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Abstract

How do young children connect number words to the
magnitudes they represent? Here, we test whether 5- to 7-
year-old children, like adults, use Structure Mappings (SM) to
link number words and approximate magnitudes. We show
that 6- and 7-year-olds’ number line estimates are recalibrated
in response to the distribution of numbers being estimated,
providing evidence for SM in these older children. We also
find that 5-year-olds show improved estimation performance
when given visual access to their previous estimates,
suggesting that, while these youngest children do not use SM
in some estimation tasks, they nonetheless understand the
structural relationship between the count list and approximate
magnitudes.
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Introduction

Beginning in infancy, humans can represent the
approximate numerical magnitude of sets using the
Approximate Number System, or ANS (for review, see
Dehaene, 1997). Upon learning the verbal count sequence,
children gain access to another way to store and manipulate
numerical information—the count list. The count list is a
symbolic number system that allows for the precise
representation of numerical quantities. These two systems
become linked to each other early in development: Children
in preschool and kindergarten provide bigger estimates for
larger numbers, indicating an ability to map number words
onto nonverbal numerical representations (Le Corre &
Carey, 2007; Lipton & Spelke, 2005; Barth, Starr, &
Sullivan, 2009). However, these early mappings are not
stable, and change over development. Accuracy on
estimation tasks improves with age, with counting ability,
and with explicit training (Siegler & Opfer, 2003; Lipton &
Spelke, 2005; Booth & Siegler, 2006; Le Corre & Carey,
2007; Ebersbach et al., 2008; Barth, et al., 2009; Mundy &
Gilmore, 2009; Siegler & Ramani, 2009; Thompson &
Opfer, 2010). However, while much is known about the
developmental trajectory of estimation ability, surprisingly
little is known about the learning mechanisms that children
use to construct and refine mappings between number words
and approximate magnitudes.

Recent research has argued that adults rely on at least two
distinct mechanisms for attaching number words to
magnitudes (see Sullivan & Barner, 2010, for review).
Associatively Learned Mappings (ALM) involve the
creation of item-by-item links between individual words and
magnitudes, resulting in many mutually independent
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mappings. Structure Mappings (SM), in contrast, support
estimation for larger numbers, and are formed by creating a
single link between the verbal and nonverbal number
systems on the basis of their shared structure (Gentner &
Namy, 2006; Carey, 2009; Gentner, 2010). In particular,
SM requires noticing the ordinal structure of each system —
e.g., that the word “fifty” comes later in the count sequence
than “forty”, and should therefore be used to label larger
sets. As a result, each number word mapped through SM
will be mapped in relation to all other mappings in the count
list. These two mechanisms make distinct predictions
regarding the effects of new learning experiences on
existing mappings. In the case of ALM, changes to the
mapping for one number word should have little effect on
the mappings of other words, since they are mapped
independently. For SM, in contrast, changes to any
individual mapping in the system should have consequences
for all other mappings.

Evidence for ALM comes from the developmental
literature, where it has been shown that young children learn
the referents of number words sequentially (Wynn, 1990),
and that even after learning the referents of many number
words, some children still fail to demonstrate a structural
knowledge of the relationship between the count list and
numerical magnitudes (Lipton & Spelke, 2005; Le Corre &
Carey, 2008; Barth et al., 2009). Additional evidence for
ALMs come from research on adults that has shown that
estimates for numerical magnitudes smaller than about 20
are not influenced by misleading feedback (Sullivan &
Barner, 2010).

Evidence for SM also comes from multiple lines of
research. First, several studies have shown that providing
adults with misleading feedback about an individual
mapping or about the range of magnitudes being tested
shifts estimation behavior for most of the number line, and
especially for large numbers (Izard & Dehaene, 2008;
Sullivan & Barner, 2010). This provides evidence that SM
guides the mappings of relatively large number words to
ANS representations of their referents. In the absence of
misleading feedback, adults’ patterns of estimation are also
influenced by the distribution of numbers being estimated
(Sullivan, Juhasz, Slattery, & Barth, in press), suggesting
that adults dynamically adjust their mappings in response to
the estimates they have already made. There is also some
evidence that children use structure mappings by at least the
age of 7. Thompson and Opfer (2010) found that 2™ graders
can analogically extend knowledge about numbers with a
familiar range (e.g., 1-100) to perform estimates for
numbers within an unfamiliar ranges (e.g., 1-10,000). Taken
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together, these studies provide evidence that adults, and
possibly children, deploy structure mappings when relating
the verbal number system to nonverbally presented
numerosities.

Despite this evidence that adults and older children use
SMs, little is known about how such mappings might be
acquired. One possibility is that early estimation abilities are
not supported by SMs—children’s success (or failure) at
estimation tasks may be driven primarily by the strength of
their ALMs. By this view, SMs may be learned gradually
over time and supported by a small set of ALMs. Another
possibility, however, is that even very young children use
SM, allowing them to make internally consistent (ordinal),
though perhaps inaccurate, estimates. Finally, it possible
that young children are able to use structure to guide
estimation, but do not do so in standard experimental tasks,
due to the memory and processing requirements of the
measures typically used. In typical estimation tasks, children
provide estimates one-at-a-time, without access to previous
responses (Siegler & Opfer, 2003; Lipton & Spelke, 2005;
Booth & Siegler, 2006; Le Corre & Carey, 2007; Ebersbach
et al., 2008; Barth, et al., 2009; Mundy & Gilmore, 2009;
Siegler & Ramani, 2009; Thompson & Opfer, 2010). For
example, in some tasks children view arrays of dots and are
asked to estimate how many there are (Lipton & Spelke,
2005; Le Corre & Carey, 2008; Barth et al., 2009; Mundy &
Gilmore, 2009). In other studies, they are shown a line with
endpoints marked (e.g., 0 and 100) and are asked to estimate
where a number within this range (e.g., 23) belongs on the
line (Booth & Siegler, 2006; Ebersbach et al., 2008; Siegler
& Ramani, 2009; Thompson & Opfer, 2010). In both types
of estimation paradigm, children must keep track of
previous responses and how these relate to the current trial
in order to use SM. This raises the possibility that children
only reliably use SM in situations where previous estimates
remain perceptually available (and, as a result, that
children’s number word mapping abilities may have
previously been underestimated due to the use of tasks
requiring large memory components). Consistent with this,
Thompson and Opfer report that memory for number words
predicts individual differences in estimation performance
(Thompson & Opfer, 2011).

To address these possibilities, we conducted a study of
number line estimation with the aim of answering three
questions about the developmental trajectory of number
word learning and the learning mechanisms that guide
number-word mappings. First, we asked whether children’s
estimates, like adults’, are affected by the distribution of
numbers they are asked to estimate. If children use ALM to
guide their estimates, then their responses should be
independent of one another, and thus should not be affected
by differences between distributions of numbers being
estimated. If they use SM, however, then this type of
distributional information should affect their responses,
since previous estimates are used to calibrate future
estimates. While previous studies have demonstrated that
estimation ability improves greatly between the ages of five

and seven (e.g., Siegler & Opfer, 2003), the learning
mechanisms guiding this development are still unclear. By
determining whether children’s estimation behavior is
affected by the distribution of numbers being estimated, we
can assess the relative roles of ALM and SM in supporting
estimation throughout development. Second, we explored
the possibility that young children might have mappings
between number words and magnitudes, but that the
memory and processing demands of traditional estimation
tasks might prevent or dissuade them from accurately
deploying these mappings. To assess this possibility, we
manipulated whether children could see their previous
number line estimates, by sometimes allowing them to make
multiple estimates on a single line. We reasoned that if
children have knowledge of how number words relate to
magnitudes, but fail to use this knowledge due to a failure to
recollect previous responses, then making previous
estimates visually available may improve estimation
performance. Finally, in order to assess children’s structural
knowledge of number-word mappings, we deployed a new
method for analyzing estimates. While many previous
studies rely primarily on measures of accuracy and linearity
of estimates, they have not dissociated accuracy (e.g., how
much a given estimate deviates from the correct response)
from ordinality (e.g., whether, if a larger number is being
estimated on trial n than on trial n-1, children also provide a
larger estimate for trial # than for trial n-1). If children rely
on SM guide estimation, then we might expect their
estimates to exhibit ordinality before they become accurate.
By dissociating measures of accuracy from measures of
ordinality, we can explicitly measure how children’s
structural knowledge of the count list develops over time,
and thus better understand the learning mechanisms that
guide children’s acquisition of adult-like understanding of
number words.

Materials and Methods

Participants Eighty-five children participated. Seventy-
seven children completed at least 24 trials and were
included in the final analyses. This included 26 5-year-olds,
25 6-year-olds, and 26 7-year-olds.

Materials Stimuli consisted of a horizontal black line 23 cm
long (the number line). The number line was centered on a
4.25” x 11” piece of paper. Printed on the left of the number
line was the numeral "0" and on the right was the numeral
"100". The numbers to be estimated were presented
auditorily, and ranged from 3-97.

Procedure Each participant was shown the number line and
was told, “This is a number line. See? It goes from 0 all the
way to 100” while the experimenter gestured from left to
right across the length of the line. The experimenter
continued, “Each number has its own special place on the
number line. Today, you’re going to show me where certain
numbers go on the number line. Look! 0 goes here [gesture
to leftmost endpoint] and 100 goes here [gesture to the
rightmost endpoint]. And all of the other numbers have their
own special places on the number line. I’'m going to give
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you a pencil, and your job will be to draw an up-and-down
line to show me where each number goes. Are you ready?”
Participants were then given 24 estimation trials'. On each
trial, the number to be estimated was presented, and the
child was given a new, differently colored pencil to mark
each answer with (to differentiate estimates when they were
marked on the same sheet).

Participants were randomly assigned to one of two
conditions: the Standard condition and the Visual
Comparison condition. In the Standard condition,
participants made estimates for numbers one at a time,
marking each estimate on a new number line (see Booth &
Siegler, 2006; Siegler & Opfer, 2003; Barth & Paladino,
2011). In the Visual Comparison condition, participants
made estimates one at a time, but provided multiple
estimates on the same number line. As a result, children in
the Visual Comparison condition could refer to previous
estimates in order to calibrate subsequent estimates.
Estimates for the first 12 trials were recorded on one
number line, and the last 12 trials were recorded on a
separate line.

Participants in each condition were asked to make
estimates for one of two possible distributions of numbers.
In the Small Number Distribution, 24 numbers were
selected between 1-100 such that 4 were smaller than 10 and
the rest were selected at random. The Large Number
Distribution contained the 24 numbers generated by
subtracting the Small Number set from 100 (Barth &
Paladino, 2011; Sullivan, et al., in press).

Participants’ estimation behavior was also qualitatively
coded online for evidence of reference-point use, counting,
and other strategies. Those data are not reported here.

Analyses

Dependent Measures Each child’s responses were
measured on the number line and converted to their
numerical estimate equivalent. Indecipherable responses
were excluded (N=9/1848 trials). Responses that were
located immediately to the right of the number line’s
endpoint were included in the final analyses (N=28/1848
trials) as these were frequently accompanied by a child’s
explanation (e.g., “this one has to be off the list”). These
responses resulted in some estimates that were larger than
100 (see also Cohen & Blanc-Goldhammer, in press, for a
discussion of how the bounds of a number line can constrain
estimates in undesirable ways, and why the assessment of
numerical knowledge can be facilitated by using unbounded
number line tasks). Analyses excluding these 28 trials were
also conducted, with identical results to those reported.

Our analyses focused on two measures of estimation
performance. First, we measured whether the child’s
estimates respected the ordinality of the count list. A trial

! Approximately 60 of the participants were given the
opportunity to complete a second set of 24 trials in the opposite
condition. Due to significantly higher rates of error and numerous
experimenter notes of inattention during the second 24 trials, data
for these trials were not analyzed further.

was labeled as ordinal if the child provided an estimate in
the correct direction relative to a previous estimate,
regardless of its accuracy (e.g., by providing a larger
estimate on trial » than on trial n-/ if a larger number was
requested on trial » than on trial n-7). Second, we calculated
the linear slope of the relationship between estimate and the
number being estimated (e.g., Siegler & Opfer, 2003; Booth
& Siegler, 2006; Ebersbach et al., 2008; Lipton & Spelke,
2005; Barth, et al., 2009).

Methods All analyses reported below were conducted using
the LME4 package of R (Bates & Sarkar, 2007; R
Development Core Team, 2010). In all models, Subject was
considered a random factor, while Comparison Condition
and Distribution were considered fixed factors. Ordinality
scores resulted in binomial data, and were therefore
subjected to logit analyses. We report parameter estimates
(B), p-values estimated from Markov Chain Monte Carlo
(MCMC) simulations, and standard error estimates.

Results

We predicted participants’ estimation behavior from a
model containing age and the magnitude of the number
being estimated. Consistent with previous research, there
was an effect of Age (B = 11.5, SE = 1.6, p < .0001), an
effect of Magnitude (B = .66, SE = .11, p <.0001), and an
interaction of Magnitude and Age (B = -.20, SE = .02, p <
.0001). These data replicate the finding that children’s
estimation behavior differs according to magnitude, and that
this effect is mediated by age. Next, we analyzed the effect
of Magnitude on estimates for each age group separately.
Here, 3 represents a simple slope measure, with perfect
performance as B = 1. Predictably, 5-year-olds performed
the worst (5-year-olds: B = .36, SE = .03, p < .0001). Six-
year-olds’ estimates had a slope closer to 1, indicating more
adult-like performance (8 = .57, SE = .02, p <.0001), and 7-
year-olds performed extremely well (B = .74, SE = .02, p <
.0001). We also compared log and linear fits for each
participant’s estimates. Like in previous reports (Siegler &
Opfer, 2003; Booth & Siegler, 2006), we found that the
estimates of younger children were more likely to be best fit
by a log-curve than those of older children, which were
more linear. This demonstrates that younger children’s
estimates are somewhat inaccurate, and do not display an
adult-like linear relationship between number and estimates
(Siegler & Opfer, 2003; but see Ebersbach et al., 2008;
Barth & Paladino, 2011; and Cohen & Blanc-Goldhammer,
in press, for alternative explanations of the source and
importance of logarithmic estimation patterns).

Consistent with the trend of improved performance in
estimation accuracy as a function of age, the likelihood that
participants provided ordinal responses also differed
significantly as a function of age (B = 1.02, SE = .16, p <
.0001). This demonstrates that it at least one source of the
developmental shift in estimation ability is a maturing
understanding of the structural relationship between number
words and magnitudes. However, even though young
children’s estimates were less accurate and less likely to be
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ordinal than older children’s, all participants demonstrated
high levels of ordinality: Nearly 70% of all estimates made
by 5-year-olds were ordinal. Despite lacking accurate
mappings between number words and magnitudes, even the
youngest children produced ordinal responses, suggesting
that these children have access to SMs.

We next assessed whether participants in each age group
were sensitive to our Distribution manipulation. Previous
research has shown that adults’ estimation behavior is
affected by the range of numbers they are asked to estimate,
suggesting that they use Structure Mapping when estimating
(Sullivan et al., in press; Sullivan & Barner, 2010). Here, we
predicted participants’ estimates from a model containing
the number being estimated and the Distribution condition
(Small Number Distribution vs. Large Number Distribution)
in order to assess whether young children’s’ estimates also
shift in response to distributions presented. We found that 5-
year-olds did not show any effect of Distribution (5-year-
olds: B = -6.5, SE = 4.6, p > .15). However, 6-year-olds
showed an effect of Distribution and an interaction of
Distribution and Number (8 = -16.25, SE = 4.98, p < .01;
interaction: B = .23, SE = .06, p < .0001), and 7-year-olds
showed an interaction of Distribution and Number (B =
3.99, SE = 4.80, p > .25; interaction: B =-.11, SE= .04, p <
.025). Six and 7-year-olds, but not 5-year-olds, dynamically
recruited information about the range and distribution of
numbers being estimated and incorporated it into their
subsequent estimates, providing evidence that these older
children adjust their number-to-space mappings in response
to information about the range of numbers to be estimated.
This recalibration of estimation behavior suggests that older
children recruit knowledge of the structural relationships
between number words and numerical magnitudes in order
to alter their estimation behavior in response to the specific
demands of the estimation task.

One possible explanation of our youngest participants’
relatively poor performance on the number line task and
insensitivity to the Distribution manipulation is that these
children lack sufficient knowledge of the structure and logic
of the count list (Lipton & Spelke, 2005). If this is the case,
then our Visual Access Condition manipulation, which
selectively gave participants access to their previous
estimates, should have had no effect on estimation
performance. Said differently, if young children have weak
knowledge of the relationship between number words and
approximate magnitudes, then their performance should not
differ even when past estimates are visible. However, if 5-
year-olds have a firm grasp of the structural relation of
number words to numerical magnitudes, but simply have
difficulty recalling the location of previous estimates, then
visual access to previous estimates should facilitate
estimation performance.

Estimation performance differed as a function of
condition (Standard vs. Visual Access) for both 5- and 6-
year-olds. Five-year-olds showed an interaction of
Condition and Magnitude (B =-.18, SE = .06, p <.01).
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Figure 1: Estimation performance for (a) five-year olds;
(b) six-year olds, and (c) seven-year-olds. Data points are
means. Black markers indicate Large Number Distribution;
gray markers indicate Small Number Distribution.

These youngest participants were more likely to provide
smaller estimates for smaller numbers and larger estimates
for larger numbers in the Visual Comparison condition
relative to the Standard condition. This resulted in more
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accurate performance in the Visual Comparison Condition
than in the Standard Condition (slope for Standard
Condition: B = .21; Visual Comparison Condition: = .38).
In contrast, 6-year-olds showed a main effect of Condition
(B = -8.50, SE = 4.30, p < .05), but no interaction. This
suggests that 6-year-olds were somewhat sensitive to our
condition manipulation—however, without an interaction,
we cannot definitively say that access to previous estimates
improved their estimation performance. Finally, 7-year-olds
showed neither an effect of condition nor an interaction.
This suggests that these older children, whose estimates
tend to be quite accurate and linear even in a standard
number-line estimation task (e.g., Booth & Siegler, 20006),
do not show improved performance from having visual
access to previous estimates, likely because their
performance was already quite accurate and internally
consistent.
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Figure 2: Proportion of ordinal responses in 5-year-olds’
in the Visual Comparison and Standard conditions.

Because the slope of estimates can be strongly affected by
outliers, we also explored the effect of condition on
Ordinality, which reflects children’s knowledge of the
ordering, but not the distance, between numbers. Condition
did not predict any differences in Ordinality for 6- or 7-
year-olds (6-year-olds: B = -.10, SE = .44, p > .8; 7-year-
olds: B = -.01, SE = .62, p > .9). In contrast, 5-year-olds
provided a significantly larger proportion of ordinal
responses in the Comparison condition than in the Standard
condition (B = -.60, SE = .30, p <.05). Together, the effects
of Condition on accuracy and ordinality suggest that even
our youngest participants use their knowledge of the count
list to guide estimation accuracy and ordinality.

Discussion

The present study demonstrates that SM develops during
childhood, and extends previous research on the
development of estimation ability by decomposing and
recontextualizing the sources of error in estimation
performance. By measuring ordinality (and not simply
accuracy), by manipulating the role of working memory in
estimation, and by asking children to estimate a biased
sampling of numbers, we have shown that even very young

children rely on structural knowledge of the mappings
between number words and approximate magnitudes when
estimating. Taken alongside previous recent research
showing that structural alignment can improve estimation
behavior in older children (Thompson & Opfer, 2010) and
that adults rely on SMs when making estimates (Sullivan &
Barner, 2010; Sullivan et al., in press; Izard & Dehaene,
2008), these data support the view that the development of
estimation abilities depends critically on knowledge of the
structural similarities between the verbal and nonverbal
number systems. To our knowledge, this is the first study to
characterize how SMs are refined over the course of
development, and to show the SMs may emerge even before
children use them reliably in typical estimation tasks.

We found that children at all age levels tested
demonstrated structural knowledge of the relationship
between number words and the magnitudes they represent.
Six- and 7-year-olds recalibrate their estimation behavior in
response to the distribution of numbers being estimated.
Additionally, although 5-year-olds performed poorly when
making one estimate per line, they performance improved
significantly when they were given access to previous
estimates. These results clearly show that S5-year-olds
understand the ordinal structure of the count list, and can
use it to guide their estimates, even though traditional
estimation tasks have previously failed to demonstrate this.
Together, these findings suggest that the ability to recruit
structural information about the number system to flexibly
recalibrate and refine estimates develops greatly between
the ages of 5 and 7, but that even the youngest estimators,
when given visual access to previous estimates, can use this
information to improve the accuracy and ordinality of
estimation behavior.

While this study provides the first developmental data
tracking the development of SM in number word mappings,
it raises several additional questions. First, this study leaves
open why SMs change over time. Although the ability to
remember (and use) previous responses to calibrate future
responses likely varies as a function of working memory, it
may also depend critically on participants’ relative
familiarity with the count list. Consistent with this,
estimation ability improves with counting ability (Lipton &
Spelke, 2005; Davidson, Eng, & Barner, under review).
However, counting ability is not wholly predictive of
estimation performance, and even relatively weak counters
can provide larger estimates for larger magnitudes (Le Corre
& Carey, 2008; Barth et al,. 2009). One possible
explanation of these conflicting data is that even children
who are just beginning to learn the count list possess SMs
for number word mappings, but the likelihood that they will
accurately deploy these mappings in estimation tasks is not
only mediated by number knowledge, but also by memory
and other processing limitations. The present study provides
suggestive evidence that cognitive limitations (like memory
constraints) may greatly influence estimation behavior, and
in doing so, influence the conclusions we draw about the
development of number knowledge. By this line of

1811



reasoning, improved memory for number increases the
likelihood that estimates will remain accurate and internally
consistent, unless the estimation task removes such demands
on memory. However, other accounts of the relationship
between estimation and memory have provided a nearly
opposite account—some have proposed that improving
estimation ability actually improves children’s memory for
numbers (Thompson & Siegler, 2010). Future research on
the development of number knowledge will benefit from
exploring how working memory ability and knowledge of
the count list contribute to differences in estimation
behavior early in development.

A second question raised by this study is how children
initially form SMs, and what types of information they use
in this process. Previous studies have argued that ALMs
may provide the basis for the construction of accurate SMs
(Sullivan & Barner, 2010; Carey, 2009). However, this
hypothesis has not been directly tested in children, and little
is known about which number words are associatively
mapped before children begin to show evidence of using
SM in development. In order to explore this, studies
currently in progress are probing children’s use of
associative and structure mapping early in acquisition, using
calibration techniques that have been used to ask this
question in adults (e.g., Izard & Dehaene, 2008; Sullivan &
Barner, 2010). Because estimation ability has been shown to
be predictive of other measures of academic success (e.g.,
Siegler & Ramani, 2009), understanding the mechanisms
that support accurate estimation may be crucial to
developing effective interventions and to understanding the
cognitive underpinnings of math success.
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