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Abstract

Cognitive modeling typically predicts the externally
observable results of tasks and psychological experiments
such as participant reaction times and error rates. To
understand better the neural processes associated with
cognition and behavior, it is necessary to model the internal
processes. In this paper, we present a method of building a
cognitive model of a simple visual selective-attention task, so
that the brain electrical activity observed during the task can
be simulated. Processes in the model were assumed to
generate electrical dipoles in the brain and were found to
provide an accurate fit to experimental data.
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Introduction

This paper describes ongoing research into building
cognitive models of internal mental processes and using
measurements made of electroencephalographic (EEG) data
to validate the models. The data for the current work was
obtained from a cognitive neuropsychology experiment,
which measured the visual selective attention of children.
EEG data was collected and analyzed as Event-Related
Potentials (ERPs) to identify sources of electrical energy in
the form of dipoles. These results were then used to build
cognitive models that could reproduce the pattern and
timing of EEG measured.

ACT-R

Cognitive models are computer simulations that attempt to
predict and reproduce the behavior of human subjects in
tasks and psychology tests such as categorization,
mathematics, language, and decision-making. The models
reproduce external manifestations of cognition such as
response times, error rates, and decisions, but until recently
there not have been attempts to link these results directly to
underlying neural structures and events via modeling.

One widely used cognitive modeling system is ACT-R
developed by John R. Anderson at Carnegie Mellon
University (Anderson & Lebiere, 1998). In this architecture,
cognition is considered to arise from the parallel interaction
of several independent modules. However, top-down
processes are directed by the Procedural Module, which is

models procedural memory as a production system.
Specifically, procedural memory contains production rules
(i.e., if/then rules). Communication to and from the
Procedural Module is managed by a system of buffers (see
figure 1) and “chunks”. Chunks in ACT-R are short lists of
predicated information. For example a dog could be
represented by the following chunk:

Isa:dog
Name:Fido
Color:brown
Size:large

Each buffer can contain one chunk at a time. Each module
has at least one buffer, such as a visual buffer, an auditory
buffer, or a declarative memory buffer. Modules receive
instructions from their buffers and place the results of their
activity into their buffers. Collectively, the buffers can be
thought of as working memory; they can also be thought of
as representing the current context of the task. Productions
“fire” when their if condition matches the contents of the
buffers. The then part of the production then alters the
content of the buffers. Productions can only fire one at a
time and each production takes 50 msec. Each module
contains functions to determine how long it takes to return a
result. For example, if a production places a request for a
specific memory from the Declarative Memory Module the
results will be delivered sooner if the memory is stronger.
Therefore, ACT-R makes strong timing predictions about
internal events.

Module Localization

This paper defines the term “module” as a function localized
to an area and linked with a process in a task. This is distinct
from Chomsky’s language modules or Fodor’s domain-
specific modules, but is similar to Kosslyn’s (1994)
generalization. There has been considerable research using
functional Magnetic Resonance Imaging (fMRI) to link the
activity of the ACT-R modules to specific brain areas with
results available on the ACT-R website (Anderson et al,
2011). The best estimates for the module locations are listed
in Anderson (2004) while the functions of these brain areas
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are described in Anderson (2007). For example, the caudate
in the basal ganglia acts as the central coordinator of
productions, the hippocampus controls declarative memory,
while the anterior cingulated cortex controls attention to
conflicting stimuli. Frontal cortex supports declarative
memory, while visual processing takes place in the occipital
lobe with further processing in the parietal (see Figure 1).
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Figure 1: The organization of information in ACT-R 5.0.
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In terms of localization, the use of fMRI is ideal.
However, fMRI is too slow to detect events directly within
the ACT-R time frame. Instead, Anderson estimates the
BOLD (Blood Oxygen Level-Dependent) response from the
time course of module activation (Anderson et al, 2003).
However, this approach still requires a time delay mismatch
between recorded activation and cognitive processing of
several seconds. In this paper we use
electroencephalography (EEG) with its superior time
resolution (milliseconds) for similar purposes.

Electroencephalography

EEG is an alternative method of finding the location and
timing of neural events and can provide independent,
convergent results at low cost. Cassenti (2007, et al 2010)
describes work using ERPs, to examine the N100 (a
negative voltage at 100ms) and the P300 (positive at 300ms)
relating these to events of perceptual encoding and context
updating and using their timings to calibrate an ACT-R
model.

The present work used a different approach to determine
whether EEG recordings could be directly linked to the
brain areas associated with defined ACT-R functions.
Specifically, it used dipole analysis to locate areas of the
brain that appear to originate the signals. A dipole is a
physics term for a pair of closely spaced charges, one of
which is positive and the other negative. A dipole can
generate an electric potential (i.e. a voltage) at some

distance from it depending upon its strength and orientation.
A given section of the brain can have several thousand
neurons all oriented in the same direction and firing
together. This could be a cortical column, a nucleus in the
lower structures, or a ganglion in the basal ganglia. These
neurons produce a potential, of the order of microvolts,
when they fire, which is measured in scalp electrodes as
EEG (see Onton and Makeig, 2006, for a similar approach).

Experiment

An experiment was conducted with child participants, using
a simple interactive technique to measure their attention.
EEG measurements were made and used for estimating the
parameters of a cognitive model.

Method

Participants Thirteen children (nine boys, four girls) aged
from four to nearly seven attending daycare or preschool
were recruited to take part in a selective-attention task.
Subjects were excluded if they had known or suspected
learning or developmental disability.

Apparatus For each participant, an electroencephalogram
(EEG) was recorded following standard practice using an
electro-cap designed for children by Neurosoft Inc. Signals
were recorded at 1ms intervals from 11 scalp sites and the
nose tip together with vertical and horizontal electro-
oculograms. All electrodes were referenced to the nose tip
and impedances kept below 5 kOhms. EEG recordings were
made of the participant children while they performed
several blocks of five-minute computerized behavioral
tasks. EEG and response-time data was collected by the
Neuroscan software supplied by Neurosoft.

Procedure For the selective-attention task, the children
watched a computer monitor, which showed a picture every
two seconds of either a duck or a turtle. The method
followed the protocol of Akshoomoff (2002). The children
were told to push a button every time they saw the duck and
not to push when they saw the turtle (fig. 2).

Figure 2: Duck and Turtle pictures and responses/no
responses required.

The duck was shown 25% of the time and the turtle 75%
of the time. The task required that children pay attention to
the target stimulus (duck) while ignoring the irrelevant
stimulus (turtle). Following 12 practice trials, each child
was given 150 trials each. The task typically took 5 minutes
to complete.
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Analysis

The EEG data was analyzed using the software package
EEGLAB from UCSD which runs on the proprietary
MATLAB software (Delorme et al, 2004). Event-Related
Potentials (ERPs) were then derived from the continuous
EEG recordings. Behavioral measures of performance
(accuracy and reaction times) showed that the children
carried out the tasks well achieving an overall accuracy of
90% in pressing the button when appropriate.

Independent Component Analysis

The analysis continued with Independent Component
Analysis (ICA), which is a mathematical technique of
finding sets of separate functions that can explain all of the
measurements in the most efficient way, as maximally
independent signals. For example, the three posterior
electrodes were found to react initially together in the ERP,
so this was explained as a single component in the middle of
the occipital area. The FASTICA algorithm was used,
(Hyvirinen, 1998) as it produced the most consistent results.
While the ICA method can calculate location and timings of
components, it cannot estimate an absolute magnitude for
them since there is an inherent ambiguity between the
strength of the component and the attenuation from it to the
measurement point.

Dipole Location

The DIPFIT routine of EEGLAB was then used to estimate
a set of dipoles in the averaged ERP data that would explain
the independent components extracted. Each dipole is
assumed to be a region of cortex where several thousand
neurons act together in parallel so that their combined
electric potential is responsible for the EEG signal measured
at the scalp. The DIPFIT software usually finds one or
sometimes two dipoles for each of the specific regions that
appear to produce the independent components. The
EEGLAB spherical head model with standard coordinates
was selected. For initial estimates, the data was combined
for all of the subjects for both the duck and turtle cases.

Cognitive Model

The next stage was to create a model that reproduced the
average ERP activity measured across participants. An
ACT-R model of the process would, at the minimum,
predict that the visual module (occipital) would be activated
by the displayed picture and would place a representation of
the picture in the visual buffer (parietal). Next, the
representation would be used to retrieve the instruction
about what to do for that animal from declarative memory
(temporal), which in turn would be placed in the declarative
memory buffer (frontal). At this stage of the work, the
model was primarily built to reproduce the electrical activity
measured rather than the behavioral results. This is to
provide a proof-of-concept that can demonstrate that the
method can be used consistently to describe internal neural
activity. The goal is to define a set of process building

blocks that are stable across diverse tasks and can be used to
reproduce results from further tasks.

Electric-Potential Modeling

To model the electrical activity, each module in the
cognitive model was assumed to be generating one or two
dipoles in the locations identified in the dipole-fitting stage.
The module was assumed to produce its electrical energy in
a rising and falling wave. For modeling purposes, a simple
triangular wave was assumed, which peaked in the middle
of the module activity. The resulting potential (voltage) was

then calculated at the surface of the head for each electrode.

Electrode

Figure 3: Calculating an electric dipole potential.

The effect of each dipole was estimated in the simulation

as follows (see figure 3):

e Calculate the square of the distance r from the dipole to
an electrode using Pythagoras.

¢ Calculate the cosine of the angle 6 between the electrode
and the dipole using vector dot product.

e Calculate the electric potential from the dipole at the
electrode as k.p.cos(0)/r’, where p is the strength of the
dipole and k is a constant. It is not necessary to know the
value of the constant since relative magnitudes are used in
the model.

Adding the potentials from all of the dipoles produced an

estimate of the ERP signals at each electrode. The resultant

estimates were then compared with the experimental
measurements.

Results

Running the ICA routine on the experimental data produced
eight independent components to account for the potentials
measured. For example, a close dipole pair explained the
strong occipital response at 100ms. These were located in
the posterior of the head as expected for visual processing.
The time course of the independent component was
primarily a single spike at 100ms with little activity before
or after. Thus, it could be modeled as a simple spike at
100ms, spread 50ms each side, and zero otherwise.
Following the first occipital response at 100ms, a cascade of
processes formed in the temporal, parietal, and frontal lobes,
plus the basal area over the next 700ms. The independent
components were found to be active only for a short time
each. This facilitated modeling them as separate processes.
The DIPFIT routine had shown that all of these components
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could be accounted for by one or a pair of dipoles. These
were then used as the basis for the modules in the cognitive
model.

To simulate the activity, a computer model was
constructed consisting of eight modules corresponding to
the independent components found. Each module, when it
was activated, was assumed to produce one or two dipoles
lasting for its duration. This was modeled as rising linearly
to a peak and then dropping at the same rate. It was assumed
that the dipoles were generated at the location estimated in
DIPFIT and which were consistent with the standard
locations assumed in ACT-R. The brain regions that the
locations corresponded to were found using the Talairach
database (Lancaster and Fox, 2011). Table 1 lists the eight
processes needed to simulate the ERP signals measured in
the selective-attention experiment. Each line shows one
module in the cognitive model with the source region of one
or two electric dipoles. The times listed are the peaks of
activity of each of those modules. Running the simulation
produced output which closely reproduced the scalp
electrical activity measured in the experiment. The third
column shows the coefficient of determination (R-squared)
of the simulation relative to the experimental data for that
time over the spatial area of the scalp.

Table 1: Times and locations of modules in model.

Time (ms) Region(s) R?
100 Occipital/Basal 95%
125 Parietal /Basal 87%
170 Occipital/Frontal 77%
220 Basal 98%
280 Parietal/Frontal 89%
320 Parietal/Temporal 96%
380 Parietal 91%
690 Occipital/Basal 70%

Figure 4 compares preliminary results of the simulation
against the experimental results. The left-hand plots show
contour lines of potentials averaged over the subjects
measured in the selective-attention experiment at four of the
eight times. The views are from above, with the nose at the
top of the diagram and the ears at the side. Darker areas
indicate more positive voltage responses in the ERP. The
right-hand column shows the electric potentials calculated
from the model for those four modules at their peak activity
times. The locations of the dipoles responsible for the
potentials are shown as small circles with lines indicating
the direction of the positive voltage. A sensitivity analysis
suggested that measuring the scalp EEG voltage to plus-or-
minus 10% accuracy would result in localizing a dipole to
within two or three millimeters.

The model showed a good agreement for the distribution
of potentials measured in the experiment. Overall, the model
accounted for 75% of the spatial and temporal variation of
electrical potential measured in the experiment. As table 1
shows, at the peaks of activity, the agreement is generally

even higher. This is an excellent fit especially considering
the many approximations and simplifications made in the
calculations.

Experiment

100ms
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280ms
Farietalf
Frontal
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Figure 4: Comparison of experimental ERP results with
model simulation for four times during the response.

Conclusion

The present work has suggested that EEG signals can be
simulated using a cognitive model that assumes that each
process generates one or two electric dipoles located at the
center of functionality for that function. The standard ACT-
R mappings of functionality proved very robust for use in
EEG modeling.

Cognitive modeling has been typically used to reproduce
the averaged outward behaviors of experiment participants
such as response times and error rates. However, if the
internal processes are to be simulated, the differences
between participants must be taken into account. Data from
the experiment revealed large variability between
individuals, especially in the activity in their pre-frontal
areas (see Griffiths, Yeh, D'Angiulli, A, 2009, and Yeh,
Griffiths, and D’Angiulli, 2010). Such differences would
need to be considered when modeling specific individuals.
For example, ACT-R models wusually only contain
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productions that are related to the task at hand. To reproduce
the overall brain activity during the task, other processes
such as environmental checks taking place in the brain
would need to be incorporated. For modeling, it will be
necessary to keep tasks simple in order to be able to isolate
consistent components. Despite the overall variability of
EEG data, the technique of dipole analysis appears to be
very promising to determine the localization, time course,
and especially the sequencing of neural events.

Future Work

The next steps in this approach will be to identify the
specific functionality of the processes postulated in the
model that explain the EEG signals. This can be achieved by
carrying out similar experimental manipulations that include
or exclude various aspects of this protocol and thus enable
the functions to be identified by a process of elimination.
The work described in this paper used results from children
to measure executive function. As the task was simple, it
produced ideal data for modeling. Future modeling studies
will use results from adults to provide a comparison to
determine how the modules change during development.
Models built from these results can then be used for
investigation of neural processes and to explore patterns of
neurocognitive development.
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