihlen, E. A. F. & Vereijken, B. (2010). Interaction-dominant
dynamics in human cognition: beyond 1/fo fluctuation.
Journal of Experimental Psychology: General, 139(3),
436-463.

Ivanov, P. C., Amaral, L. A. N., Goldberger, A. L., Havlin,
S., Rosenblum, M. G., Struzik, Z., &Stanley, H. E.(1999).
Multifractality in human heartbeat dynamics. Nature, 399,
461-465.

Ivanova, K. & Ausloos, M. (1999). Low-order variability
Diagrams for short-range correlation evidence in financial
data: BGL-USD exchange rate, Dow Jones industrial
average, gold ounce price. Physica A: Statistical and
Theoretical Physics, 265(1), 279-291.

Liebovitch, L. S., & Yang, W. (1997). Transition from
persistent to antipersistent correlation in biological
systems. Physical Review E, 56(4), 4557-4566.

Mandelbrot. (1983). The Fractal geometry of nature.
NewYork, NY: W. H. Freeman. Muzy, J. F., Bacry, E., &
Arneodo, A. (1993). Multifractal formalism for fractal
signals: The structure-function approach versus the
wavelet-transform modulus-maxima method. Physical
Review E, 47, 875-884.

Oswiecimka, P., Kwapien, J., & Drozdz, S. (2006). Wavelet
versus detrended fluctuation analysis of multifractal
structures. Physics Review E, 74, 016103.

Thornton, T.L. & Gilden, D.L. (2005). Provenance of
correlations in psychological data. Psychonomic
Bulletin & Review, 12(3), 409-441.

Torre, K. & Wagenmakers, E.J. (2009). Theories and
models for 1/f* noise in human movement science.
Human Movement Science, 28(3), 297-318.

Treffner P. & Kelso, J.A.S. (1999). Dynamic encounters:
long memory during functional stabilization.Ecological
Psychology, 11, 103-138.

van Gelder, T. (1995). What might cognition be, if not
computation? The Journal of Philosophy, 92, 345-381.

1840



